Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Mini-Review Article

Textile Based Electrodes for Flexible Lithium-ion Batteries: New Updates

Author(s): Ahmed Alahmed* and Emel Ceyhun Sabir

Volume 18, Issue 6, 2022

Published on: 12 January, 2022

Page: [659 - 667] Pages: 9

DOI: 10.2174/1573413717666211208143652

Price: $65

Abstract

The electrodes are the basis for building flexible lithium-ion batteries (FLIBs), and many attempts have been made to develop flexible electrodes with high efficiency in terms of electrical conductivity, chemical and mechanical properties. Most studies showed relatively satisfactory results when testing the electrochemical properties of laboratory-produced electrodes, but most of these electrodes could not meet the expected requirements of flexible electrodes in practical applications. Quantitative production faces many problems that must be overcome, such as the gradual decline in electrochemical performance, deformation of the electrode structure, high production costs, and difficulties in the production process itself. In this research, developments in the production of flexible electrodes, especially those that depend on carbon materials and metal nanoparticles, will be discussed and summarized in this research. The electrochemical performance and stability of the produced flexible electrodes will be compared. The factors contributing to the progress in the production of flexible lithium-ion batteries will also be discussed.

Keywords: Flexible lithium ion batteries, flexible electrodes, carbon nanotubes, textile storage energy, portable electronic devices, electrode materials.

Graphical Abstract

[1]
Nathan, A.; Ahnood, A.; Cole, M.T.; Lee, S.; Suzuki, Y.; Hiralal, P.; Bonaccorso, F.; Hasan, T.; Garcia-Gancedo, L.; Dyadyusha, A.; Haque, S.; Andrew, P.; Hofmann, S.; Moultrie, J.; Chu, D.; Flewitt, A.J.; Ferrari, A.C.; Kelly, M.J.; Robertson, J.; Amaratunga, G A J.; Milne, W.I. Flexible electronics: The next ubiquitous platform. Proc. IEEE, 2012, 100, 1486-1517.
[http://dx.doi.org/10.1109/JPROC.2012.2190168]
[2]
Marriam, I.; Tebyetekerwa, M.; Xu, Z.; Chathuranga, H.; Chen, S.; Chen, H.; Zheng, J-C.; Du, A.; Yan, C. Techniques enabling inorganic materials into wearable fiber/Yarn and flexible lithium-ion batteries. Energy Storage Mater., 2021, 43, 62-84.
[http://dx.doi.org/10.1016/j.ensm.2021.08.039]
[3]
Prosini, P.P.; Mancini, R.; Petrucci, L.; Contini, V.; Villano, P. Li4Ti5O12 as anode in all-solid-state, plastic, lithium-ion batteries for low-power applications. Solid State Ion., 2001, 144, 185-192.
[http://dx.doi.org/10.1016/S0167-2738(01)00891-8]
[4]
Gaikwad, A.M.; Zamarayeva, A.M.; Rousseau, J.; Chu, H.; Derin, I.; Steingart, D.A. Highly stretchable alkaline batteries based on an embedded conductive fabric. Adv. Mater., 2012, 24(37), 5071-5076.
[http://dx.doi.org/10.1002/adma.201201329] [PMID: 22760812]
[5]
Gaikwad, A.M.; Whiting, G.L.; Steingart, D.A.; Arias, A.C. Highly flexible, printed alkaline batteries based on mesh-embedded electrodes. Adv. Mater., 2011, 23(29), 3251-3255.
[http://dx.doi.org/10.1002/adma.201100894] [PMID: 21661062]
[6]
Zhao, Y.; Guo, J. Development of flexible Li-ion batteries for flexible electronics. InfoMat, 2020, 2, 866-878.
[http://dx.doi.org/10.1002/inf2.12117]
[7]
Kim, H.J.; Bae, G.H.; Lee, S.M.; Ahn, J.H.; Kim, J.K. Properties of lithium iron phosphate prepared by biomass-derived carbon coating for flexible lithium ion batteries. Electrochim. Acta, 2019, 300, 18-25.
[http://dx.doi.org/10.1016/j.electacta.2019.01.057]
[8]
Mastragostino, M.; Soavi, F.; Zanelli, A. Improved composite materials for rechargeable lithium metal polymer batteries. J. Power Sources, 1999, 8182, 729-733.
[http://dx.doi.org/10.1016/S0378-7753(99)00152-4]
[9]
Zhang, W.J. A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power Sources, 2011, 196, 13-24.
[http://dx.doi.org/10.1016/j.jpowsour.2010.07.020]
[10]
Nyholm, L.; Nyström, G.; Mihranyan, A.; Strømme, M. Toward flexible polymer and paper-based energy storage devices. Adv. Mater., 2011, 23(33), 3751-3769.
[http://dx.doi.org/10.1002/adma.201004134] [PMID: 21739488]
[11]
Sultana, I.; Rahman, M.M.; Wang, J.; Wang, C.; Wallace, G.G.; Liu, H.K. All-polymer battery system based on polypyrrole (PPy)/para (toluene sulfonic acid) (pTS) and polypyrrole (PPy)/indigo carmine (IC) free standing films. Electrochim. Acta, 2012, 83, 209-215.
[http://dx.doi.org/10.1016/j.electacta.2012.08.043]
[12]
Gofer, Y.; Sarker, H.; Killan, J.G.; Poehler, T.O.; Searson, P.C. An all-polymer charge storage device. Appl. Phys. Lett., 1997, 71, 1582-1584.
[http://dx.doi.org/10.1063/1.120074]
[13]
Sannier, L.; Bouchet, R.; Grugeon, S.; Naudin, E.; Vidal, E.; Tarascon, J.M. Room temperature lithium metal batteries based on a new Gel Polymer Electrolyte membrane. J. Power Sources, 2005, 144, 231-237.
[http://dx.doi.org/10.1016/j.jpowsour.2004.11.064]
[14]
Shin, J-H.; Henderson, W.A.; Passerini, S. PEO-based polymer electrolytes with ionic liquids and their use in lithium metal-polymer electrolyte batteries. J. Electrochem. Soc., 2005, 152, A978.
[http://dx.doi.org/10.1149/1.1890701]
[15]
Wang, J.; Sun, X. Understanding and recent development of carbon coating on LiFePO 4 cathode materials for lithium-ion batteries. Energy Environ. Sci., 2012, 5, 5163-5185.
[http://dx.doi.org/10.1039/C1EE01263K]
[16]
O’Heir, J. Building better batteries. Mech. Eng., 2017, 139, 10-11.
[17]
Gwon, H.; Kim, H.S.; Lee, K.U.; Seo, D.H.; Park, Y.C.; Lee, Y.S.; Ahn, B.T.; Kang, K. Flexible energy storage devices based on graphene paper. Energy Environ. Sci., 2011, 4, 1277-1283.
[http://dx.doi.org/10.1039/c0ee00640h]
[18]
Flandrois, S.; Simon, B. Carbon materials for lithium-ion rechargeable batteries Carbon N. Y, 1999, 37, 165-180.
[http://dx.doi.org/10.1016/S0008-6223(98)00290-5]
[19]
Bruce, P.G.; Scrosati, B.; Tarascon, J.M. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. Engl., 2008, 47(16), 2930-2946.
[http://dx.doi.org/10.1002/anie.200702505] [PMID: 18338357]
[20]
Liu, T.; Kim, K.C.; Lee, B.; Chen, Z.; Noda, S.; Jang, S.S.; Lee, S.W. Self-polymerized dopamine as an organic cathode for Li- and Na-ion batteries. Energy Environ. Sci., 2017, 10, 205-215.
[http://dx.doi.org/10.1039/C6EE02641A]
[21]
Ohta, S.; Komagata, S.; Seki, J.; Saeki, T.; Morishita, S.; Asaoka, T. Short communication All-solid-state lithium ion battery using garnet-type oxide and Li3BO3 solid electrolytes fabricated by screen-printing. J. Power Sources, 2013, 238, 53-56.
[http://dx.doi.org/10.1016/j.jpowsour.2013.02.073]
[22]
Liao, C.L.; Fung, K.Z. Lithium cobalt oxide cathode film prepared by rf sputtering. J. Power Sources, 2004, 128, 263-269.
[http://dx.doi.org/10.1016/j.jpowsour.2003.09.065]
[23]
Downes, R.; Wang, S.; Haldane, D.; Moench, A.; Liang, R. Strain-induced alignment mechanisms of carbon nanotube networks. Adv. Eng. Mater., 2015, 17, 349-358.
[http://dx.doi.org/10.1002/adem.201400045]
[24]
Natarajan, B.; Stein, I.Y.; Lachman, N.; Yamamoto, N.; Jacobs, D.S.; Sharma, R.; Liddle, J.A.; Wardle, B.L. Aligned carbon nanotube morphogenesis predicts physical properties of their polymer nanocomposites. Nanoscale, 2019, 11(35), 16327-16335.
[http://dx.doi.org/10.1039/C9NR03317C] [PMID: 31233061]
[25]
Vilatela, J.J.; Elliott, J.A.; Windle, A.H. A model for the strength of yarn-like carbon nanotube fibers. ACS Nano, 2011, 5(3), 1921-1927.
[http://dx.doi.org/10.1021/nn102925a] [PMID: 21348503]
[26]
Torres-Torres, C.; Mercado-Zúñiga, C.; Santos-Fernández, A.M.; Martínez-González, C.L.; Trejo-Valdez, M.; Martínez-Gutiérrez, H.; Vargas-García, J.R.; Torres-Martínez, R. Contrast in the electrical and opto-electrical properties exhibited by randomly distributed networks and vertically aligned mutil-wall carbon nanotubes. J. Nanoelectron. Optoelectron., 2017, 12(5), 28-32.
[27]
Lee, K.T.; Cho, J. Roles of nanosize in lithium reactive nanomaterials for lithium ion batteries. Nano Today, 2011, 6, 28-41.
[http://dx.doi.org/10.1016/j.nantod.2010.11.002]
[28]
Jiang, J.; Li, Y.; Liu, J.; Huang, X.; Yuan, C.; Lou, X.W. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater., 2012, 24(38), 5166-5180.
[http://dx.doi.org/10.1002/adma.201202146] [PMID: 22912066]
[29]
Wang, B.; Wang, H.; Chen, W.; Wu, P.; Bu, L.; Zhang, L.; Wan, L. Carbonized cotton fiber supported flexible organic lithium ion battery cathodes. J. Colloid Interface Sci., 2020, 572, 1-8.
[http://dx.doi.org/10.1016/j.jcis.2020.03.047] [PMID: 32220761]
[30]
Kasavajjula, U.; Wang, C.; Appleby, A.J. Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J. Power Sources, 2007, 163, 1003-1039.
[http://dx.doi.org/10.1016/j.jpowsour.2006.09.084]
[31]
Kim, H.; Auyeung, R.C.Y.; Piqué, A. Laser-printed thick-film electrodes for solid-state rechargeable Li-ion microbatteries. J. Power Sources, 2007, 165, 413-419.
[http://dx.doi.org/10.1016/j.jpowsour.2006.11.053]
[32]
Park, C.M.; Kim, J.H.; Kim, H.; Sohn, H.J. Li-alloy based anode materials for Li secondary batteries. Chem. Soc. Rev., 2010, 39(8), 3115-3141.
[http://dx.doi.org/10.1039/b919877f] [PMID: 20593097]
[33]
Stenina, I.A.; Kulova, T.L.; Skundin, A.M.; Yaroslavtsev, A.B. Effects of carbon coating from sucrose and PVDF on electrochemical performance of Li4Ti5O12/C composites in different potential ranges. J. Solid State Electrochem., 2018, 22, 2631-2639.
[http://dx.doi.org/10.1007/s10008-018-3978-z]
[34]
He, X.; Wu, Y.; Zhao, F.; Wang, J.; Jiang, K.; Fan, S. Enhanced rate capabilities of Co3O4/carbon nanotube anodes for lithium ion battery applications. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1, 11121-11125.
[http://dx.doi.org/10.1039/c3ta12608k]
[35]
Zhao, C.; Wada, T.; De Andrade, V.; Gürsoy, D. Kato, H Imaging of 3D morphological evolution of nanoporous silicon anode in lithium ion battery by X-ray nano-tomography. Nano Energy, 2018, 52, 381-390.
[36]
Wu, K.; Niu, Y.; Zhang, Y.; Yong, Z.; Li, Q. Continuous growth of carbon nanotube films: From controllable synthesis to real applications. Compos., Part A Appl. Sci. Manuf., 2021, 144, 106359.
[http://dx.doi.org/10.1016/j.compositesa.2021.106359]
[37]
Yao, Y.; Zhu, Y.; Zhao, S.; Shen, J.; Yang, X.; Li, C. Halide Ion intercalated electrodeposition synthesis of Co3O4 nanosheets with tunable pores on graphene foams as free-standing and flexible li-ion battery anodes. ACS Appl. Energy Mater., 2018, 1, 1239-1251.
[http://dx.doi.org/10.1021/acsaem.7b00351]
[38]
Ren, W.; Wang, C.; Lu, L.; Li, D.; Cheng, C.; Liu, J. SnO2@Si core-shell nanowire arrays on carbon cloth as a flexible anode for Li ion batteries. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1, 13433-13438.
[http://dx.doi.org/10.1039/c3ta11943b]
[39]
Li, B.; Zhao, W.; Yang, Z.; Zhang, C.; Dang, F.; Liu, Y.; Jin, F.; Chen, X. A carbon-doped anatase TiO2-Based flexible silicon anode with high-performance and stability for flexible lithium-ion battery. J. Power Sources, 2020, 466, 228339.
[http://dx.doi.org/10.1016/j.jpowsour.2020.228339]
[40]
Wang, C.; Wang, X.; Lin, C.; Zhao, X.S. Spherical vanadium phosphate particles grown on carbon fiber cloth as flexible anode for high-rate Li-ion batteries. Chem. Eng. J., 2020, 386, 123981.
[http://dx.doi.org/10.1016/j.cej.2019.123981]
[41]
Bensalah, N.; Kamand, F.Z.; Zaghou, M.; Dawoud, H.D.; Al Tahtamouni, T. Silicon nanofilms as anode materials for flexible lithium ion batteries. Thin Solid Films, 2019, 690.
[http://dx.doi.org/10.1016/j.tsf.2019.137516]
[42]
Aziz, A.; Bazbouz, M.B.; Welland, M.E. Double-walled carbon nanotubes ink for high-conductivity flexible electrodes. ACS Appl. Nano Mater., 2020, 3, 9385-9392.
[http://dx.doi.org/10.1021/acsanm.0c02013]
[43]
Zhu, Y.; Yang, M.; Huang, Q.; Wang, D.; Yu, R.; Wang, J.; Zheng, Z.; Wang, D. V2O5 Textile cathodes with high capacity and stability for flexible lithium-ion batteries. Adv. Mater., 2020, 32, 1-7.
[http://dx.doi.org/10.1002/adma.201906205]
[44]
Ma, X.; Pan, Z.; Wu, X.; Shen, P.K. Na4Fe3(PO4)2(P2O7)@ NaFePO4@C core-double-shell architectures on carbon cloth: A high-rate, ultrastable, and flexible cathode for sodium ion batteries. Chem. Eng. J., 2019, 365, 132-141.
[http://dx.doi.org/10.1016/j.cej.2019.01.173]
[45]
Wang, M.; Huang, Y.; Zhu, Y.; Wu, X.; Zhang, N.; Zhang, H. Binder-free flower-like SnS2 nanoplates decorated on the graphene as a flexible anode for high-performance lithium-ion batteries. J. Alloys Compd., 2019, 774, 601-609.
[http://dx.doi.org/10.1016/j.jallcom.2018.09.378]
[46]
Zhu, K.; Gao, H.; Hu, G. A flexible mesoporous Li4Ti5O12-rGO nanocomposite film as free-standing anode for high rate lithium ion batteries. J. Power Sources, 2018, 375, 59-67.
[http://dx.doi.org/10.1016/j.jpowsour.2017.11.053]
[47]
Wang, X.; Xi, M.; Wang, X.; Fong, H.; Zhu, Z. Flexible composite felt of electrospun TiO2 and SiO2 nanofibers infused with TiO2 nanoparticles for lithium ion battery anode. Electrochim. Acta, 2016, 190, 811-816.
[http://dx.doi.org/10.1016/j.electacta.2015.12.123]
[48]
Li, C.; Shi, T.; Yoshitake, H.; Wang, H. A flexible high-energy lithium-ion battery with a carbon black-sandwiched Si anode. Electrochim. Acta, 2017, 225, 11-18.
[http://dx.doi.org/10.1016/j.electacta.2016.12.105]
[49]
Xia, A.; Zhao, C.; Yu, W.; Han, Y.; Yi, J.; Tan, G. Mo-doped δ-MnO2 anode material synthesis and electrochemical performance for lithium-ion batteries. J. Appl. Electrochem., 2020, 50, 733-744.
[http://dx.doi.org/10.1007/s10800-020-01431-2]
[50]
Amin, K.; Meng, Q.; Ahmad, A.; Cheng, M.; Zhang, M.; Mao, L.; Lu, K.; Wei, Z. A carbonyl compound-based flexible cathode with superior rate performance and cyclic stability for flexible lithium-ion batteries. Adv. Mater., 2018, 30(4), 1-8.
[http://dx.doi.org/10.1002/adma.201703868] [PMID: 29226388]
[51]
Li, Q.; Li, D.; Wang, H.; Wang, H.G.; Li, Y.; Si, Z.; Duan, Q. Conjugated Carbonyl polymer-based flexible cathode for superior lithium-organic batteries. ACS Appl. Mater. Interfaces, 2019, 11(32), 28801-28808.
[http://dx.doi.org/10.1021/acsami.9b06437] [PMID: 31313916]
[52]
Zhang, Y.; Li, Y.; Wang, Y.; Guo, R.; Liu, W.; Pei, H.; Yin, G.; Ye, D.; Yu, S.; Xie, J. A flexible copper sulfide @ multi-walled carbon nanotubes cathode for advanced magnesium-lithium-ion batteries. J. Colloid Interface Sci., 2019, 553, 239-246.
[http://dx.doi.org/10.1016/j.jcis.2019.06.027] [PMID: 31207544]
[53]
Bao, J.J.; Zou, B.K.; Cheng, Q.; Huang, Y.P.; Wu, F.; Xu, G.W.; Chen, C.H. Flexible and free-standing LiFePO4/TPU/SP cathode membrane prepared via phase separation process for lithium ion batteries. J. Membr. Sci., 2017, 541, 633-640.
[http://dx.doi.org/10.1016/j.memsci.2017.06.083]
[54]
Noerochim, L.; Wang, J.Z.; Wexler, D.; Rahman, M.M.; Chen, J.; Liu, H.K. Impact of mechanical bending on the electrochemical performance of bendable lithium batteries with paper-like free-standing V 2O 5-polypyrrole cathodes. J. Mater. Chem., 2012, 22, 11159-11165.
[http://dx.doi.org/10.1039/c2jm16470a]
[55]
Ding, Y.H.; Ren, H.M.; Huang, Y.Y.; Chang, F.H.; Zhang, P. Three-dimensional graphene/LiFePO4 nanostructures as cathode materials for flexible lithium-ion batteries. Mater. Res. Bull., 2013, 48, 3713-3716.
[http://dx.doi.org/10.1016/j.materresbull.2013.05.118]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy