Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Review Article

Distinguishing Intramedullary Spinal Cord Neoplasms from Non-Neoplastic Conditions by Analyzing the Classic Signs on MRI in the Era of AI

Author(s): Ernest Junrui Lim*, Natalie Wei Lyn Leong and Chi Long Ho

Volume 18, Issue 8, 2022

Published on: 07 March, 2022

Article ID: e021221198486 Pages: 11

DOI: 10.2174/1573405617666211202102235

Price: $65

Abstract

Intramedullary lesions can be challenging to diagnose, given the wide range of possible pathologies. Each lesion has unique clinical and imaging features, which are best evaluated using magnetic resonance imaging. Radiological imaging is unique with rich, descriptive patterns and classic signs-which are often metaphorical. In this review, we present a collection of classic MRI signs, ranging from neoplastic to non-neoplastic lesions, within the spinal cord. The Differential Diagnosis (DD) of intramedullary lesions can be narrowed down by careful analysis of the classic signs and patterns of involvement in the spinal cord. Furthermore, the signs are illustrated memorably with emphasis on the pathophysiology, mimics, and pitfalls. Artificial Intelligence (AI) algorithms, particularly deep learning, have made remarkable progress in image recognition tasks. The classic signs and related illustrations can enhance a pattern recognition approach in diagnostic radiology. Deep learning can potentially be designed to distinguish neoplastic from non-neoplastic processes by pattern recognition of the classic MRI signs.

Keywords: Frosting sign, intramedullary lesion, posterior vertebral scalloping , rim and flame sign, scalpel, snake-eyes sign.

Graphical Abstract

[1]
LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE 1998; 86(11): 2278-323.
[http://dx.doi.org/10.1109/5.726791]
[2]
Knoll F, Hammernik K, Kobler E, Pock T, Recht MP, Sodickson DK. Assessment of the generalization of learned image reconstruction and the potential for transfer learning. Magn Reson Med 2019; 81(1): 116-28.
[http://dx.doi.org/10.1002/mrm.27355] [PMID: 29774597]
[3]
Marblestone AH, Wayne G, Kording KP. Toward an integration of deep learning and neuroscience. Front Comput Neurosci 2016; 10: 94.
[http://dx.doi.org/10.3389/fncom.2016.00094] [PMID: 27683554]
[4]
Shin HC, Roth HR, Gao M, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging 2016; 35(5): 1285-98.
[http://dx.doi.org/10.1109/TMI.2016.2528162] [PMID: 26886976]
[5]
Reddy GT, Bhattacharya S, Ramakrishnan SS, et al. An ensemble based machine learning model for diabetic retinopathy classification. In: 2020 international conference on emerging trends in information technology and engineering (ic-ETITE); 2020 february 24-25; Vellore, India; pp. 24-5.
[6]
Deepa N, Prabadevi B, Maddikunta PK, Gadekallu TR, Baker T, Khan MA. An AI-based intelligent system for healthcare analysis using Ridge-Adaline Stochastic Gradient Descent Classifier. J Supercomput 2021; 77(2): 1998-2017.
[http://dx.doi.org/10.1007/s11227-020-03347-2]
[7]
Redmon J. Darknet: Open Source Neural Network in C. 2013-2016. Available from: https://pjreddie.com/darknet/
[8]
Wakely SL. The posterior vertebral scalloping sign. Radiology 2006; 239(2): 607-9.
[http://dx.doi.org/10.1148/radiol.2392040224] [PMID: 16641360]
[9]
Banks KP. The target sign: Extremity. Radiology 2005; 234(3): 899-900.
[http://dx.doi.org/10.1148/radiol.2343030946] [PMID: 15734940]
[10]
Shofty B, Mauda-Havakuk M, Ben-Sira L, et al. Surgical management of “kissing” spinal plexiform neurofibromas in neurofibromatosis type 1 patients. World Neurosurg 2020; 134: e1143-7.
[http://dx.doi.org/10.1016/j.wneu.2019.11.124] [PMID: 31786384]
[11]
Korf BR. Plexiform neurofibromas. Am J Med Genet 1999; 89(1): 31-7.
[http://dx.doi.org/10.1002/(SICI)1096-8628(19990326)89:1<31::AID-AJMG7>3.0.CO;2-W] [PMID: 10469434]
[12]
Singh SK, Leeds NE, Ginsberg LE. MR imaging of leptomeningeal metastases: Comparison of three sequences. AJNR Am J Neuroradiol 2002; 23(5): 817-21.
[PMID: 12006284]
[13]
Grossman SA, Krabak MJ. Leptomeningeal carcinomatosis. Cancer Treat Rev 1999; 25(2): 103-19.
[14]
Clarke JL, Perez HR, Jacks LM, Panageas KS, Deangelis LM. Leptomeningeal metastases in the MRI era. Neurology 2010; 74(18): 1449-54.
[http://dx.doi.org/10.1212/WNL.0b013e3181dc1a69] [PMID: 20439847]
[15]
Smirniotopoulos JG, Murphy FM, Rushing EJ, Rees JH, Schroeder JW. Patterns of contrast enhancement in the brain and meninges. Radiographics 2007; 27(2): 525-51.
[http://dx.doi.org/10.1148/rg.272065155] [PMID: 17374867]
[16]
Rykken JB, Diehn FE, Hunt CH, Eds., et al. Rim and flame signs: Postgadolinium MRI findings specific for Non-CNS intramedullary spinal cord metastases. AJNR Am J Neuroradiol 2013; 34(4): 908-15.
[http://dx.doi.org/10.3174/ajnr.A3292] [PMID: 23079405]
[17]
Koeller KK, Rosenblum RS, Morrison AL. Neoplasms of the spinal cord and filum terminale: Radiologic-pathologic correlation. Radiographics 2000; 20(6): 1721-49.
[http://dx.doi.org/10.1148/radiographics.20.6.g00nv151721] [PMID: 11112826]
[18]
Dohi N, Ishikawa S, Kamijyo Y, Nakamura T, O-Hara S, Maruyama K. Multiple sclerosis with open-ring enhancement in the cerebrum and spinal cord. Intern Med 2003; 42(3): 273-6.
[http://dx.doi.org/10.2169/internalmedicine.42.273] [PMID: 12705794]
[19]
Matsuura H, Nakamura T. Inverted V sign: Subacute combined degeneration of the spinal cord. QJM-Int J Med 2018; 111(1): 65.
[20]
Ramakrishna N, Mandapalli A, Jukuri N, Guddanti P. Inverted V Sign in sub-acute combined degeneration of cord. J Clin Diagn Res 2015; 9(5): TJ01.
[http://dx.doi.org/10.7860/JCDR/2015/14028.5889] [PMID: 26155533]
[21]
Yonezu T, Ito S, Mori M, et al. Bright spotty lesions" on spinal magnetic resonance imaging differentiate neuromyelitis optica from multiple sclerosis. Multiple Sclerosis (Houndmills, Basingstoke, England) 2014; 20(3): 331-7.
[22]
Sireesha Y, Uppin MS, Bohra K, Alugolu R, Neeharika ML, Kanikannan A. Longitudinally extensive transverse myelitis due to toxoplasma: An autopsy study. Ann Indian Acad Neurol 2018; 21(2): 161-3.
[http://dx.doi.org/10.4103/aian.AIAN_387_17] [PMID: 30122845]
[23]
Hyun JW, Kim SH, Jeong IH, Lee SH, Kim HJ. Bright spotty lesions on the spinal cord: An additional MRI indicator of neuromyelitis optica spectrum disorder? BMJ Publishing Group 2015; 86(11): 1280-2.
[24]
Kister I, Johnson E, Raz E, Babb J, Loh J, Shepherd TM. Specific MRI findings help distinguish acute transverse myelitis of neuromyelitis optica from spinal cord infarction. Mult Scler Relat Disord 2016; 9: 62-7.
[http://dx.doi.org/10.1016/j.msard.2016.04.005] [PMID: 27645347]
[25]
Bulut E, Shoemaker T, Karakaya J, et al. MRI predictors of recurrence and outcome after acute transverse myelitis of unidentified etiology. AJNR Am J Neuroradiol 2019; 40(8): 1427-32.
[http://dx.doi.org/10.3174/ajnr.A6121] [PMID: 31296526]
[26]
Reardon MA, Raghavan P, Carpenter-Bailey K, et al. Dorsal thoracic arachnoid web and the “scalpel sign”: A distinct clinical-radiologic entity. AJNR Am J Neuroradiol 2013; 34(5): 1104-10.
[http://dx.doi.org/10.3174/ajnr.A3432] [PMID: 23348759]
[27]
Aljuboori Z, Boakye M. Rare dorsal thoracic arachnoid web mimics spinal cord herniation on imaging. Surg Neurol Int 2020; 11(66): 66.
[http://dx.doi.org/10.25259/SNI_98_2020] [PMID: 32363061]
[28]
Schultz R Jr, Steven A, Wessell A, et al. Differentiation of idiopathic spinal cord herniation from dorsal arachnoid webs on MRI and CT myelography. J Neurosurg Spine 2017; 26(6): 754-9.
[http://dx.doi.org/10.3171/2016.11.SPINE16696] [PMID: 28338452]
[29]
Fogel GR, Cunningham PY III, Esses SI. Spinal epidural lipomatosis: Case reports, literature review and meta-analysis. Spine J 2005; 5(2): 202-11.
[http://dx.doi.org/10.1016/j.spinee.2004.05.252] [PMID: 15795966]
[30]
Yasuda T, Suzuki K, Kawaguchi Y, et al. Clinical and imaging characteristics in patients undergoing surgery for lumbar epidural lipomatosis. BMC Musculoskelet Disord 2018; 19(1): 66.
[http://dx.doi.org/10.1186/s12891-018-1988-8] [PMID: 29490659]
[31]
Xu H, Shao M, Zhang F, et al. Snake-eyes appearance on MRI occurs during the late stage of Hirayama disease and indicates poor prognosis. Biomed Res Int 2019; 2019: 9830243.
[http://dx.doi.org/10.1155/2019/9830243] [PMID: 30756087]
[32]
Kizilca Ö, Öztek A, Kesimal U, Şenol U. Signs in neuroradiology: A pictorial review. Korean J Radiol 2017; 18(6): 992-1004.
[33]
Mizuno J, Nakagawa H, Inoue T, Hashizume Y. Clinicopathological study of “snake-eye appearance” in compressive myelopathy of the cervical spinal cord. J Neurosurg 2003; 99(2)(Suppl.): 162-8.
[PMID: 12956458]
[34]
Taterra D, Skinningsrud B, Pękala PA, et al. Artery of Adamkiewicz: A meta-analysis of anatomical characteristics. Neuroradiology 2019; 61(8): 869-80.
[http://dx.doi.org/10.1007/s00234-019-02207-y] [PMID: 31030251]
[35]
Enokizono M, Sato N, Morikawa M, et al. “Black butterfly” sign on T2*-weighted and susceptibility-weighted imaging: A novel finding of chronic venous congestion of the brain stem and spinal cord associated with dural arteriovenous fistulas. J Neurol Sci 2017; 379: 64-8.
[http://dx.doi.org/10.1016/j.jns.2017.05.066] [PMID: 28716281]
[36]
Bhattacharya S, Reddy Maddikunta PK, Pham Q-V, et al. Deep learning and medical image processing for coronavirus (COVID-19) pandemic: A survey. Sustain Cities Soc 2021; 65: 102589.
[http://dx.doi.org/10.1016/j.scs.2020.102589] [PMID: 33169099]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy