Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Research Article

Evaluation of the Antidepressant-like Effect of Chronic Administration of Nigella Fixed Oil Versus Fluoxetine in Rats

Author(s): Youness Kadil*, Imane Tabyaoui, Latifa Badre, Nadia Tahiri Jouti and Houda Filali

Volume 21, Issue 6, 2022

Published on: 03 December, 2021

Page: [533 - 539] Pages: 7

DOI: 10.2174/1871527320666211201160001

Price: $65

Abstract

Background: Depression is a group of syndromes characterized by notable and persistent mood disorders, and is one of the most prevalent psychiatric disorders, while the existing treatments have an altered risk-benefit balance. The therapeutic properties of Nigella have been confirmed, suggesting the reliance on phytotherapy.

Objectives: The objective of the present paper is to investigate the antidepressive-like effect of Nigella sativa on rats exposed to the Unpredictable Chronic Mild Stress procedure.

Methods: Wistar rats were used to investigate the antidepressive-like effect. The stress procedure used in this study combined many stressful conditions. After 6 weeks of treatment, behavioral test (forced swim test) was conducted, and histological changes of the hippocampus were examined.

Results: Treatment by nigella and fluoxetine significantly reduced the immobilization time. Histopathological analysis showed that control treatments result in more loosely arranged cells, significant apoptotic neurons characterized by an irregular appearance, and pyknotic hyperchromatic.

Conclusion: A preservation of the thickness of the pyramid layer was also observed in the groups treated with nigella and fluoxetine, suggesting that nigella could be used as a treatment or an adjuvant preventing depressive-like disorders.

Keywords: Nigella sativa, fluoxetine, UCMS, histology, depression, antidepressant.

« Previous
[1]
Ghosheh OA, Houdi AA, Crooks PA. High performance liquid chromatographic analysis of the pharmacologically active quinones and related compounds in the oil of the black seed (Nigella sativa L.). J Pharm Biomed Anal 1999; 19(5): 757-62.
[http://dx.doi.org/10.1016/S0731-7085(98)00300-8] [PMID: 10698539]
[2]
Beheshti F, Khazaei M, Hosseini M. Neuropharmacological effects of Nigella sativa. Avicenna J Phytomed 2016; 6(1): 104-16.
[PMID: 27247928]
[3]
Alhebshi AH, Gotoh M, Suzuki I. Thymoquinone protects cultured rat primary neurons against amyloid β-induced neurotoxicity. Biochem Biophys Res Commun 2013; 433(4): 362-7.
[http://dx.doi.org/10.1016/j.bbrc.2012.11.139] [PMID: 23537659]
[4]
Menken M, Munsat TL, Toole JF. The global burden of disease study: implications for neurology. Arch Neurol 2000; 57(3): 418-20.
[http://dx.doi.org/10.1001/archneur.57.3.418] [PMID: 10714674]
[5]
Paykel ES. Depression: major problem for public health. Epidemiol Psichiatr Soc 2006; 15(1): 4-10.
[http://dx.doi.org/10.1017/S1121189X00001974] [PMID: 16584097]
[6]
Jacobs BL, van Praag H, Gage FH. Adult brain neurogenesis and psychiatry: a novel theory of depression. Mol Psychiatry 2000; 5(3): 262-9.
[http://dx.doi.org/10.1038/sj.mp.4000712] [PMID: 10889528]
[7]
Jayatissa MN, Bisgaard C, Tingström A, Papp M, Wiborg O. Hippocampal cytogenesis correlates to escitalopram-mediated recovery in a chronic mild stress rat model of depression. Neuropsychopharmacology 2006; 31(11): 2395-404.
[http://dx.doi.org/10.1038/sj.npp.1301041] [PMID: 16482085]
[8]
Licznerski P, Jonas EA. BDNF signaling: Harnessing stress to battle mood disorder. Proc Natl Acad Sci USA 2018; 115(15): 3742-4.
[http://dx.doi.org/10.1073/pnas.1803645115] [PMID: 29592951]
[9]
Willner P. Reliability of the chronic mild stress model of depression: A user survey. Neurobiol Stress 2016; 6: 68-77.
[http://dx.doi.org/10.1016/j.ynstr.2016.08.001] [PMID: 28229110]
[10]
Czéh B, Lucassen PJ. What causes the hippocampal volume decrease in depression? Are neurogenesis, glial changes and apoptosis implicated? Eur Arch Psychiatry Clin Neurosci 2007; 257(5): 250-60.
[http://dx.doi.org/10.1007/s00406-007-0728-0] [PMID: 17401728]
[11]
Sheline YI, Gado MH, Kraemer HC. Untreated depression and hippocampal volume loss. Am J Psychiatry 2003; 160(8): 1516-8.
[http://dx.doi.org/10.1176/appi.ajp.160.8.1516] [PMID: 12900317]
[12]
Tacke U. Fluoxetine: an alternative to the tricyclics in the treatment of major depression? Am J Med Sci 1989; 298(2): 126-9.
[http://dx.doi.org/10.1097/00000441-198908000-00010] [PMID: 2669476]
[13]
Gharby S, Harhar H, Guillaume D, Roudani A, et al. Chemical investigation of Nigella sativa L. seed oil produced in Morocco. J Saudi Soc Agric Sci 2015.
[http://dx.doi.org/10.1016/j.jssas.2013.12.001]
[14]
Perveen T, Haider S, Zuberi NA, Saleem S, Sadaf S, Batool Z. Increased 5-HT Levels Following Repeated Administration of Nigella sativa L. (Black Seed) Oil Produce Antidepressant Effects in Rats. Sci Pharm 2013; 82(1): 161-70.
[http://dx.doi.org/10.3797/scipharm.1304-19] [PMID: 24634848]
[15]
Willner P. The chronic mild stress (CMS) model of depression: History, evaluation and usage. Neurobiol Stress 2016; 6: 78-93.
[http://dx.doi.org/10.1016/j.ynstr.2016.08.002] [PMID: 28229111]
[16]
Porsolt RD, Anton G, Blavet N, Jalfre M. Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol 1978; 47(4): 379-91.
[http://dx.doi.org/10.1016/0014-2999(78)90118-8] [PMID: 204499]
[17]
Zhao Z, Wang W, Guo H, Zhou D. Antidepressant-like effect of liquiritin from Glycyrrhiza uralensis in chronic variable stress induced depression model rats. Behav Brain Res 2008; 194(1): 108-3.
[18]
Hammen C, Kim EY, Eberhart NK, Brennan PA. Chronic and acute stress and the prediction of major depression in women. Depress Anxiety 2009; 26(8): 718-23.
[http://dx.doi.org/10.1002/da.20571] [PMID: 19496077]
[19]
Haleem DJ, Samad N, Perveen T, Haider S, Haleem MA. Role of serotonin-1A receptors in restraint-induced behavioral deficits and adaptation to repeated restraint stress in rats. Int J Neurosci 2007; 117(2): 243-57.
[http://dx.doi.org/10.1080/00207450500534084] [PMID: 17365111]
[20]
Zaoui A, Cherrah Y, Mahassini N, Alaoui K, Amarouch H, Hassar M. Acute and chronic toxicity of Nigella sativa fixed oil. Phytomedicine 2002; 9(1): 69-74.
[http://dx.doi.org/10.1078/0944-7113-00084] [PMID: 11924767]
[21]
El khasmi M A, Issaoub Allah M, Farh F, et al. Effet de l’huile fixe de la nigelle (Nigella sativa L.) sur le profil des androgènes chez le rat mâle. Phytothérapie 2011; 9(6): 338-42.
[22]
Hill MN, Hellemans KG, Verma P, Gorzalka BB, Weinberg J. Neurobiology of chronic mild stress: parallels to major depression. Neurosci Biobehav Rev 2012; 36(9): 2085-117.
[http://dx.doi.org/10.1016/j.neubiorev.2012.07.001] [PMID: 22776763]
[23]
Radley JJ, Morrison JH. Repeated stress and structural plasticity in the brain. Ageing Res Rev 2005; 4(2): 271-87.
[http://dx.doi.org/10.1016/j.arr.2005.03.004] [PMID: 15993654]
[24]
Liu B, Xu C, Wu X, et al. Icariin exerts an antidepressant effect in an unpredictable chronic mild stress model of depression in rats and is associated with the regulation of hippocampal neuroinflammation. Neuroscience 2015; 294: 193-205.
[http://dx.doi.org/10.1016/j.neuroscience.2015.02.053] [PMID: 25791226]
[25]
Lisowski P, Juszczak GR, Goscik J, Wieczorek M, Zwierzchowski L, Swiergiel AH. Effect of chronic mild stress on hippocampal transcriptome in mice selected for high and low stress-induced analgesia and displaying different emotional behaviors. Eur Neuropsychopharmacol 2011; 21(1): 45-62.
[http://dx.doi.org/10.1016/j.euroneuro.2010.08.004] [PMID: 20961740]
[26]
Elkhayat ES, Alorainy MS, El-Ashmawy IM, Fat’hi S. Potential Antidepressant Constituents of Nigella sativa Seeds. Pharmacogn Mag 2016; 12(Suppl. 1): S27-31.
[http://dx.doi.org/10.4103/0973-1296.176118] [PMID: 27041854]
[27]
Hosseini M, Zakeri S, Khoshdast S, et al. The effects of Nigella sativa hydro-alcoholic extract and thymoquinone on lipopolysaccharide - induced depression like behavior in rats. J Pharm Bioallied Sci 2012; 4(3): 219-25.
[http://dx.doi.org/10.4103/0975-7406.99052] [PMID: 22923964]
[28]
Aquib M, Najmi AK, Akhtar M. Antidepressant Effect of Thymoquinone in Animal Models of Depression. Drug Res (Stuttg) 2015; 65(9): 490-4.
[PMID: 25207705]
[29]
Farkhondeh T, Samarghandian S, Shahri AMP, Samini F. The Neuroprotective Effects of Thymoquinone: A Review. Dose Response 2018; 16(2)
[30]
Norouzi F, Abareshi A, Anaeigoudari A, et al. The effects of Nigella sativa on sickness behavior induced by lipopolysaccharide in male Wistar rats. Avicenna J Phytomed 2016; 6(1): 104-16.
[PMID: 27247927]
[31]
Wang W, Shi W, Qian H, Deng X, Wang T, Li W. Stellate ganglion block attenuates chronic stress induced depression in rats. PLoS One 2017; 12(8): e0183995.
[http://dx.doi.org/10.1371/journal.pone.0183995] [PMID: 28859148]
[32]
Alam M, Najmi A K, Ahmad I, et al. Formulation and evaluation of nano lipid formulation containing CNS acting drug: molecular docking, in-vitro assessment and bioactivity detail in rats. Artificial cells, nanomedicine, and biotechnology 2018; 46(sup2): 46-57.
[33]
Seghatoleslam M, Alipour F, Shafieian R, et al. The effects of Nigella sativa on neural damage after pentylenetetrazole induced seizures in rats. Journal of Traditional and Complementary Medicine 2016; 6: 262-8.
[34]
Hobbenaghi R, Javanbakht J, Sadeghzadeh Sh, et al. Neuroprotective effects of Nigella sativa extract on cell death in hippocampal neurons following experimental global cerebral ischemia-reperfusion injury in rats. J Neurol Sci 2014; 337(1-2): 74-9.
[http://dx.doi.org/10.1016/j.jns.2013.11.019] [PMID: 24314720]
[35]
Asiaei F, Fazel A, Rajabzadeh AA, Hosseini M, Beheshti F, Seghatoleslam M. Neuroprotective effects of Nigella sativa extract upon the hippocampus in PTU-induced hypothyroidism juvenile rats: A stereological study Metabolic Brain Disease. 2017; 32(5): 1755-176536.
[36]
Akhtar M, Imam SS, Afroz Ahmad M, Najmi AK, Mujeeb M, Aqil M. Neuroprotective effects of chloroform and petroleum ether extracts of Nigella sativa seeds in stroke model of rat. J Pharm Bioallied Sci 2017; 5(2): 119-25.
[37]
Kanter M. Nigella sativa and derived thymoquinone prevents hippocampal neurodegeneration after chronic toluene exposure in rats. Neurochem Res 2008; 33(3): 579-88.
[http://dx.doi.org/10.1007/s11064-007-9481-z] [PMID: 17929168]
[38]
Mohd Yusoff NL, Sahak MKA, Tiong SYX, Hasan Adli DS. Neuronal cell count and morphometric study of hippocampal CA1 pyramidal neurons after chronic Nigella sativa administration. Malaysian Journal of Microscopy 2017; 13(1)
[39]
Alam M, Zameer S, Najmi AK, Ahmad FJ, Imam SS, Akhtar M. Thymoquinone Loaded Solid Lipid Nanoparticles Demonstrated Antidepressant-Like Activity in Rats via Indoleamine 2, 3- Dioxygenase Pathway. Drug Res (Stuttg) 2020; 70(5): 206-13.
[http://dx.doi.org/10.1055/a-1131-7793] [PMID: 32198742]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy