Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Tumor-related Molecular Regulatory Mechanisms of Long Non-coding RNA RMST: Recent Evidence

Author(s): Xuhui Chen , Kai Liu, Wen Xu, Gang Zhou* and Chengfu Yuan*

Volume 22, Issue 10, 2022

Published on: 14 January, 2022

Page: [1374 - 1379] Pages: 6

DOI: 10.2174/1389557521666211202150646

Price: $65

Abstract

Background: Long non-coding RNA rhabdomyosarcoma 2-associated transcript (LncRNA RMST) can affect every aspect of tumor progressions, such as proliferation, translocation, and apoptosis. As a result, RMST can be used as an attractive biomarker for early diagnosis and clinical therapies of different disease states. This article aims to review pathophysiological functions, molecular mechanisms as well as promising biotherapies of RMST in multiple tumors.

Methods: Through the systematic induction and summary of 46 papers published in PubMed concerning this study, the molecular mechanisms of RMST in all kinds of tumors have been reviewed.

Results: LncRNA RMST is a tumor-related regulatory mediator, aberrantly expressed in diverse tumors, including medullary thyroid cancer, hepatocellular carcinoma, endometrial carcinoma, colon cancer, pancreatic cancer, glioma, Wilm’s tumor, and breast cancer. Furthermore, as a mechanismbased player, RMST probably guides the translation and post-translation modification, containing DNA methylation and SUMOylation. It is capable of regulating distinct tumor cells and stem cells of biological behaviors via various molecular pathways.

Conclusion: LncRNA RMST, potentially as an original therapeutic target, is valuable in the occurrence, development, and apoptosis of different tumors.

Keywords: Long non-coding RNA, RMST, tumor, SOX2, therapeutic target, DNA methylation.

Graphical Abstract

[1]
Schmitt, A.M.; Chang, H.Y. Long noncoding RNAs in cancer pathways. Cancer Cell, 2016, 29(4), 452-463.
[http://dx.doi.org/10.1016/j.ccell.2016.03.010] [PMID: 27070700]
[2]
Carlevaro-Fita, J.; Johnson, R. Global positioning system: Understanding long noncoding RNAs through subcellular localization. Mol. Cell, 2019, 73(5), 869-883.
[http://dx.doi.org/10.1016/j.molcel.2019.02.008] [PMID: 30849394]
[3]
Stamou, M.; Ng, S.Y.; Brand, H.; Wang, H.; Plummer, L.; Best, L.; Havlicek, S.; Hibberd, M.; Khor, C.C.; Gusella, J.; Balasubramanian, R.; Talkowski, M.; Stanton, L.W.; Crowley, W.F. A balanced translocation in Kallmann syndrome implicates a long noncoding RNA, RMST, as a GnRH neuronal regulator. J. Clin. Endocrinol. Metab., 2020, 105(3), e231-e244.
[http://dx.doi.org/10.1210/clinem/dgz011] [PMID: 31628846]
[4]
Chan, A.S.; Thorner, P.S.; Squire, J.A.; Zielenska, M. Identification of a novel gene NCRMS on chromosome 12q21 with differential expression between rhabdomyosarcoma subtypes. Oncogene, 2002, 21(19), 3029-3037.
[http://dx.doi.org/10.1038/sj.onc.1205460] [PMID: 12082533]
[5]
Izuogu, O.G.; Alhasan, A.A.; Mellough, C.; Collin, J.; Gallon, R.; Hyslop, J.; Mastrorosa, F.K.; Ehrmann, I.; Lako, M.; Elliott, D.J. Santibanez-Koref, M.; Jackson, M.S. Analysis of human ES cell differentiation establishes that the dominant isoforms of the lncRNAs RMST and FIRRE are circular. BMC Genom., 2018, 19(1), 276.
[http://dx.doi.org/10.1186/s12864-018-4660-7] [PMID: 29678151]
[6]
Uhde, C.W.; Vives, J.; Jaeger, I.; Li, M. Rmst is a novel marker for the mouse ventral mesencephalic floor plate and the anterior dorsal midline cells. PLoS One, 2010, 5(1), e8641.
[http://dx.doi.org/10.1371/journal.pone.0008641] [PMID: 20062813]
[7]
Ng, S.Y.; Bogu, G.K.; Soh, B.S.; Stanton, L.W. The long noncoding RNA RMST interacts with SOX2 to regulate neurogenesis. Mol. Cell, 2013, 51(3), 349-359.
[http://dx.doi.org/10.1016/j.molcel.2013.07.017] [PMID: 23932716]
[8]
Mahmoudian-Sani, M.R.; Jalali, A.; Jamshidi, M.; Moridi, H.; Alghasi, A.; Shojaeian, A.; Mobini, G.R. Long non-coding RNAs in thyroid cancer: Implications for pathogenesis, diagnosis, and therapy. Oncol. Res. Treat., 2019, 42(3), 136-142.
[http://dx.doi.org/10.1159/000495151] [PMID: 30799425]
[9]
Luzón-Toro, B.; Villalba-Benito, L.; Fernández, R.M.; Torroglosa, A.; Antiñolo, G.; Borrego, S. RMRP, RMST, FTX and IPW: Novel po-tential long non-coding RNAs in medullary thyroid cancer. Orphanet J. Rare Dis., 2021, 16(1), 4.
[http://dx.doi.org/10.1186/s13023-020-01665-5] [PMID: 33407723]
[10]
Gu, J.X.; Zhang, X.; Miao, R.C.; Xiang, X.H.; Fu, Y.N.; Zhang, J.Y.; Liu, C.; Qu, K. Six-long non-coding RNA signature predicts recurrence-free survival in hepatocellular carcinoma. World J. Gastroenterol., 2019, 25(2), 220-232.
[http://dx.doi.org/10.3748/wjg.v25.i2.220] [PMID: 30670911]
[11]
Dong, P.; Xiong, Y.; Yue, J.; Xu, D.; Ihira, K.; Konno, Y.; Kobayashi, N.; Todo, Y.; Watari, H. Long noncoding RNA NEAT1 drives aggressive endometrial cancer progression via miR-361-regulated networks involving STAT3 and tumor microenvironment-related genes. J. Exp. Clin. Cancer Res., 2019, 38(1), 295.
[http://dx.doi.org/10.1186/s13046-019-1306-9] [PMID: 31287002]
[12]
Peng, W.X.; Koirala, P.; Zhang, W.; Ni, C.; Wang, Z.; Yang, L.; Mo, Y.Y. lncRNA RMST enhances DNMT3 expression through interaction with HuR. Mol. Ther., 2020, 28(1), 9-18.
[13]
Liu, C.; Peng, Z.; Li, P.; Fu, H.; Feng, J.; Zhang, Y.; Liu, T.; Liu, Y.; Liu, Q.; Liu, Q.; Li, D.; Wu, M. lncRNA RMST suppressed GBM cell mitophagy through enhancing FUS SUMOylation. Mol. Ther. Nucleic Acids, 2020, 19, 1198-1208.
[http://dx.doi.org/10.1016/j.omtn.2020.01.008] [PMID: 32069702]
[14]
Zheng, H.; Li, B.H.; Liu, C.; Jia, L.; Liu, F.T. Comprehensive analysis of lncRNA-mediated ceRNA crosstalk and identification of prognostic biomarkers in Wilms’ Tumor. BioMed Res. Int., 2020, 2020, 4951692.
[http://dx.doi.org/10.1155/2020/4951692] [PMID: 32149111]
[15]
Zhang, C.; Cao, W.; Wang, J.; Liu, J.; Liu, J.; Wu, H.; Li, S.; Zhang, C. A prognostic long non-coding RNA-associated competing endogenous RNA network in head and neck squamous cell carcinoma. Peer J., 2020, 8, e9701.
[http://dx.doi.org/10.7717/peerj.9701] [PMID: 32983633]
[16]
Yang, F.; Liu, Y.H.; Dong, S.Y.; Yao, Z.H.; Lv, L.; Ma, R.M.; Dai, X.X.; Wang, J.; Zhang, X.H.; Wang, O.C. Co-expression networks revealed potential core lncRNAs in the triple-negative breast cancer. Gene, 2016, 591(2), 471-477.
[http://dx.doi.org/10.1016/j.gene.2016.07.002] [PMID: 27380926]
[17]
Wang, L.; Liu, D.; Wu, X.; Zeng, Y.; Li, L.; Hou, Y.; Li, W.; Liu, Z. Long non-coding RNA (LncRNA) RMST in triple-negative breast cancer (TNBC): Expression analysis and biological roles research. J. Cell. Physiol., 2018, 233(10), 6603-6612.
[http://dx.doi.org/10.1002/jcp.26311] [PMID: 29215701]
[18]
Imamura, T.; Uesaka, M.; Nakashima, K. Epigenetic setting and reprogramming for neural cell fate determination and differentiation. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2014, 369(1652), 369.
[http://dx.doi.org/10.1098/rstb.2013.0511] [PMID: 25135972]
[19]
Ng, S.Y.; Johnson, R.; Stanton, L.W. Human long non-coding RNAs promote pluripotency and neuronal differentiation by association with chromatin modifiers and transcription factors. EMBO J., 2012, 31(3), 522-533.
[http://dx.doi.org/10.1038/emboj.2011.459] [PMID: 22193719]
[20]
Chen, L.L. Linking long noncoding RNA localization and function. Trends Biochem. Sci., 2016, 41(9), 761-772.
[http://dx.doi.org/10.1016/j.tibs.2016.07.003] [PMID: 27499234]
[21]
Wu, C.S.; Yu, C.Y.; Chuang, C.Y.; Hsiao, M.; Kao, C.F.; Kuo, H.C.; Chuang, T.J. Integrative transcriptome sequencing identifies trans-splicing events with important roles in human embryonic stem cell pluripotency. Genome Res., 2014, 24(1), 25-36.
[http://dx.doi.org/10.1101/gr.159483.113] [PMID: 24131564]
[22]
Yu, C.Y.; Kuo, H.C. The trans-spliced long noncoding RNA tsRMST impedes human embryonic stem cell differentiation through WNT5A-mediated inhibition of the epithelial-to-mesenchymal transition. Stem Cells, 2016, 34(8), 2052-2062.
[http://dx.doi.org/10.1002/stem.2386] [PMID: 27090862]
[23]
Højfeldt, J.W.; Laugesen, A.; Willumsen, B.M.; Damhofer, H.; Hedehus, L.; Tvardovskiy, A.; Mohammad, F.; Jensen, O.N.; Helin, K. Accurate H3K27 methylation can be established de novo by SUZ12-directed PRC2. Nat. Struct. Mol. Biol., 2018, 25(3), 225-232.
[http://dx.doi.org/10.1038/s41594-018-0036-6] [PMID: 29483650]
[24]
Lopez-Bergami, P.; Barbero, G. The emerging role of Wnt5a in the promotion of a pro-inflammatory and immunosuppressive tumor microenvironment. Cancer Metastasis Rev., 2020, 39(3), 933-952.
[http://dx.doi.org/10.1007/s10555-020-09878-7] [PMID: 32435939]
[25]
Yang, J.; Zhang, K.; Wu, J.; Shi, J.; Xue, J.; Li, J.; Chen, J.; Zhu, Y.; Wei, J.; He, J.; Liu, X. Wnt5a increases properties of lung cancer stem cells and resistance to cisplatin through activation of Wnt5a/PKC signaling pathway. Stem Cells Int., 2016, 2016, 1690896.
[http://dx.doi.org/10.1155/2016/1690896] [PMID: 27895670]
[26]
Mercurio, S.; Serra, L.; Nicolis, S.K. More than just stem cells: Functional roles of the transcription factor Sox2 in differentiated glia and neurons. Int. J. Mol. Sci., 2019, 20(18), E4540.
[http://dx.doi.org/10.3390/ijms20184540] [PMID: 31540269]
[27]
Guttman, M.; Donaghey, J.; Carey, B.W.; Garber, M.; Grenier, J.K.; Munson, G.; Young, G.; Lucas, A.B.; Ach, R.; Bruhn, L.; Yang, X.; Amit, I.; Meissner, A.; Regev, A.; Rinn, J.L.; Root, D.E.; Lander, E.S. lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature, 2011, 477(7364), 295-300.
[http://dx.doi.org/10.1038/nature10398] [PMID: 21874018]
[28]
Rodda, D.J.; Chew, J.L.; Lim, L.H.; Loh, Y.H.; Wang, B.; Ng, H.H.; Robson, P. Transcriptional regulation of nanog by OCT4 and SOX2. J. Biol. Chem., 2005, 280(26), 24731-24737.
[http://dx.doi.org/10.1074/jbc.M502573200] [PMID: 15860457]
[29]
Schmitz, M.; Temme, A.; Senner, V.; Ebner, R.; Schwind, S.; Stevanovic, S.; Wehner, R.; Schackert, G.; Schackert, H.K.; Fussel, M.; Bachmann, M.; Rieber, E.P.; Weigle, B. Identification of SOX2 as a novel glioma-associated antigen and potential target for T cell-based immunotherapy. Br. J. Cancer, 2007, 96(8), 1293-1301.
[http://dx.doi.org/10.1038/sj.bjc.6603696] [PMID: 17375044]
[30]
Ikushima, H.; Todo, T.; Ino, Y.; Takahashi, M.; Miyazawa, K.; Miyazono, K. Autocrine TGF-beta signaling maintains tumorigenicity of glioma-initiating cells through Sry-related HMG-box factors. Cell Stem Cell, 2009, 5(5), 504-514.
[http://dx.doi.org/10.1016/j.stem.2009.08.018] [PMID: 19896441]
[31]
Joung, J.; Engreitz, J.M.; Konermann, S.; Abudayyeh, O.O.; Verdine, V.K.; Aguet, F.; Gootenberg, J.S.; Sanjana, N.E.; Wright, J.B.; Fulco, C.P.; Tseng, Y.Y.; Yoon, C.H.; Boehm, J.S.; Lander, E.S.; Zhang, F. Genome-scale activation screen identifies a lncRNA locus regulating a gene neighbourhood. Nature, 2017, 548(7667), 343-346.
[http://dx.doi.org/10.1038/nature23451] [PMID: 28792927]
[32]
Edwards, J.R.; Yarychkivska, O.; Boulard, M.; Bestor, T.H. DNA methylation and DNA methyltransferases. Epigenetics Chromatin, 2017, 10, 23.
[http://dx.doi.org/10.1186/s13072-017-0130-8] [PMID: 28503201]
[33]
Okano, M.; Bell, D.W.; Haber, D.A.; Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell, 1999, 99(3), 247-257.
[http://dx.doi.org/10.1016/S0092-8674(00)81656-6] [PMID: 10555141]
[34]
Hu, X.; Yang, L.; Mo, Y.Y. Role of pseudogenes in tumorigenesis. Cancers (Basel), 2018, 10(8), E256.
[http://dx.doi.org/10.3390/cancers10080256] [PMID: 30071685]
[35]
Dor, Y.; Cedar, H. Principles of DNA methylation and their implications for biology and medicine. Lancet, 2018, 392(10149), 777-786.
[http://dx.doi.org/10.1016/S0140-6736(18)31268-6] [PMID: 30100054]
[36]
Koch, A.; Joosten, S.C.; Feng, Z.; de Ruijter, T.C.; Draht, M.X.; Melotte, V.; Smits, K.M.; Veeck, J.; Herman, J.G.; Van Neste, L.; Van Criekinge, W.; De Meyer, T.; van Engeland, M. Analysis of DNA methylation in cancer: Location revisited. Nat. Rev. Clin. Oncol., 2018, 15(7), 459-466.
[http://dx.doi.org/10.1038/s41571-018-0004-4] [PMID: 29666440]
[37]
Singh, A.K.; Khare, P.; Obaid, A.; Conlon, K.P.; Basrur, V.; DePinho, R.A.; Venuprasad, K. SUMOylation of ROR-γt inhibits IL-17 expression and inflammation via HDAC2. Nat. Commun., 2018, 9(1), 4515.
[http://dx.doi.org/10.1038/s41467-018-06924-5] [PMID: 30375383]
[38]
Gareau, J.R.; Lima, C.D. The SUMO pathway: Emerging mechanisms that shape specificity, conjugation and recognition. Nat. Rev. Mol. Cell Biol., 2010, 11(12), 861-871.
[http://dx.doi.org/10.1038/nrm3011] [PMID: 21102611]
[39]
He, R.Z.; Luo, D.X.; Mo, Y.Y. Emerging roles of lncRNAs in the post-transcriptional regulation in cancer. Genes Dis., 2019, 6(1), 6-15.
[http://dx.doi.org/10.1016/j.gendis.2019.01.003] [PMID: 30906827]
[40]
Tan, A.Y.; Manley, J.L. TLS/FUS: A protein in cancer and ALS. Cell Cycle, 2012, 11(18), 3349-3350.
[http://dx.doi.org/10.4161/cc.21875] [PMID: 22918236]
[41]
De Santis, R.; Santini, L.; Colantoni, A.; Peruzzi, G.; de Turris, V.; Alfano, V.; Bozzoni, I.; Rosa, A. FUS mutant human motoneurons display altered transcriptome and microRNA pathways with implications for ALS pathogenesis. Stem Cell Rep., 2017, 9(5), 1450-1462.
[http://dx.doi.org/10.1016/j.stemcr.2017.09.004] [PMID: 28988989]
[42]
Geuens, T.; Bouhy, D.; Timmerman, V. The hnRNP family: Insights into their role in health and disease. Hum. Genet., 2016, 135(8), 851-867.
[http://dx.doi.org/10.1007/s00439-016-1683-5] [PMID: 27215579]
[43]
Yang, G.; Li, Y.; Zhao, Y.; Ouyang, L.; Chen, Y.; Liu, B.; Liu, J. Targeting Atg4B for cancer therapy: Chemical mediators. Eur. J. Med. Chem., 2021, 209, 112917.
[http://dx.doi.org/10.1016/j.ejmech.2020.112917] [PMID: 33077263]
[44]
Betin, V.M.; Lane, J.D. Atg4D at the interface between autophagy and apoptosis. Autophagy, 2009, 5(7), 1057-1059.
[http://dx.doi.org/10.4161/auto.5.7.9684] [PMID: 19713737]
[45]
Amaravadi, R.K.; Kimmelman, A.C.; Debnath, J. Targeting autophagy in cancer: Recent advances and future directions. Cancer Discov., 2019, 9(9), 1167-1181.
[http://dx.doi.org/10.1158/2159-8290.CD-19-0292] [PMID: 31434711]
[46]
Reyjal, J.; Cormier, K.; Turcotte, S. Autophagy and cell death to target cancer cells: Exploiting synthetic lethality as cancer therapies. Adv. Exp. Med. Biol., 2014, 772, 167-188.
[http://dx.doi.org/10.1007/978-1-4614-5915-6_8] [PMID: 24272359]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy