Review Article

吡喃并吲哚类药物综述

卷 29, 期 21, 2022

发表于: 13 January, 2022

页: [3667 - 3683] 页: 17

弟呕挨: 10.2174/0929867328666211206111058

价格: $65

摘要

大量含氮杂环化合物普遍存在于天然产物、药物和生物活性分子中。其中,吡喃吲哚是一个重要的结构基序,因为它是生物活性天然产物和治疗剂中的中心亚基。塔拉嗜热菌素、诺托酰胺、诺吉胺、卡尼酰胺和维西卡胺是天然存在的吡喃吲哚的例子,而众所周知的依托度酸和培美酸是一种四氢吡喃[3,4-b]吲哚,它源自合成过程。除了众所周知的抗炎和纤溶活性外,吡喃吲哚骨架分子还表现出多种生物活性,如抗溃疡、抗抑郁、镇痛和抗增殖等生物活性。在此,我们讲述了最常见的含有吡喃吲哚核的天然和合成产物以及它们的合成和生物活性。

关键词: 吡喃吲哚、依托度酸、培美酸、异戊烯基化吡喃吲哚类生物碱、天然吡喃吲哚、合成吡喃吲哚

[1]
Joule, J.A. Natural products containing nitrogen heterocycles - some highlights 1990-2015. In: Advances in Heterocyclic Chemistry; Academic Press: Amsterdam , 2016; 119, pp. 81-106.
[2]
Gomtsyan, A. Heterocycles in drugs and drug discovery. Chem. Heterocycl. Compd., 2012, 48, 7-10.
[http://dx.doi.org/10.1007/s10593-012-0960-z]
[3]
Luo, Y.; Zhong, X.; Huang, J.K.; He, L. Copper-assisted synthesis of dihydropyrano[2.3-b]indole-4-ones by domino cascade reaction. Org. Biomol. Chem., 2021, 19(12), 2692-2702.
[http://dx.doi.org/10.1039/D1OB00078K] [PMID: 33666630]
[4]
Malathi, V.; Shivani, S.; Bhaskar, K.; Ugale, V.G.; Padmaja, P.; Reddy, P.N. One-pot, catalyst-free synthesis of novel dihydropyrano[2,3-e]indole derivatives. Chem. Data Collect., 2021, 33, 100693.
[http://dx.doi.org/10.1016/j.cdc.2021.100693]
[5]
Yin, P.; Shreeve, J.M. Nitrogen-rich azoles as high density energy materials: Reviewing the energetic footprints of heterocycles. Adv. Heterocycl. Chem., 2017, 121, 89-131.
[http://dx.doi.org/10.1016/bs.aihch.2016.04.004]
[6]
Bandyopadhyay, D.; Banik, B.K. Synthesis of medicinally privileged heterocycles through dielectric heating. Curr. Med. Chem., 2017, 24(41), 4596-4626.
[PMID: 28240166]
[7]
Aricò, F. Green synthesis of heterocycles. Front Chem., 2020, 8, 74.
[http://dx.doi.org/10.3389/fchem.2020.00074] [PMID: 32117894]
[8]
Kumar, S. A brief review of the biological potential of indole derivatives. Fut. J. Pharm. Sci., 2020, 6(1), 1-19.
[9]
Kaushik, N.K.; Kaushik, N.; Attri, P.; Kumar, N.; Kim, C.H.; Verma, A.K.; Choi, E.H. Biomedical importance of indoles. Molecules, 2013, 18(6), 6620-6662.
[http://dx.doi.org/10.3390/molecules18066620] [PMID: 23743888]
[10]
Singh, T.P.; Singh, O.M. Recent progress in biological activities of indole and indole alkaloids. Mini Rev. Med. Chem., 2018, 18(1), 9-25.
[PMID: 28782480]
[11]
Dar, A.M.; Uzzaman, S. Pathways for the synthesis of pyrimidine and pyran based heterocyclic derivatives: A concise review. Eur. Chem. Bull., 2015, 4(4-6), 249-259.
[12]
Wang, M.; Yang, Y.; Yin, L.; Feng, Y.; Li, Y. Selective synthesis of pyrano[3,2-b]indoles or cyclopenta[b]indoles tethered with medium-sized rings via cascade C–C σ-bond cleavage and C–H functionalization. J. Org. Chem., 2021, 86(1), 683-692.
[http://dx.doi.org/10.1021/acs.joc.0c02310] [PMID: 33350835]
[13]
Shaikh, S.; Rasal, S.; Ramana, M.M.V. Ultrasound assisted synthesis of pyrano[3,2-b]pyran and 7-tosyl-4,7-dihydropyrano[2,3-e]indole scaffolds using barium titanate nanoparticles. Reac Kinet Mech Cat, 2021, 1-20.
[14]
Kreft, A.F.; Caufield, C.E.; Failli, A.A.; Caggiano, T.J.; Greenfield, A.A.; Kubrak, D.M.U.S. Pyranoindole inhibitors of COX-2. Patent No. 5,776,967 1998.
[15]
Failli, A.A.; Steffan, R.J.; Kreft, A.F.; Caggiano, T.J.; Caufield, C.E.U.S. Pyranoindole and tetrahydrocarbazole inhibitors of COX-2. Patent No. 5,830,911, 1998.
[16]
Monakhova, N.; Korduláková, J.; Vocat, A.; Egorova, A.; Lepioshkin, A.; Salina, E.G.; Nosek, J.; Repková, E.; Zemanová, J.; Jurdáková, H.; Górová, R.; Roh, J.; Degiacomi, G.; Sammartino, J.C.; Pasca, M.R.; Cole, S.T.; Mikušová, K.; Makarov, V. Design and synthesis of pyrano [3,2-b]indolones showing antimycobacterial activity. ACS Infect. Dis., 2021, 7(1), 88-100.
[http://dx.doi.org/10.1021/acsinfecdis.0c00622] [PMID: 33352041]
[17]
Wilson, Z.E.; Brimble, M.A. Molecules derived from the extremes of life: A decade later. Nat. Prod. Rep., 2021, 38(1), 24-82.
[http://dx.doi.org/10.1039/D0NP00021C] [PMID: 32672280]
[18]
Zhai, M.M.; Li, J.; Jiang, C.X.; Shi, Y.P.; Di, D.L.; Crews, P.; Wu, Q.X. The bioactive secondary metabolites from Talaromyces species. Nat. Prod. Bioprospect., 2016, 6(1), 1-24.
[http://dx.doi.org/10.1007/s13659-015-0081-3] [PMID: 26746215]
[19]
Degenkolb, T.; Vilcinskas, A. Metabolites from nematophagous fungi and nematicidal natural products from fungi as an alternative for biological control. Part I: Metabolites from nematophagous ascomycetes. Appl. Microbiol. Biotechnol., 2016, 100(9), 3799-3812.
[http://dx.doi.org/10.1007/s00253-015-7233-6] [PMID: 26715220]
[20]
Ye, Y.; Li, X-Q.; Tang, C-P.; Yao, S. Natural products chemistry research: Progress in China in 2011. Chin. J. Nat. Med., 2013, 11(2), 97-109.
[http://dx.doi.org/10.1016/S1875-5364(13)60036-9] [PMID: 23787176]
[21]
Guo, J.P.; Tan, J.L.; Wang, Y.L.; Wu, H.Y.; Zhang, C.P.; Niu, X.M.; Pan, W.Z.; Huang, X.W.; Zhang, K.Q. Isolation of talathermophilins from the thermophilic fungus Talaromyces thermophilus YM3-4. J. Nat. Prod., 2011, 74(10), 2278-2281.
[http://dx.doi.org/10.1021/np200365z] [PMID: 21967034]
[22]
Abraham, W.R. Fumitremorgins and relatives-from tremorgenic compounds to valuable anti-cancer drugs. Curr. Med. Chem., 2018, 25(2), 123-140.
[http://dx.doi.org/10.2174/0929867324666170724103410] [PMID: 28738771]
[23]
Zhang, P.; Li, X.M.; Wang, J.N.; Li, X.; Wang, B.G. Prenylated indole alkaloids from the marine-derived fungus Paecilomyces variotii. Chin. Chem. Lett., 2015, 26(3), 313-316.
[http://dx.doi.org/10.1016/j.cclet.2014.11.020]
[24]
Cabral, R.S.A.; Allard, P.M.; Marcourt, L.; Young, M.C.M.; Queiroz, E.F.; Wolfender, J.L. Targeted isolation of indolopyridoquinazoline alkaloids from Conchocarpus fontanesianus based on molecular networks. J. Nat. Prod., 2016, 79(9), 2270-2278.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00379] [PMID: 27557347]
[25]
Abe, T.; Itoh, T.; Terasaki, M. Total synthesis of Fontanesine B and its isomer: Their antiproliferative activity against human colorectal cancer cells. Helv. Chim. Acta, 2019, 102(7), e1900116.
[http://dx.doi.org/10.1002/hlca.201900116]
[26]
Itoh, T.; Chiba, Y.; Kawaguchi, S.; Koitaya, Y.; Yoneta, Y.; Yamada, K.; Abe, T. Total synthesis of pyrano[3, 2-e]indole alkaloid fontanesine B by a double cyclization strategy. RSC Advances, 2019, 9(18), 10420-10424.
[http://dx.doi.org/10.1039/C9RA02321F]
[27]
Grougnet, R.; Magiatis, P.; Fokialakis, N.; Mitaku, S.; Skaltsounis, A.L.; Tillequin, F.; Sévenet, T.; Litaudon, M. Koniamborine, the first pyrano[3,2-b]indole alkaloid and other secondary metabolites from Boronella koniambiensis. J. Nat. Prod., 2005, 68(7), 1083-1086.
[http://dx.doi.org/10.1021/np050013w] [PMID: 16038554]
[28]
Chau, T.T.; Weichman, B.M. Pemedolac: A novel and long-acting non-narcotic analgesic. J. Pharmacol. Exp. Ther., 1989, 248(3), 907-915.
[PMID: 2703977]
[29]
Okamoto, A.; Shirakawa, T.; Bito, T.; Shigemura, K.; Hamada, K.; Gotoh, A.; Fujisawa, M.; Kawabata, M. Etodolac, a selective cyclooxygenase-2 inhibitor, induces upregulation of E-cadherin and has antitumor effect on human bladder cancer cells in vitro and in vivo. Urology, 2008, 71(1), 156-160.
[http://dx.doi.org/10.1016/j.urology.2007.09.061] [PMID: 18242386]
[30]
Kobayashi, M.; Nakamura, S.; Shibata, K.; Sahara, N.; Shigeno, K.; Shinjo, K.; Naito, K.; Ohnishi, K. Etodolac inhibits EBER expression and induces Bcl-2-regulated apoptosis in Burkitt’s lymphoma cells. Eur. J. Haematol., 2005, 75(3), 212-220.
[http://dx.doi.org/10.1111/j.1600-0609.2005.00498.x] [PMID: 16104877]
[31]
Carson, D.; Cottam, H.B.; Adachi, S.; Leoni, L.M. Indole compounds useful for the treatment of cancer. US Patent 7,105,561 2006.
[32]
Liao, K.F.; Cheng, K.C.; Lin, C.L.; Lai, S.W. Etodolac and the risk of acute pancreatitis. Biomedicine (Taipei), 2017, 7(1), 4.
[http://dx.doi.org/10.1051/bmdcn/2017070104] [PMID: 28474580]
[33]
Jensen, M.; Engert, A.; Weissinger, F.; Knauf, W.; Kimby, E.; Poynton, C.; Oliff, I.A.; Rummel, M.J.; Österborg, A. Phase I study of a novel pro-apoptotic drug R-etodolac in patients with B-cell chronic lymphocytic leukemia. Invest. New Drugs, 2008, 26(2), 139-149.
[http://dx.doi.org/10.1007/s10637-007-9106-z] [PMID: 18094935]
[34]
Gopalsamy, A.; Lim, K.; Ciszewski, G.; Park, K.; Ellingboe, J.W.; Bloom, J.; Insaf, S.; Upeslacis, J.; Mansour, T.S.; Krishnamurthy, G.; Damarla, M.; Pyatski, Y.; Ho, D.; Howe, A.Y.; Orlowski, M.; Feld, B.; O’Connell, J. Discovery of pyrano[3,4-b]indoles as potent and selective HCV NS5B polymerase inhibitors. J. Med. Chem., 2004, 47(26), 6603-6608.
[http://dx.doi.org/10.1021/jm0401255] [PMID: 15588095]
[35]
Howe, A.Y.; Bloom, J.; Baldick, C.J.; Benetatos, C.A.; Cheng, H.; Christensen, J.S.; Chunduru, S.K.; Coburn, G.A.; Feld, B.; Gopalsamy, A.; Gorczyca, W.P.; Herrmann, S.; Johann, S.; Jiang, X.; Kimberland, M.L.; Krisnamurthy, G.; Olson, M.; Orlowski, M.; Swanberg, S.; Thompson, I.; Thorn, M.; Del Vecchio, A.; Young, D.C.; van Zeijl, M.; Ellingboe, J.W.; Upeslacis, J.; Collett, M.; Mansour, T.S.; O’Connell, J.F. Novel nonnucleoside inhibitor of hepatitis C virus RNA-dependent RNA polymerase. Antimicrob. Agents Chemother., 2004, 48(12), 4813-4821.
[http://dx.doi.org/10.1128/AAC.48.12.4813-4821.2004] [PMID: 15561861]
[36]
Kneteman, N.M.; Weiner, A.J.; O’Connell, J.; Collett, M.; Gao, T.; Aukerman, L.; Kovelsky, R.; Ni, Z.J.; Zhu, Q.; Hashash, A.; Kline, J.; Hsi, B.; Schiller, D.; Douglas, D.; Tyrrell, D.L.; Mercer, D.F. Anti-HCV therapies in chimeric scid-Alb/uPA mice parallel outcomes in human clinical application. Hepatology, 2006, 43(6), 1346-1353.
[http://dx.doi.org/10.1002/hep.21209] [PMID: 16729319]
[37]
Laporte, M.G.; Jackson, R.W.; Draper, T.L.; Gaboury, J.A.; Galie, K.; Herbertz, T.; Hussey, A.R.; Rippin, S.R.; Benetatos, C.A.; Chunduru, S.K.; Christensen, J.S.; Coburn, G.A.; Rizzo, C.J.; Rhodes, G.; O’Connell, J.; Howe, A.Y.; Mansour, T.S.; Collett, M.S.; Pevear, D.C.; Young, D.C.; Gao, T.; Tyrrell, D.L.; Kneteman, N.M.; Burns, C.J.; Condon, S.M. The discovery of pyrano[3,4-b]indole-based allosteric inhibitors of HCV NS5B polymerase with in vivo activity. ChemMedChem, 2008, 3(10), 1508-1515.
[http://dx.doi.org/10.1002/cmdc.200800168] [PMID: 18729128]
[38]
LaPorte, M.G.; Draper, T.L.; Miller, L.E.; Blackledge, C.W.; Leister, L.K.; Amparo, E.; Hussey, A.R.; Young, D.C.; Chunduru, S.K.; Benetatos, C.A.; Rhodes, G.; Gopalsamy, A.; Herbertz, T.; Burns, C.J.; Condon, S.M. The discovery and structure-activity relationships of pyrano[3,4-b]indole based inhibitors of hepatitis C virus NS5B polymerase. Bioorg. Med. Chem. Lett., 2010, 20(9), 2968-2973.
[http://dx.doi.org/10.1016/j.bmcl.2010.03.002] [PMID: 20347591]
[39]
Lin, K.; Weidmann, B.U.S. Patent No. 7,897,565, 2011.
[40]
Sofia, M.J.; Chang, W.; Furman, P.A.; Mosley, R.T.; Ross, B.S. Nucleoside, nucleotide, and non-nucleoside inhibitors of hepatitis C virus NS5B RNA-dependent RNA-polymerase. J. Med. Chem., 2012, 55(6), 2481-2531.
[http://dx.doi.org/10.1021/jm201384j] [PMID: 22185586]
[41]
Beaulieu, P.L. Recent advances in the development of NS5B polymerase inhibitors for the treatment of hepatitis C virus infection. Expert Opin. Ther. Pat., 2009, 19(2), 145-164.
[http://dx.doi.org/10.1517/13543770802672598] [PMID: 19441916]
[42]
Jackson, R.W.; LaPorte, M.G.; Herbertz, T.; Draper, T.L.; Gaboury, J.A.; Rippin, S.R.; Patel, R.; Chunduru, S.K.; Benetatos, C.A.; Young, D.C.; Burns, C.J.; Condon, S.M. The discovery and structure-activity relationships of pyrano[3,4-b]indole-based inhibitors of hepatitis C virus NS5B polymerase. Bioorg. Med. Chem. Lett., 2011, 21(11), 3227-3231.
[http://dx.doi.org/10.1016/j.bmcl.2011.04.052] [PMID: 21550237]
[43]
Schunk, S.; Linz, K.; Hinze, C.; Frormann, S.; Oberbörsch, S.; Sundermann, B.; Zemolka, S.; Englberger, W.; Germann, T.; Christoph, T.; Kögel, B.Y.; Schröder, W.; Harlfinger, S.; Saunders, D.; Kless, A.; Schick, H.; Sonnenschein, H. Discovery of a potent analgesic NOP and opioid receptor agonist: cebranopadol. ACS Med. Chem. Lett., 2014, 5(8), 857-862.
[http://dx.doi.org/10.1021/ml500117c] [PMID: 25147603]
[44]
Nakkady, S.S.; Fathy, M.M.; Hishmat, O.H.; Mahmond, S.S.; Ebeid, M.Y. New indole, aminoindole and pyranoindole derivatives with anti-inflammatory activity. Boll. Chim. Farm., 2000, 139(2), 59-66.
[PMID: 10920530]
[45]
Winter, C.A.; Risley, E.A.; Nuss, G.W. Carrageenin-induced edema in hind paw of the rat as an assay for antiiflammatory drugs. Proc. Soc. Exp. Biol. Med., 1962, 111(3), 544-547.
[http://dx.doi.org/10.3181/00379727-111-27849] [PMID: 14001233]
[46]
Demerson, C.A. Pyranoindole derivatives as antiulcer agents. U.S. Patent No 4,066,780, 1978.
[47]
Sinicropi, M.S.; Caruso, A.; Conforti, F.; Marrelli, M.; El Kashef, H.; Lancelot, J.C.; Rault, S.; Statti, G.A.; Menichini, F. Synthesis, inhibition of NO production and antiproliferative activities of some indole derivatives. J. Enzyme Inhib. Med. Chem., 2009, 24(5), 1148-1153.
[http://dx.doi.org/10.1080/14756360802693890] [PMID: 19555184]
[48]
Iacopetta, D.; Catalano, A.; Ceramella, J.; Barbarossa, A.; Carocci, A.; Fazio, A.; Latorre, C.; Caruso, A.; Ponassi, M.; Rosano, C.; Franchini, C.; Sinicropi, M.S. Synthesis and antitumor properties of new indole and pyranoindole derivatives. Bioorg. Chem., 2020, 105, 104440.
[http://dx.doi.org/10.1016/j.bioorg.2020.104440] [PMID: 33217633]
[49]
Macor, J.E.; Fox, C.B.; Johnson, C.; Koe, B.K.; Lebel, L.A.; Zorn, S.H. 1-(2-Aminoethyl)-3-methyl-8,9-dihydro-pyrano[3,2-e]indole: A rotationally restricted phenolic analog of the neurotransmitter serotonin and agonist selective for serotonin (5-HT2-type) receptors. J. Med. Chem., 1992, 35(20), 3625-3632.
[http://dx.doi.org/10.1021/jm00098a005] [PMID: 1433172]
[50]
May, J.A.; Chen, H.H. Pyranoindoles for treating glaucoma. U.S. Patent No. 7,012,090 2006.
[51]
Zhou, J.; Wang, B.; He, X.H.; Liu, L.; Wu, J.; Lu, J.; Peng, C.; Rao, C.L.; Han, B. Asymmetric construction of 4H-pyrano[3,2-b]indoles via cinchonine-catalyzed 1,4-addition of 2-ylideneoxindole with malononitrile. J. Org. Chem., 2019, 84(9), 5450-5459.
[http://dx.doi.org/10.1021/acs.joc.9b00430] [PMID: 30921516]
[52]
Praveen, C.; Ananth, D.B. Design, synthesis and cytotoxicity of pyrano[4,3-b]indol-1(5H)-ones: A hybrid pharmacophore approach via gold catalyzed cyclization. Bioorg. Med. Chem. Lett., 2016, 26(10), 2507-2512.
[http://dx.doi.org/10.1016/j.bmcl.2016.03.087] [PMID: 27040658]
[53]
Liu, Y.; Du, Y.; Yu, A.; Qin, D.; Meng, X. Diverse synthesis of pyrano[2,3-b]indol and dihydropyrano[2,3-b]indol via tunable Lewis bases catalyzed domino reactions. Tetrahedron, 2015, 71(40), 7706-7716.
[http://dx.doi.org/10.1016/j.tet.2015.07.057]
[54]
Wang, C.; Wang, T.; Huang, L.; Hou, Y.; Lu, W.; He, H. Facile synthetic approach for 5-aryl-9-hydroxypyrano[3,2-f]indole-2(8H)-one. Arab. J. Chem., 2016, 9(6), 882-890.
[http://dx.doi.org/10.1016/j.arabjc.2016.07.020]
[55]
Zhang, X.; Li, X.; Lanter, J.C.; Sui, Z. Silicon-directed oxa-Pictet-Spengler cyclization and an unusual dimerization of 2-trimethylsilanyl tryptophols. Org. Lett., 2005, 7(10), 2043-2046.
[http://dx.doi.org/10.1021/ol050623n] [PMID: 15876050]
[56]
Ascic, E.; Ohm, R.G.; Petersen, R.; Hansen, M.R.; Hansen, C.L.; Madsen, D.; Tanner, D.; Nielsen, T.E. Synthesis of oxacyclic scaffolds via dual ruthenium hydride/Brønsted acid-catalyzed isomerization/cyclization of allylic ethers. Chemistry, 2014, 20(12), 3297-3300.
[http://dx.doi.org/10.1002/chem.201304270] [PMID: 24616060]
[57]
Bruno, G.; Nicolò, F.; Lo Schiavo, S.; Sinicropi, M.S.; Tresoldi, G. Synthesis and spectroscopic properties of di-2-pyridyl sulfide (dps) compounds. Crystal structure of. [Ru(dps)2Cl2] J. Chem. Soc., Dalton Trans., 1995, 1, 17-24.
[http://dx.doi.org/10.1039/DT9950000017]
[58]
Gimeno, A.; Rodríguez-Gimeno, A.; Cuenca, A.B.; Ramírez de Arellano, C.; Medio-Simón, M.; Asensio, G. Gold(I)-catalysed cascade reactions in the synthesis of 2,3-fused indole derivatives. Chem. Commun. (Camb.), 2015, 51(62), 12384-12387.
[http://dx.doi.org/10.1039/C5CC04606H] [PMID: 26140354]
[59]
Colombo, P. Process for the preparation of etodolac. U.S. Patent No. 6,066,741, 2000.
[60]
Khedkar, V.; Tillack, A.; Michalik, M.; Beller, M. Convenient synthesis of tryptophols and tryptophol homologues by hydroamination of alkynes. Tetrahedron, 2005, 61(32), 7622-7631.
[http://dx.doi.org/10.1016/j.tet.2005.05.093]
[61]
Grubbs, A.W.; Artman, G.D., III; Williams, R.M. Concise syntheses of the 1,7-dihydropyrano[2,3-g]indole ring system of the stephacidins, aspergamides and norgeamides. Tetrahedron Lett., 2005, 46(52), 9013-9016.
[http://dx.doi.org/10.1016/j.tetlet.2005.10.112]
[62]
Grubbs, A.W.; Artman, G.D., III; Tsukamoto, S.; Williams, R.M. A concise total synthesis of the notoamides C and D. Angew. Chem. Int. Ed., 2007, 46(13), 2257-2261.
[http://dx.doi.org/10.1002/anie.200604377] [PMID: 17304609]
[63]
Cox, R.J.; Williams, R.M. Synthetic studies towards paraherquamide F: Synthesis of the 1,7-dihydropyrano[2, 3-g]indole ring system. Tetrahedron Lett., 2002, 43(12), 2149-2152.
[http://dx.doi.org/10.1016/S0040-4039(02)00220-4]
[64]
Clawson, R.W., Jr; Söderberg, B.C. A short synthesis of koniamborine, a naturally occurring pyrano[3,2-b]indole. Tetrahedron Lett., 2007, 48(34), 6019-6021.
[http://dx.doi.org/10.1016/j.tetlet.2007.06.092]
[65]
Jeyaveeran, J.C.; Praveen, C.; Arun, Y.; Prince, A.A.M.; Perumal, P.T. Flexible synthesis of isomeric pyranoindolones and evaluation of cytotoxicity towards HeLa cells. J. Chem. Sci., 2016, 128(5), 787-802.
[http://dx.doi.org/10.1007/s12039-016-1070-8]
[66]
Shimizu, M.; Hirano, K.; Satoh, T.; Miura, M. Waste-free synthesis of condensed heterocyclic compounds by rhodium-catalyzed oxidative coupling of substituted arene or heteroarene carboxylic acids with alkynes. J. Org. Chem., 2009, 74(9), 3478-3483.
[http://dx.doi.org/10.1021/jo900396z] [PMID: 19388716]
[67]
Nandi, D.; Ghosh, D.; Chen, S.J.; Kuo, B.C.; Wang, N.M.; Lee, H.M. One-step synthesis of isocoumarins and 3-benzylidenephthalides via ligandless Pd-catalyzed oxidative coupling of benzoic acids and vinylarenes. J. Org. Chem., 2013, 78(7), 3445-3451.
[http://dx.doi.org/10.1021/jo400174w] [PMID: 23506132]
[68]
Inack, N.S.; Cherry, K.; Héran, V.; Commeiras, L.; Parrain, J.L.; Duchêne, A.; Abarbri, M.; Thibonnet, J. Carboxylate-directed tandem functionalisations of α,β-dihaloalkenoic acids with 1-alkynes: A straightforward access to (Z)-configured, α,β-substituted γ-alkylidenebuteno-lides. Chemistry, 2011, 17(49), 13692-13696.
[http://dx.doi.org/10.1002/chem.201102570] [PMID: 22065483]
[69]
Li, C.; Jiang, J.; Li, L. Efficient synthesis of pyrano[4,3-b]indol-1(5H)-ones from CO2 and alkynyl indoles promoted by a protic ionic liquid. Tetrahedron Lett., 2020, 61(44), 152449.
[http://dx.doi.org/10.1016/j.tetlet.2020.152449]
[70]
Lv, H.; Chen, X.Y.; Sun, L.H.; Ye, S. Enantioselective synthesis of indole-fused dihydropyranones via catalytic cycloaddition of ketenes and 3-alkylenyloxindoles. J. Org. Chem., 2010, 75(20), 6973-6976.
[http://dx.doi.org/10.1021/jo101318u] [PMID: 20843084]
[71]
Yang, L.; Wang, F.; Chua, P.J.; Lv, Y.; Zhong, L.J.; Zhong, G. N-heterocyclic carbene (NHC)-catalyzed highly diastereo- and enantioselective oxo-Diels-Alder reactions for synthesis of fused pyrano[2,3-b]indoles. Org. Lett., 2012, 14(11), 2894-2897.
[http://dx.doi.org/10.1021/ol301175z] [PMID: 22594458]
[72]
Mao, Z.; Li, W.; Shi, Y.; Mao, H.; Lin, A.; Zhu, C.; Cheng, Y. Enantioselective construction of dihydropyran-fused indoles through chiral calcium phosphate catalyzed oxo-hetero-Diels-Alder reactions by using 2-oxoindolin-3-ylidenes as heterodienes. Chemistry, 2013, 19(30), 9754-9759.
[http://dx.doi.org/10.1002/chem.201301039] [PMID: 23832817]
[73]
Wang, F.; Li, Z.; Wang, J.; Li, X.; Cheng, J.P. Enantioselective synthesis of dihydropyran-fused indoles through [4+2] cycloaddition between allenoates and 3-olefinic oxindoles. J. Org. Chem., 2015, 80(10), 5279-5286.
[http://dx.doi.org/10.1021/acs.joc.5b00212] [PMID: 25893317]
[74]
Zhou, Y.; Lin, L.; Yin, C.; Wang, Z.; Liu, X.; Feng, X. The N,N¢-dioxide/Ni(II)-catalyzed asymmetric inverse-electron-demand hetero-Diels-Alder reaction of methyleneindolinones with hetero-substituted alkenes. Chem. Commun. (Camb.), 2015, 51(58), 11689-11692.
[http://dx.doi.org/10.1039/C5CC04245C] [PMID: 26101801]
[75]
Hao, X.; Lin, L.; Tan, F.; Yin, C.; Liu, X.; Feng, X. Ligand control of diastereodivergency in asymmetric inverse electron demand diels–alder reaction. ACS Catal., 2015, 5(10), 6052-6056.
[http://dx.doi.org/10.1021/acscatal.5b01719]
[76]
Katz, A.H.; Demerson, C.A.; Shaw, C.C.; Asselin, A.A.; Humber, L.G.; Conway, K.M.; Gavin, G.; Guinosso, C.; Jensen, N.P.; Mobilio, D. Synthesis and analgesic activity of pemedolac (cis-1-ethyl-1,3,4,9-tetrahydro-4-(phenylmethyl) pyrano[3,4-b]ind ole-1- acetic acid). J. Med. Chem., 1988, 31(6), 1244-1250.
[http://dx.doi.org/10.1021/jm00401a029] [PMID: 3373493]
[77]
Gharpure, S.J.; Prasath, V. Stereoselective synthesis of C-fused pyranoindoles, pyranobenzofurans and pyranobenzothiophene scaffolds using oxa-Pictet-Spengler type reaction of vinylogous carbonates. Org. Biomol. Chem., 2014, 12(37), 7397-7409.
[http://dx.doi.org/10.1039/C4OB01387E] [PMID: 25137156]
[78]
Xie, H.; Yang, J.X.; Bora, P.P.; Kang, Q. Rh (II)-catalyzed intramolecular annulation of N-sulfonyl 1, 2, 3-triazoles with indole derivatives: A new method for synthesis pyranoindoles. Tetrahedron, 2016, 72(22), 3014-3021.
[http://dx.doi.org/10.1016/j.tet.2016.04.017]
[79]
Ni, Q.; Song, X.; Raabe, G.; Enders, D. N-heterocyclic carbene-catalyzed enantioselective annulation of indolin-3-ones with bromoenals. Chem. Asian J., 2014, 9(6), 1535-1538.
[http://dx.doi.org/10.1002/asia.201402052] [PMID: 24729588]
[80]
Yang, L.; Huang, W.; He, X.H.; Yang, M.C.; Li, X.; He, G.; Peng, C.; Han, B. Stereoselective synthesis of hydropyrano[3,2-b]indoles via organocatalytic asymmetric inverse-electron-demand Oxa-Diels–Alder reaction. Adv. Synth. Catal., 2016, 358(18), 2970-2975.
[http://dx.doi.org/10.1002/adsc.201600465]
[81]
Choi, S.; Park, J.; Yu, E.; Sim, J.; Park, C.M. Electrosynthesis of dihydropyrano[4,3-b]indoles based on a double oxidative[3+3]cycloaddition. Angew. Chem. Int. Ed. Engl., 2020, 59(29), 11886-11891.
[http://dx.doi.org/10.1002/anie.202003364] [PMID: 32329937]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy