Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

A Comprehensive Review on Pyranoindole-containing Agents

Author(s): Alessia Catalano*, Domenico Iacopetta, Jessica Ceramella, Carmela Saturnino and Maria Stefania Sinicropi

Volume 29, Issue 21, 2022

Published on: 13 January, 2022

Page: [3667 - 3683] Pages: 17

DOI: 10.2174/0929867328666211206111058

Price: $65

Abstract

A huge number of nitrogen-containing heterocyclic compounds are ubiquitous in natural products, pharmaceuticals, and bioactive molecules. Among these, the pyranoindole represents an important structural motif, as it constitutes the central subunit in both the biologically active natural products and therapeutic agents. Talathermophilins, notoamides, norgeamides, carneamides, and versicamides are examples of naturally occurring pyranoindoles, while the well-known etodolac and pemedolac are a tetrahydropyrano[ 3,4-b]indole deriving from synthetic procedures. Besides the well-known antiinflammatory and fibrinolytic activity, molecules comprising the pyranoindole framework have been demonstrated to exhibit various biological activities, such as antiulcer, antidepressant, analgesic, and antiproliferative. Herein, we report the most common natural and synthetic products bearing a pyranoindole nucleus, their syntheses, and biological activities.

Keywords: Pyranoindole, etodolac, pemedolac, prenylated pyranoindole alkaloids, natural pyranoindoles, synthetic pyranoindoles.

[1]
Joule, J.A. Natural products containing nitrogen heterocycles - some highlights 1990-2015. In: Advances in Heterocyclic Chemistry; Academic Press: Amsterdam , 2016; 119, pp. 81-106.
[2]
Gomtsyan, A. Heterocycles in drugs and drug discovery. Chem. Heterocycl. Compd., 2012, 48, 7-10.
[http://dx.doi.org/10.1007/s10593-012-0960-z]
[3]
Luo, Y.; Zhong, X.; Huang, J.K.; He, L. Copper-assisted synthesis of dihydropyrano[2.3-b]indole-4-ones by domino cascade reaction. Org. Biomol. Chem., 2021, 19(12), 2692-2702.
[http://dx.doi.org/10.1039/D1OB00078K] [PMID: 33666630]
[4]
Malathi, V.; Shivani, S.; Bhaskar, K.; Ugale, V.G.; Padmaja, P.; Reddy, P.N. One-pot, catalyst-free synthesis of novel dihydropyrano[2,3-e]indole derivatives. Chem. Data Collect., 2021, 33, 100693.
[http://dx.doi.org/10.1016/j.cdc.2021.100693]
[5]
Yin, P.; Shreeve, J.M. Nitrogen-rich azoles as high density energy materials: Reviewing the energetic footprints of heterocycles. Adv. Heterocycl. Chem., 2017, 121, 89-131.
[http://dx.doi.org/10.1016/bs.aihch.2016.04.004]
[6]
Bandyopadhyay, D.; Banik, B.K. Synthesis of medicinally privileged heterocycles through dielectric heating. Curr. Med. Chem., 2017, 24(41), 4596-4626.
[PMID: 28240166]
[7]
Aricò, F. Green synthesis of heterocycles. Front Chem., 2020, 8, 74.
[http://dx.doi.org/10.3389/fchem.2020.00074] [PMID: 32117894]
[8]
Kumar, S. A brief review of the biological potential of indole derivatives. Fut. J. Pharm. Sci., 2020, 6(1), 1-19.
[9]
Kaushik, N.K.; Kaushik, N.; Attri, P.; Kumar, N.; Kim, C.H.; Verma, A.K.; Choi, E.H. Biomedical importance of indoles. Molecules, 2013, 18(6), 6620-6662.
[http://dx.doi.org/10.3390/molecules18066620] [PMID: 23743888]
[10]
Singh, T.P.; Singh, O.M. Recent progress in biological activities of indole and indole alkaloids. Mini Rev. Med. Chem., 2018, 18(1), 9-25.
[PMID: 28782480]
[11]
Dar, A.M.; Uzzaman, S. Pathways for the synthesis of pyrimidine and pyran based heterocyclic derivatives: A concise review. Eur. Chem. Bull., 2015, 4(4-6), 249-259.
[12]
Wang, M.; Yang, Y.; Yin, L.; Feng, Y.; Li, Y. Selective synthesis of pyrano[3,2-b]indoles or cyclopenta[b]indoles tethered with medium-sized rings via cascade C–C σ-bond cleavage and C–H functionalization. J. Org. Chem., 2021, 86(1), 683-692.
[http://dx.doi.org/10.1021/acs.joc.0c02310] [PMID: 33350835]
[13]
Shaikh, S.; Rasal, S.; Ramana, M.M.V. Ultrasound assisted synthesis of pyrano[3,2-b]pyran and 7-tosyl-4,7-dihydropyrano[2,3-e]indole scaffolds using barium titanate nanoparticles. Reac Kinet Mech Cat, 2021, 1-20.
[14]
Kreft, A.F.; Caufield, C.E.; Failli, A.A.; Caggiano, T.J.; Greenfield, A.A.; Kubrak, D.M.U.S. Pyranoindole inhibitors of COX-2. Patent No. 5,776,967 1998.
[15]
Failli, A.A.; Steffan, R.J.; Kreft, A.F.; Caggiano, T.J.; Caufield, C.E.U.S. Pyranoindole and tetrahydrocarbazole inhibitors of COX-2. Patent No. 5,830,911, 1998.
[16]
Monakhova, N.; Korduláková, J.; Vocat, A.; Egorova, A.; Lepioshkin, A.; Salina, E.G.; Nosek, J.; Repková, E.; Zemanová, J.; Jurdáková, H.; Górová, R.; Roh, J.; Degiacomi, G.; Sammartino, J.C.; Pasca, M.R.; Cole, S.T.; Mikušová, K.; Makarov, V. Design and synthesis of pyrano [3,2-b]indolones showing antimycobacterial activity. ACS Infect. Dis., 2021, 7(1), 88-100.
[http://dx.doi.org/10.1021/acsinfecdis.0c00622] [PMID: 33352041]
[17]
Wilson, Z.E.; Brimble, M.A. Molecules derived from the extremes of life: A decade later. Nat. Prod. Rep., 2021, 38(1), 24-82.
[http://dx.doi.org/10.1039/D0NP00021C] [PMID: 32672280]
[18]
Zhai, M.M.; Li, J.; Jiang, C.X.; Shi, Y.P.; Di, D.L.; Crews, P.; Wu, Q.X. The bioactive secondary metabolites from Talaromyces species. Nat. Prod. Bioprospect., 2016, 6(1), 1-24.
[http://dx.doi.org/10.1007/s13659-015-0081-3] [PMID: 26746215]
[19]
Degenkolb, T.; Vilcinskas, A. Metabolites from nematophagous fungi and nematicidal natural products from fungi as an alternative for biological control. Part I: Metabolites from nematophagous ascomycetes. Appl. Microbiol. Biotechnol., 2016, 100(9), 3799-3812.
[http://dx.doi.org/10.1007/s00253-015-7233-6] [PMID: 26715220]
[20]
Ye, Y.; Li, X-Q.; Tang, C-P.; Yao, S. Natural products chemistry research: Progress in China in 2011. Chin. J. Nat. Med., 2013, 11(2), 97-109.
[http://dx.doi.org/10.1016/S1875-5364(13)60036-9] [PMID: 23787176]
[21]
Guo, J.P.; Tan, J.L.; Wang, Y.L.; Wu, H.Y.; Zhang, C.P.; Niu, X.M.; Pan, W.Z.; Huang, X.W.; Zhang, K.Q. Isolation of talathermophilins from the thermophilic fungus Talaromyces thermophilus YM3-4. J. Nat. Prod., 2011, 74(10), 2278-2281.
[http://dx.doi.org/10.1021/np200365z] [PMID: 21967034]
[22]
Abraham, W.R. Fumitremorgins and relatives-from tremorgenic compounds to valuable anti-cancer drugs. Curr. Med. Chem., 2018, 25(2), 123-140.
[http://dx.doi.org/10.2174/0929867324666170724103410] [PMID: 28738771]
[23]
Zhang, P.; Li, X.M.; Wang, J.N.; Li, X.; Wang, B.G. Prenylated indole alkaloids from the marine-derived fungus Paecilomyces variotii. Chin. Chem. Lett., 2015, 26(3), 313-316.
[http://dx.doi.org/10.1016/j.cclet.2014.11.020]
[24]
Cabral, R.S.A.; Allard, P.M.; Marcourt, L.; Young, M.C.M.; Queiroz, E.F.; Wolfender, J.L. Targeted isolation of indolopyridoquinazoline alkaloids from Conchocarpus fontanesianus based on molecular networks. J. Nat. Prod., 2016, 79(9), 2270-2278.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00379] [PMID: 27557347]
[25]
Abe, T.; Itoh, T.; Terasaki, M. Total synthesis of Fontanesine B and its isomer: Their antiproliferative activity against human colorectal cancer cells. Helv. Chim. Acta, 2019, 102(7), e1900116.
[http://dx.doi.org/10.1002/hlca.201900116]
[26]
Itoh, T.; Chiba, Y.; Kawaguchi, S.; Koitaya, Y.; Yoneta, Y.; Yamada, K.; Abe, T. Total synthesis of pyrano[3, 2-e]indole alkaloid fontanesine B by a double cyclization strategy. RSC Advances, 2019, 9(18), 10420-10424.
[http://dx.doi.org/10.1039/C9RA02321F]
[27]
Grougnet, R.; Magiatis, P.; Fokialakis, N.; Mitaku, S.; Skaltsounis, A.L.; Tillequin, F.; Sévenet, T.; Litaudon, M. Koniamborine, the first pyrano[3,2-b]indole alkaloid and other secondary metabolites from Boronella koniambiensis. J. Nat. Prod., 2005, 68(7), 1083-1086.
[http://dx.doi.org/10.1021/np050013w] [PMID: 16038554]
[28]
Chau, T.T.; Weichman, B.M. Pemedolac: A novel and long-acting non-narcotic analgesic. J. Pharmacol. Exp. Ther., 1989, 248(3), 907-915.
[PMID: 2703977]
[29]
Okamoto, A.; Shirakawa, T.; Bito, T.; Shigemura, K.; Hamada, K.; Gotoh, A.; Fujisawa, M.; Kawabata, M. Etodolac, a selective cyclooxygenase-2 inhibitor, induces upregulation of E-cadherin and has antitumor effect on human bladder cancer cells in vitro and in vivo. Urology, 2008, 71(1), 156-160.
[http://dx.doi.org/10.1016/j.urology.2007.09.061] [PMID: 18242386]
[30]
Kobayashi, M.; Nakamura, S.; Shibata, K.; Sahara, N.; Shigeno, K.; Shinjo, K.; Naito, K.; Ohnishi, K. Etodolac inhibits EBER expression and induces Bcl-2-regulated apoptosis in Burkitt’s lymphoma cells. Eur. J. Haematol., 2005, 75(3), 212-220.
[http://dx.doi.org/10.1111/j.1600-0609.2005.00498.x] [PMID: 16104877]
[31]
Carson, D.; Cottam, H.B.; Adachi, S.; Leoni, L.M. Indole compounds useful for the treatment of cancer. US Patent 7,105,561 2006.
[32]
Liao, K.F.; Cheng, K.C.; Lin, C.L.; Lai, S.W. Etodolac and the risk of acute pancreatitis. Biomedicine (Taipei), 2017, 7(1), 4.
[http://dx.doi.org/10.1051/bmdcn/2017070104] [PMID: 28474580]
[33]
Jensen, M.; Engert, A.; Weissinger, F.; Knauf, W.; Kimby, E.; Poynton, C.; Oliff, I.A.; Rummel, M.J.; Österborg, A. Phase I study of a novel pro-apoptotic drug R-etodolac in patients with B-cell chronic lymphocytic leukemia. Invest. New Drugs, 2008, 26(2), 139-149.
[http://dx.doi.org/10.1007/s10637-007-9106-z] [PMID: 18094935]
[34]
Gopalsamy, A.; Lim, K.; Ciszewski, G.; Park, K.; Ellingboe, J.W.; Bloom, J.; Insaf, S.; Upeslacis, J.; Mansour, T.S.; Krishnamurthy, G.; Damarla, M.; Pyatski, Y.; Ho, D.; Howe, A.Y.; Orlowski, M.; Feld, B.; O’Connell, J. Discovery of pyrano[3,4-b]indoles as potent and selective HCV NS5B polymerase inhibitors. J. Med. Chem., 2004, 47(26), 6603-6608.
[http://dx.doi.org/10.1021/jm0401255] [PMID: 15588095]
[35]
Howe, A.Y.; Bloom, J.; Baldick, C.J.; Benetatos, C.A.; Cheng, H.; Christensen, J.S.; Chunduru, S.K.; Coburn, G.A.; Feld, B.; Gopalsamy, A.; Gorczyca, W.P.; Herrmann, S.; Johann, S.; Jiang, X.; Kimberland, M.L.; Krisnamurthy, G.; Olson, M.; Orlowski, M.; Swanberg, S.; Thompson, I.; Thorn, M.; Del Vecchio, A.; Young, D.C.; van Zeijl, M.; Ellingboe, J.W.; Upeslacis, J.; Collett, M.; Mansour, T.S.; O’Connell, J.F. Novel nonnucleoside inhibitor of hepatitis C virus RNA-dependent RNA polymerase. Antimicrob. Agents Chemother., 2004, 48(12), 4813-4821.
[http://dx.doi.org/10.1128/AAC.48.12.4813-4821.2004] [PMID: 15561861]
[36]
Kneteman, N.M.; Weiner, A.J.; O’Connell, J.; Collett, M.; Gao, T.; Aukerman, L.; Kovelsky, R.; Ni, Z.J.; Zhu, Q.; Hashash, A.; Kline, J.; Hsi, B.; Schiller, D.; Douglas, D.; Tyrrell, D.L.; Mercer, D.F. Anti-HCV therapies in chimeric scid-Alb/uPA mice parallel outcomes in human clinical application. Hepatology, 2006, 43(6), 1346-1353.
[http://dx.doi.org/10.1002/hep.21209] [PMID: 16729319]
[37]
Laporte, M.G.; Jackson, R.W.; Draper, T.L.; Gaboury, J.A.; Galie, K.; Herbertz, T.; Hussey, A.R.; Rippin, S.R.; Benetatos, C.A.; Chunduru, S.K.; Christensen, J.S.; Coburn, G.A.; Rizzo, C.J.; Rhodes, G.; O’Connell, J.; Howe, A.Y.; Mansour, T.S.; Collett, M.S.; Pevear, D.C.; Young, D.C.; Gao, T.; Tyrrell, D.L.; Kneteman, N.M.; Burns, C.J.; Condon, S.M. The discovery of pyrano[3,4-b]indole-based allosteric inhibitors of HCV NS5B polymerase with in vivo activity. ChemMedChem, 2008, 3(10), 1508-1515.
[http://dx.doi.org/10.1002/cmdc.200800168] [PMID: 18729128]
[38]
LaPorte, M.G.; Draper, T.L.; Miller, L.E.; Blackledge, C.W.; Leister, L.K.; Amparo, E.; Hussey, A.R.; Young, D.C.; Chunduru, S.K.; Benetatos, C.A.; Rhodes, G.; Gopalsamy, A.; Herbertz, T.; Burns, C.J.; Condon, S.M. The discovery and structure-activity relationships of pyrano[3,4-b]indole based inhibitors of hepatitis C virus NS5B polymerase. Bioorg. Med. Chem. Lett., 2010, 20(9), 2968-2973.
[http://dx.doi.org/10.1016/j.bmcl.2010.03.002] [PMID: 20347591]
[39]
Lin, K.; Weidmann, B.U.S. Patent No. 7,897,565, 2011.
[40]
Sofia, M.J.; Chang, W.; Furman, P.A.; Mosley, R.T.; Ross, B.S. Nucleoside, nucleotide, and non-nucleoside inhibitors of hepatitis C virus NS5B RNA-dependent RNA-polymerase. J. Med. Chem., 2012, 55(6), 2481-2531.
[http://dx.doi.org/10.1021/jm201384j] [PMID: 22185586]
[41]
Beaulieu, P.L. Recent advances in the development of NS5B polymerase inhibitors for the treatment of hepatitis C virus infection. Expert Opin. Ther. Pat., 2009, 19(2), 145-164.
[http://dx.doi.org/10.1517/13543770802672598] [PMID: 19441916]
[42]
Jackson, R.W.; LaPorte, M.G.; Herbertz, T.; Draper, T.L.; Gaboury, J.A.; Rippin, S.R.; Patel, R.; Chunduru, S.K.; Benetatos, C.A.; Young, D.C.; Burns, C.J.; Condon, S.M. The discovery and structure-activity relationships of pyrano[3,4-b]indole-based inhibitors of hepatitis C virus NS5B polymerase. Bioorg. Med. Chem. Lett., 2011, 21(11), 3227-3231.
[http://dx.doi.org/10.1016/j.bmcl.2011.04.052] [PMID: 21550237]
[43]
Schunk, S.; Linz, K.; Hinze, C.; Frormann, S.; Oberbörsch, S.; Sundermann, B.; Zemolka, S.; Englberger, W.; Germann, T.; Christoph, T.; Kögel, B.Y.; Schröder, W.; Harlfinger, S.; Saunders, D.; Kless, A.; Schick, H.; Sonnenschein, H. Discovery of a potent analgesic NOP and opioid receptor agonist: cebranopadol. ACS Med. Chem. Lett., 2014, 5(8), 857-862.
[http://dx.doi.org/10.1021/ml500117c] [PMID: 25147603]
[44]
Nakkady, S.S.; Fathy, M.M.; Hishmat, O.H.; Mahmond, S.S.; Ebeid, M.Y. New indole, aminoindole and pyranoindole derivatives with anti-inflammatory activity. Boll. Chim. Farm., 2000, 139(2), 59-66.
[PMID: 10920530]
[45]
Winter, C.A.; Risley, E.A.; Nuss, G.W. Carrageenin-induced edema in hind paw of the rat as an assay for antiiflammatory drugs. Proc. Soc. Exp. Biol. Med., 1962, 111(3), 544-547.
[http://dx.doi.org/10.3181/00379727-111-27849] [PMID: 14001233]
[46]
Demerson, C.A. Pyranoindole derivatives as antiulcer agents. U.S. Patent No 4,066,780, 1978.
[47]
Sinicropi, M.S.; Caruso, A.; Conforti, F.; Marrelli, M.; El Kashef, H.; Lancelot, J.C.; Rault, S.; Statti, G.A.; Menichini, F. Synthesis, inhibition of NO production and antiproliferative activities of some indole derivatives. J. Enzyme Inhib. Med. Chem., 2009, 24(5), 1148-1153.
[http://dx.doi.org/10.1080/14756360802693890] [PMID: 19555184]
[48]
Iacopetta, D.; Catalano, A.; Ceramella, J.; Barbarossa, A.; Carocci, A.; Fazio, A.; Latorre, C.; Caruso, A.; Ponassi, M.; Rosano, C.; Franchini, C.; Sinicropi, M.S. Synthesis and antitumor properties of new indole and pyranoindole derivatives. Bioorg. Chem., 2020, 105, 104440.
[http://dx.doi.org/10.1016/j.bioorg.2020.104440] [PMID: 33217633]
[49]
Macor, J.E.; Fox, C.B.; Johnson, C.; Koe, B.K.; Lebel, L.A.; Zorn, S.H. 1-(2-Aminoethyl)-3-methyl-8,9-dihydro-pyrano[3,2-e]indole: A rotationally restricted phenolic analog of the neurotransmitter serotonin and agonist selective for serotonin (5-HT2-type) receptors. J. Med. Chem., 1992, 35(20), 3625-3632.
[http://dx.doi.org/10.1021/jm00098a005] [PMID: 1433172]
[50]
May, J.A.; Chen, H.H. Pyranoindoles for treating glaucoma. U.S. Patent No. 7,012,090 2006.
[51]
Zhou, J.; Wang, B.; He, X.H.; Liu, L.; Wu, J.; Lu, J.; Peng, C.; Rao, C.L.; Han, B. Asymmetric construction of 4H-pyrano[3,2-b]indoles via cinchonine-catalyzed 1,4-addition of 2-ylideneoxindole with malononitrile. J. Org. Chem., 2019, 84(9), 5450-5459.
[http://dx.doi.org/10.1021/acs.joc.9b00430] [PMID: 30921516]
[52]
Praveen, C.; Ananth, D.B. Design, synthesis and cytotoxicity of pyrano[4,3-b]indol-1(5H)-ones: A hybrid pharmacophore approach via gold catalyzed cyclization. Bioorg. Med. Chem. Lett., 2016, 26(10), 2507-2512.
[http://dx.doi.org/10.1016/j.bmcl.2016.03.087] [PMID: 27040658]
[53]
Liu, Y.; Du, Y.; Yu, A.; Qin, D.; Meng, X. Diverse synthesis of pyrano[2,3-b]indol and dihydropyrano[2,3-b]indol via tunable Lewis bases catalyzed domino reactions. Tetrahedron, 2015, 71(40), 7706-7716.
[http://dx.doi.org/10.1016/j.tet.2015.07.057]
[54]
Wang, C.; Wang, T.; Huang, L.; Hou, Y.; Lu, W.; He, H. Facile synthetic approach for 5-aryl-9-hydroxypyrano[3,2-f]indole-2(8H)-one. Arab. J. Chem., 2016, 9(6), 882-890.
[http://dx.doi.org/10.1016/j.arabjc.2016.07.020]
[55]
Zhang, X.; Li, X.; Lanter, J.C.; Sui, Z. Silicon-directed oxa-Pictet-Spengler cyclization and an unusual dimerization of 2-trimethylsilanyl tryptophols. Org. Lett., 2005, 7(10), 2043-2046.
[http://dx.doi.org/10.1021/ol050623n] [PMID: 15876050]
[56]
Ascic, E.; Ohm, R.G.; Petersen, R.; Hansen, M.R.; Hansen, C.L.; Madsen, D.; Tanner, D.; Nielsen, T.E. Synthesis of oxacyclic scaffolds via dual ruthenium hydride/Brønsted acid-catalyzed isomerization/cyclization of allylic ethers. Chemistry, 2014, 20(12), 3297-3300.
[http://dx.doi.org/10.1002/chem.201304270] [PMID: 24616060]
[57]
Bruno, G.; Nicolò, F.; Lo Schiavo, S.; Sinicropi, M.S.; Tresoldi, G. Synthesis and spectroscopic properties of di-2-pyridyl sulfide (dps) compounds. Crystal structure of. [Ru(dps)2Cl2] J. Chem. Soc., Dalton Trans., 1995, 1, 17-24.
[http://dx.doi.org/10.1039/DT9950000017]
[58]
Gimeno, A.; Rodríguez-Gimeno, A.; Cuenca, A.B.; Ramírez de Arellano, C.; Medio-Simón, M.; Asensio, G. Gold(I)-catalysed cascade reactions in the synthesis of 2,3-fused indole derivatives. Chem. Commun. (Camb.), 2015, 51(62), 12384-12387.
[http://dx.doi.org/10.1039/C5CC04606H] [PMID: 26140354]
[59]
Colombo, P. Process for the preparation of etodolac. U.S. Patent No. 6,066,741, 2000.
[60]
Khedkar, V.; Tillack, A.; Michalik, M.; Beller, M. Convenient synthesis of tryptophols and tryptophol homologues by hydroamination of alkynes. Tetrahedron, 2005, 61(32), 7622-7631.
[http://dx.doi.org/10.1016/j.tet.2005.05.093]
[61]
Grubbs, A.W.; Artman, G.D., III; Williams, R.M. Concise syntheses of the 1,7-dihydropyrano[2,3-g]indole ring system of the stephacidins, aspergamides and norgeamides. Tetrahedron Lett., 2005, 46(52), 9013-9016.
[http://dx.doi.org/10.1016/j.tetlet.2005.10.112]
[62]
Grubbs, A.W.; Artman, G.D., III; Tsukamoto, S.; Williams, R.M. A concise total synthesis of the notoamides C and D. Angew. Chem. Int. Ed., 2007, 46(13), 2257-2261.
[http://dx.doi.org/10.1002/anie.200604377] [PMID: 17304609]
[63]
Cox, R.J.; Williams, R.M. Synthetic studies towards paraherquamide F: Synthesis of the 1,7-dihydropyrano[2, 3-g]indole ring system. Tetrahedron Lett., 2002, 43(12), 2149-2152.
[http://dx.doi.org/10.1016/S0040-4039(02)00220-4]
[64]
Clawson, R.W., Jr; Söderberg, B.C. A short synthesis of koniamborine, a naturally occurring pyrano[3,2-b]indole. Tetrahedron Lett., 2007, 48(34), 6019-6021.
[http://dx.doi.org/10.1016/j.tetlet.2007.06.092]
[65]
Jeyaveeran, J.C.; Praveen, C.; Arun, Y.; Prince, A.A.M.; Perumal, P.T. Flexible synthesis of isomeric pyranoindolones and evaluation of cytotoxicity towards HeLa cells. J. Chem. Sci., 2016, 128(5), 787-802.
[http://dx.doi.org/10.1007/s12039-016-1070-8]
[66]
Shimizu, M.; Hirano, K.; Satoh, T.; Miura, M. Waste-free synthesis of condensed heterocyclic compounds by rhodium-catalyzed oxidative coupling of substituted arene or heteroarene carboxylic acids with alkynes. J. Org. Chem., 2009, 74(9), 3478-3483.
[http://dx.doi.org/10.1021/jo900396z] [PMID: 19388716]
[67]
Nandi, D.; Ghosh, D.; Chen, S.J.; Kuo, B.C.; Wang, N.M.; Lee, H.M. One-step synthesis of isocoumarins and 3-benzylidenephthalides via ligandless Pd-catalyzed oxidative coupling of benzoic acids and vinylarenes. J. Org. Chem., 2013, 78(7), 3445-3451.
[http://dx.doi.org/10.1021/jo400174w] [PMID: 23506132]
[68]
Inack, N.S.; Cherry, K.; Héran, V.; Commeiras, L.; Parrain, J.L.; Duchêne, A.; Abarbri, M.; Thibonnet, J. Carboxylate-directed tandem functionalisations of α,β-dihaloalkenoic acids with 1-alkynes: A straightforward access to (Z)-configured, α,β-substituted γ-alkylidenebuteno-lides. Chemistry, 2011, 17(49), 13692-13696.
[http://dx.doi.org/10.1002/chem.201102570] [PMID: 22065483]
[69]
Li, C.; Jiang, J.; Li, L. Efficient synthesis of pyrano[4,3-b]indol-1(5H)-ones from CO2 and alkynyl indoles promoted by a protic ionic liquid. Tetrahedron Lett., 2020, 61(44), 152449.
[http://dx.doi.org/10.1016/j.tetlet.2020.152449]
[70]
Lv, H.; Chen, X.Y.; Sun, L.H.; Ye, S. Enantioselective synthesis of indole-fused dihydropyranones via catalytic cycloaddition of ketenes and 3-alkylenyloxindoles. J. Org. Chem., 2010, 75(20), 6973-6976.
[http://dx.doi.org/10.1021/jo101318u] [PMID: 20843084]
[71]
Yang, L.; Wang, F.; Chua, P.J.; Lv, Y.; Zhong, L.J.; Zhong, G. N-heterocyclic carbene (NHC)-catalyzed highly diastereo- and enantioselective oxo-Diels-Alder reactions for synthesis of fused pyrano[2,3-b]indoles. Org. Lett., 2012, 14(11), 2894-2897.
[http://dx.doi.org/10.1021/ol301175z] [PMID: 22594458]
[72]
Mao, Z.; Li, W.; Shi, Y.; Mao, H.; Lin, A.; Zhu, C.; Cheng, Y. Enantioselective construction of dihydropyran-fused indoles through chiral calcium phosphate catalyzed oxo-hetero-Diels-Alder reactions by using 2-oxoindolin-3-ylidenes as heterodienes. Chemistry, 2013, 19(30), 9754-9759.
[http://dx.doi.org/10.1002/chem.201301039] [PMID: 23832817]
[73]
Wang, F.; Li, Z.; Wang, J.; Li, X.; Cheng, J.P. Enantioselective synthesis of dihydropyran-fused indoles through [4+2] cycloaddition between allenoates and 3-olefinic oxindoles. J. Org. Chem., 2015, 80(10), 5279-5286.
[http://dx.doi.org/10.1021/acs.joc.5b00212] [PMID: 25893317]
[74]
Zhou, Y.; Lin, L.; Yin, C.; Wang, Z.; Liu, X.; Feng, X. The N,N¢-dioxide/Ni(II)-catalyzed asymmetric inverse-electron-demand hetero-Diels-Alder reaction of methyleneindolinones with hetero-substituted alkenes. Chem. Commun. (Camb.), 2015, 51(58), 11689-11692.
[http://dx.doi.org/10.1039/C5CC04245C] [PMID: 26101801]
[75]
Hao, X.; Lin, L.; Tan, F.; Yin, C.; Liu, X.; Feng, X. Ligand control of diastereodivergency in asymmetric inverse electron demand diels–alder reaction. ACS Catal., 2015, 5(10), 6052-6056.
[http://dx.doi.org/10.1021/acscatal.5b01719]
[76]
Katz, A.H.; Demerson, C.A.; Shaw, C.C.; Asselin, A.A.; Humber, L.G.; Conway, K.M.; Gavin, G.; Guinosso, C.; Jensen, N.P.; Mobilio, D. Synthesis and analgesic activity of pemedolac (cis-1-ethyl-1,3,4,9-tetrahydro-4-(phenylmethyl) pyrano[3,4-b]ind ole-1- acetic acid). J. Med. Chem., 1988, 31(6), 1244-1250.
[http://dx.doi.org/10.1021/jm00401a029] [PMID: 3373493]
[77]
Gharpure, S.J.; Prasath, V. Stereoselective synthesis of C-fused pyranoindoles, pyranobenzofurans and pyranobenzothiophene scaffolds using oxa-Pictet-Spengler type reaction of vinylogous carbonates. Org. Biomol. Chem., 2014, 12(37), 7397-7409.
[http://dx.doi.org/10.1039/C4OB01387E] [PMID: 25137156]
[78]
Xie, H.; Yang, J.X.; Bora, P.P.; Kang, Q. Rh (II)-catalyzed intramolecular annulation of N-sulfonyl 1, 2, 3-triazoles with indole derivatives: A new method for synthesis pyranoindoles. Tetrahedron, 2016, 72(22), 3014-3021.
[http://dx.doi.org/10.1016/j.tet.2016.04.017]
[79]
Ni, Q.; Song, X.; Raabe, G.; Enders, D. N-heterocyclic carbene-catalyzed enantioselective annulation of indolin-3-ones with bromoenals. Chem. Asian J., 2014, 9(6), 1535-1538.
[http://dx.doi.org/10.1002/asia.201402052] [PMID: 24729588]
[80]
Yang, L.; Huang, W.; He, X.H.; Yang, M.C.; Li, X.; He, G.; Peng, C.; Han, B. Stereoselective synthesis of hydropyrano[3,2-b]indoles via organocatalytic asymmetric inverse-electron-demand Oxa-Diels–Alder reaction. Adv. Synth. Catal., 2016, 358(18), 2970-2975.
[http://dx.doi.org/10.1002/adsc.201600465]
[81]
Choi, S.; Park, J.; Yu, E.; Sim, J.; Park, C.M. Electrosynthesis of dihydropyrano[4,3-b]indoles based on a double oxidative[3+3]cycloaddition. Angew. Chem. Int. Ed. Engl., 2020, 59(29), 11886-11891.
[http://dx.doi.org/10.1002/anie.202003364] [PMID: 32329937]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy