Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Systematic Review Article

Evaluation of Associated Genes with Traumatic Pain: A Systematic Review

Author(s): Hamid Reza Rasouli, Samira Talebi and Fathollah Ahmadpour*

Volume 21, Issue 9, 2022

Published on: 31 March, 2022

Page: [830 - 840] Pages: 11

DOI: 10.2174/1871527320666211206121645

Price: $65

Abstract

Objectives: The knowledge about the molecular pathway of traumatic pain relief is less documented. This systematic review study aimed to identify the genes and molecular pathways associated with various traumatic pains.

Methods: The online databases such as EMBASE, MEDLINE, PubMed, Cochrane Library, International Clinical Trials Registry Platform, Clinical Trials, Google Scholar, Wiley, ISI Web of Knowledge, and Scopus were searched. Two review authors searched and screened all records' titles and abstracts, and the third expert reviewer author resolved their disagreement. The study’s design, various trauma injuries, types of genes, and molecular pathways were recorded. The genes and molecular pathways data were obtained via GeneCards®: The Human Gene Database (https://www.genecards.org).

Results: Studies on a variety of trauma injuries regarding nerve and Spinal Cord Injuries (SCIs) (12 records), Hypertrophic scar with Severe Pain (one record), severe post-traumatic musculoskeletal pain (MSP) (one record), and orthopedic trauma (one record) were included. The main molecular pathways such as the immune system, apoptosis, and death receptor signaling, T-cell antigen receptor (TCR) signaling pathway, oxidative stress, interleukin(s) mediated signaling pathway, biological oxidations, metabolic pathways (especially amino acid metabolism and amino group), focal adhesion, the proliferation of vascular, epithelial, and connective tissue cells, angiogenesis and neural development were identified.

Conclusion: The immune system, apoptosis, and metabolic pathways are crucial for understanding the roles of genes in traumatic pain. It is recommended that these identified pathways and related genes be considered therapeutical targets for pain management in patients with trauma injuries. In addition, different forms of trauma injuries require different pathways and related genes to be considered.

Keywords: Pain, gene, pathway, trauma, injury, immune system.

[1]
Merskey H, Watson GD. The lateralisation of pain. Pain 1979; 7(3): 271-80.
[http://dx.doi.org/10.1016/0304-3959(79)90084-8] [PMID: 394109]
[2]
Bennett DL, Woods CG. Painful and painless channelopathies. Lancet Neurol 2014; 13(6): 587-99.
[http://dx.doi.org/10.1016/S1474-4422(14)70024-9] [PMID: 24813307]
[3]
Stewart WF, Ricci JA, Chee E, Morganstein D, Lipton R. Lost productive time and cost due to common pain conditions in the US workforce. JAMA 2003; 290(18): 2443-54.
[http://dx.doi.org/10.1001/jama.290.18.2443] [PMID: 14612481]
[4]
Breivik H, Collett B, Ventafridda V, Cohen R, Gallacher D. Survey of chronic pain in Europe: Prevalence, impact on daily life, and treatment. Eur J Pain 2006; 10(4): 287-333.
[http://dx.doi.org/10.1016/j.ejpain.2005.06.009] [PMID: 16095934]
[5]
Goldberg YP, Pimstone SN, Namdari R, et al. Human Mendelian pain disorders: A key to discovery and validation of novel analgesics. Clin Genet 2012; 82(4): 367-73.
[http://dx.doi.org/10.1111/j.1399-0004.2012.01942.x] [PMID: 22845492]
[6]
Holmes D. Anti-NGF painkillers back on track? Nat Rev Drug Discov 2012; 11(5): 337-8.
[http://dx.doi.org/10.1038/nrd3732] [PMID: 22543456]
[7]
Hohenauer T, Moore AW. The Prdm family: Expanding roles in stem cells and development. Development 2012; 139(13): 2267-82.
[http://dx.doi.org/10.1242/dev.070110] [PMID: 22669819]
[8]
Kinameri E, Inoue T, Aruga J, et al. Prdm proto-oncogene transcription factor family expression and interaction with the Notch-Hes pathway in mouse neurogenesis. PLoS One 2008; 3(12): e3859.
[http://dx.doi.org/10.1371/journal.pone.0003859] [PMID: 19050759]
[9]
Crow M, Denk F, McMahon SB. Genes and epigenetic processes as prospective pain targets. Genome Med 2013; 5(2): 12.
[http://dx.doi.org/10.1186/gm416] [PMID: 23409739]
[10]
Holbrook TL, Hoyt DB, Anderson JP. The impact of major in-hospital complications on functional outcome and quality of life after trauma. J Trauma 2001; 50(1): 91-5.
[http://dx.doi.org/10.1097/00005373-200101000-00016] [PMID: 11231676]
[11]
Peek J, Beks RB, Hietbrink F, et al. Complications and outcome after rib fracture fixation: A systematic review. J Trauma Acute Care Surg 2020; 89(2): 411-8.
[http://dx.doi.org/10.1097/TA.0000000000002716] [PMID: 32282759]
[12]
McKinley WO, Jackson AB, Cardenas DD, DeVivo MJ. Long-term medical complications after traumatic spinal cord injury: A regional model systems analysis. Arch Phys Med Rehabil 1999; 80(11): 1402-10.
[http://dx.doi.org/10.1016/S0003-9993(99)90251-4] [PMID: 10569434]
[13]
Khalil H, Sereika SM, Dai F, et al. OPRM1 and COMT gene-gene interaction is associated with postoperative pain and opioid consumption after orthopedic trauma. Biol Res Nurs 2017; 19(2): 170-9.
[http://dx.doi.org/10.1177/1099800416680474] [PMID: 27903758]
[14]
He X, Fan L, Wu Z, He J, Cheng B. Gene expression profiles reveal key pathways and genes associated with neuropathic pain in patients with spinal cord injury. Mol Med Rep 2017; 15(4): 2120-8.
[http://dx.doi.org/10.3892/mmr.2017.6231] [PMID: 28260076]
[15]
Berta T, Perrin FE, Pertin M, et al. Gene expression profiling of cutaneous injured and non-injured nociceptors in SNI animal model of neuropathic pain. Sci Rep 2017; 7(1): 9367.
[http://dx.doi.org/10.1038/s41598-017-08865-3] [PMID: 28839165]
[16]
Kwak IS, Choi YH, Jang YC, Lee YK. Immunohistochemical analysis of neuropeptides (protein gene product 9.5, substance P and calcitonin gene-related peptide) in hypertrophic burn scar with pain and itching. Burns 2014; 40(8): 1661-7.
[http://dx.doi.org/10.1016/j.burns.2014.04.004] [PMID: 24908181]
[17]
Huang W, Kabbani N, Brannan TK, et al. Association of a functional polymorphism in the CHRFAM7A gene with inflammatory response mediators and neuropathic pain after spinal cord injury. J Neurotrauma 2019; 36(21): 3026-33.
[http://dx.doi.org/10.1089/neu.2018.6200] [PMID: 30924722]
[18]
Linnstaedt SD, Hu J, Bortsov AV, et al. μ-Opioid receptor gene a118 g variants and persistent pain symptoms among men and women experiencing motor vehicle collision. J Pain 2015; 16(7): 637-44.
[http://dx.doi.org/10.1016/j.jpain.2015.03.011] [PMID: 25842347]
[19]
Obata K, Yamanaka H, Fukuoka T, et al. Contribution of injured and uninjured dorsal root ganglion neurons to pain behavior and the changes in gene expression following chronic constriction injury of the sciatic nerve in rats. Pain 2003; 101(1-2): 65-77.
[http://dx.doi.org/10.1016/S0304-3959(02)00296-8] [PMID: 12507701]
[20]
Plunkett JA, Yu CG, Easton JM, Bethea JR, Yezierski RP. Effects of interleukin-10 (IL-10) on pain behavior and gene expression following excitotoxic spinal cord injury in the rat. Exp Neurol 2001; 168(1): 144-54.
[http://dx.doi.org/10.1006/exnr.2000.7604] [PMID: 11170729]
[21]
Ma W, Quirion R. Targeting invading macrophage-derived PGE2, IL-6 and calcitonin gene-related peptide in injured nerve to treat neuropathic pain. Expert Opin Ther Targets 2006; 10(4): 533-46.
[http://dx.doi.org/10.1517/14728222.10.4.533] [PMID: 16848690]
[22]
Kim DS, Figueroa KW, Li KW, Boroujerdi A, Yolo T, Luo ZD. Profiling of dynamically changed gene expression in dorsal root ganglia post peripheral nerve injury and a critical role of injury-induced glial fibrillary acidic protein in maintenance of pain behaviors. Pain 2009; 143(1-2): 114-22.
[http://dx.doi.org/10.1016/j.pain.2009.02.006] [PMID: 19307059]
[23]
Vallejo R, Tilley DM, Williams J, Labak S, Aliaga L, Benyamin RM. Pulsed radiofrequency modulates pain regulatory gene expression along the nociceptive pathway. Pain Physician 2013; 16(5): E601-13.
[http://dx.doi.org/10.36076/ppj.2013/16/E601] [PMID: 24077210]
[24]
Jeong H, Na YJ, Lee K, et al. High-resolution transcriptome analysis reveals neuropathic pain gene-expression signatures in spinal microglia after nerve injury. Pain 2016; 157(4): 964-76.
[http://dx.doi.org/10.1097/j.pain.0000000000000470] [PMID: 26761385]
[25]
Liu W, Liu Z, Liu L, et al. A novel human foamy virus mediated gene transfer of GAD67 reduces neuropathic pain following spinal cord injury. Neurosci Lett 2008; 432(1): 13-8.
[http://dx.doi.org/10.1016/j.neulet.2007.11.054] [PMID: 18180106]
[26]
Liu J, Wolfe D, Hao S, et al. Peripherally delivered glutamic acid decarboxylase gene therapy for spinal cord injury pain. Mol Ther 2004; 10(1): 57-66.
[http://dx.doi.org/10.1016/j.ymthe.2004.04.017] [PMID: 15233942]
[27]
Wu CM, Lin MW, Cheng JT, et al. Regulated, electroporation-mediated delivery of pro-opiomelanocortin gene suppresses chronic constriction injury-induced neuropathic pain in rats. Gene Ther 2004; 11(11): 933-40.
[http://dx.doi.org/10.1038/sj.gt.3302244] [PMID: 15116065]
[28]
Picot D, Loll PJ, Garavito RM. The X-ray crystal structure of the membrane protein prostaglandin H2 synthase-1. Nature 1994; 367(6460): 243-9.
[http://dx.doi.org/10.1038/367243a0] [PMID: 8121489]
[29]
Litalien C, Beaulieu P. Molecular mechanisms of drug actions: From receptors to effectors. In: Fuhrman BP, Zimmerman JJ, Eds. Pediatric Critical Care. London, UK: Mosby 2011; pp. 1553-68.
[http://dx.doi.org/10.1016/B978-0-323-07307-3.10117-X]
[30]
Hofmann HA, De Vry J, Siegling A, Spreyer P, Denzer D. Pharmacological sensitivity and gene expression analysis of the tibial nerve injury model of neuropathic pain. Eur J Pharmacol 2003; 470(1-2): 17-25.
[http://dx.doi.org/10.1016/S0014-2999(03)01753-9] [PMID: 12787826]
[31]
Balasingam V, Yong VW. Attenuation of astroglial reactivity by interleukin-10. J Neurosci 1996; 16(9): 2945-55.
[http://dx.doi.org/10.1523/JNEUROSCI.16-09-02945.1996] [PMID: 8622125]
[32]
Bethea JR, Nagashima H, Acosta MC, et al. Systemically administered interleukin-10 reduces tumor necrosis factor-alpha production and significantly improves functional recovery following traumatic spinal cord injury in rats. J Neurotrauma 1999; 16(10): 851-63.
[http://dx.doi.org/10.1089/neu.1999.16.851] [PMID: 10547095]
[33]
Thompson CD, Zurko JC, Hanna BF, Hellenbrand DJ, Hanna A. The therapeutic role of interleukin-10 after spinal cord injury. J Neurotrauma 2013; 30(15): 1311-24.
[http://dx.doi.org/10.1089/neu.2012.2651] [PMID: 23731227]
[34]
Rongione AJ, Kusske AM, Ashley SW, Reber HA, McFadden DW. Interleukin-10 prevents early cytokine release in severe intraabdominal infection and sepsis. J Surg Res 1997; 70(2): 107-12.
[http://dx.doi.org/10.1006/jsre.1997.5071] [PMID: 9237883]
[35]
Wagner R, Janjigian M, Myers RR. Anti-inflammatory interleukin-10 therapy in CCI neuropathy decreases thermal hyperalgesia, macrophage recruitment, and endoneurial TNFα expression. Pain 1998; 74(1): 35-42.
[http://dx.doi.org/10.1016/S0304-3959(97)00148-6] [PMID: 9514558]
[36]
Laughlin TM, Bethea JR, Yezierski RP, Wilcox GL. Cytokine involvement in dynorphin-induced allodynia. Pain 2000; 84(2-3): 159-67.
[http://dx.doi.org/10.1016/S0304-3959(99)00195-5] [PMID: 10666520]
[37]
Berta T, Park CK, Xu ZZ, et al. Extracellular caspase-6 drives murine inflammatory pain via microglial TNFα secretion. J Clin Invest 2014; 124(3): 1173-86.
[http://dx.doi.org/10.1172/JCI72230] [PMID: 24531553]
[38]
Berta T, Qadri YJ, Chen G, Ji RR. Microglial signaling in chronic pain with a special focus on caspase 6, p38 MAP kinase, and sex dependence. J Dent Res 2016; 95(10): 1124-31.
[http://dx.doi.org/10.1177/0022034516653604] [PMID: 27307048]
[39]
Bennett GJ, Doyle T, Salvemini D. Mitotoxicity in distal symmetrical sensory peripheral neuropathies. Nat Rev Neurol 2014; 10(6): 326-36.
[http://dx.doi.org/10.1038/nrneurol.2014.77] [PMID: 24840972]
[40]
Ma W, Bisby MA. Increase of preprotachykinin mRNA and substance P immunoreactivity in spared dorsal root ganglion neurons following partial sciatic nerve injury. Eur J Neurosci 1998; 10(7): 2388-99.
[http://dx.doi.org/10.1046/j.1460-9568.1998.00249.x] [PMID: 9749767]
[41]
Robert G, Puissant A, Dufies M, et al. The caspase 6 derived N-terminal fragment of DJ-1 promotes apoptosis via increased ROS production. Cell Death Differ 2012; 19(11): 1769-78.
[http://dx.doi.org/10.1038/cdd.2012.55] [PMID: 22555455]
[42]
Murphy PG, Grondin J, Altares M, Richardson PM. Induction of interleukin-6 in axotomized sensory neurons. J Neurosci 1995; 15(7 Pt 2): 5130-8.
[http://dx.doi.org/10.1523/JNEUROSCI.15-07-05130.1995] [PMID: 7623140]
[43]
Faden AI, Simon RP. A potential role for excitotoxins in the pathophysiology of spinal cord injury. Ann Neurol 1988; 23(6): 623-6.
[http://dx.doi.org/10.1002/ana.410230618] [PMID: 2841902]
[44]
Liu D, Thangnipon W, McAdoo DJ. Excitatory amino acids rise to toxic levels upon impact injury to the rat spinal cord. Brain Res 1991; 547(2): 344-8.
[http://dx.doi.org/10.1016/0006-8993(91)90984-4] [PMID: 1884213]
[45]
Marsala M, Sorkin LS, Yaksh TL. Transient spinal ischemia in rat: Characterization of spinal cord blood flow, extracellular amino acid release, and concurrent histopathological damage. J Cereb Blood Flow Metab 1994; 14(4): 604-14.
[http://dx.doi.org/10.1038/jcbfm.1994.75] [PMID: 8014207]
[46]
Tator CH, Fehlings MG. Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg 1991; 75(1): 15-26.
[http://dx.doi.org/10.3171/jns.1991.75.1.0015] [PMID: 2045903]
[47]
Rivat C, Richebé P, Laboureyras E, et al. Polyamine deficient diet to relieve pain hypersensitivity. Pain 2008; 137(1): 125-37.
[http://dx.doi.org/10.1016/j.pain.2007.08.021] [PMID: 17900809]
[48]
Bouché N, Lacombe B, Fromm H. GABA signaling: A conserved and ubiquitous mechanism. Trends Cell Biol 2003; 13(12): 607-10.
[http://dx.doi.org/10.1016/j.tcb.2003.10.001] [PMID: 14624837]
[49]
Gwak YS, Hulsebosch CE. GABA and central neuropathic pain following spinal cord injury. Neuropharmacology 2011; 60(5): 799-808.
[http://dx.doi.org/10.1016/j.neuropharm.2010.12.030] [PMID: 21216257]
[50]
Hogarty MD, Norris MD, Davis K, et al. ODC1 is a critical determinant of MYCN oncogenesis and a therapeutic target in neuroblastoma. Cancer Res 2008; 68(23): 9735-45.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6866] [PMID: 19047152]
[51]
Galli C, Piemontese M, Lumetti S, Manfredi E, Macaluso GM, Passeri G. GSK3b-inhibitor lithium chloride enhances activation of Wnt canonical signaling and osteoblast differentiation on hydrophilic titanium surfaces. Clin Oral Implants Res 2013; 24(8): 921-7.
[http://dx.doi.org/10.1111/j.1600-0501.2012.02488.x] [PMID: 22626030]
[52]
Beurel E, Michalek SM, Jope RS. Innate and adaptive immune responses regulated by glycogen synthase kinase-3 (GSK3). Trends Immunol 2010; 31(1): 24-31.
[http://dx.doi.org/10.1016/j.it.2009.09.007] [PMID: 19836308]
[53]
Mazzardo-Martins L, Martins DF, Stramosk J, Cidral-Filho FJ, Santos ARS. Glycogen synthase kinase 3-specific inhibitor AR-A014418 decreases neuropathic pain in mice: Evidence for the mechanisms of action. Neuroscience 2012; 226: 411-20.
[http://dx.doi.org/10.1016/j.neuroscience.2012.09.020] [PMID: 23000630]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy