Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Research Article

Neuropharmacological Activity of the New Piperazine Derivative 2-(4-((1- Phenyl-1H-Pyrazol-4-yl)Methyl)Piperazin-1-yl)Ethyl Acetate is Modulated by Serotonergic and GABAergic Pathways

Author(s): Lorena de Souza Almeida, Ianca Gontijo Cavalcante Santana, Lorrane Kelle da Silva Moreira, Larissa Córdova Turones, Germán Sanz, Boniek G. Vaz, Flávio S. de Carvalho, Luciano M. Lião, Ricardo Menegatti, Elson Alves Costa* and Adriane Ferreira de Brito

Volume 21, Issue 6, 2022

Published on: 18 November, 2021

Page: [520 - 532] Pages: 13

DOI: 10.2174/1871527320666211112173233

Price: $65

Abstract

Background: Pharmacological treatments for mental disorders, such as anxiety and depression, present several limitations and adverse effects. Therefore, new pharmacotherapy with anxiolytic and antidepressant potential is necessary, and the study of compounds capable of interacting with more than one pharmacological target may provide new therapeutic options.

Objectives: In this study, we proposed the design, synthesis of a new compound, 2-(4-((1- phenyl-1H-pyrazol-4-yl)methyl)piperazin-1-yl)ethyl acetate (LQFM192), pharmacological evaluation of its anxiolytic-like and antidepressant-like activities, as well as the possible mechanisms of action involved.

Methods: Administration of LQFM192 was carried out prior to the exposure of male Swiss mice to behavioral tests, such as the elevated plus-maze and forced swimming test. The involvement of the serotonergic system was studied by pretreatment with WAY-100635 or p-chlorophenylalanine (PCPA) and the involvement of the benzodiazepine site of the GABAA receptor by pretreatment with flumazenil.

Results: The treatment with LQFM192 at doses of 54 and 162 μmol/kg demonstrated anxiolyticlike activity that was blocked by WAY-100635, PCPA, and flumazenil pretreatments. The potential antidepressant-like activity was visualized at the same doses and blocked by WAY-100635 and PCPA.

Conclusion: In summary, the anxiolytic-like activity of LQFM192 is mediated by the serotonergic system and the benzodiazepine site of the GABAA receptor, and the antidepressant-like activity through the serotonergic system.

Keywords: Anxiety, depression, behavioral testing, serotonin, 5-HT1A receptor, GABAA receptor.

[1]
APA - American Psychiatric Association. Diagnostic and statistical manual of mental disorders. (5th ed.), Arlington, VA: American Psychiatric Publishing In: 2014.
[2]
Rocha SV, de Almeida MM, de Araújo TM, Virtuoso JS Jr. Prevalence of common mental disorders among the residents of urban areas in Feira de Santana, Bahia. Rev Bras Epidemiol 2010; 13(4): 630-40.
[http://dx.doi.org/10.1590/S1415-790X2010000400008] [PMID: 21180852]
[3]
Mathew SJ, Price RB, Charney DS. Recent advances in the neurobiology of anxiety disorders: implications for novel therapeutics. Am J Med Genet C Semin Med Genet 2008; 148C(2): 89-98.
[http://dx.doi.org/10.1002/ajmg.c.30172] [PMID: 18412102]
[4]
Martin EI, Ressler KJ, Binder E, Nemeroff CB. The neurobiology of anxiety disorders: brain imaging, genetics, and psychoneuroendocrinology. Psychiatr Clin North Am 2009; 32(3): 549-75.
[http://dx.doi.org/10.1016/j.psc.2009.05.004] [PMID: 19716990]
[5]
Nutt D, Argyropoulos S, Hood S, Potokar J. Generalized anxiety disorder: A comorbid disease. Eur Neuropsychopharmacol 2006; 16(Suppl. 2): S109-18.
[http://dx.doi.org/10.1016/j.euroneuro.2006.04.003] [PMID: 16737802]
[6]
Taylor C, Fricker AD, Devi LA, Gomes I. Mechanisms of action of antidepressants: from neurotransmitter systems to signaling pathways. Cell Signal 2005; 17(5): 549-57.
[http://dx.doi.org/10.1016/j.cellsig.2004.12.007] [PMID: 15683730]
[7]
Bandelow B, Michaelis S, Wedekind D. Treatment of anxiety disorders. Dialogues Clin Neurosci 2017; 19(2): 93-107.
[http://dx.doi.org/10.31887/DCNS.2017.19.2/bbandelow] [PMID: 28867934]
[8]
Moreno RA, Moreno DH, Soares MBM. Psicofarmacologia de antidepressivos. Rev Bras Psiquiatr 1999; 21: 24-40.
[http://dx.doi.org/10.1590/S1516-44461999000500006]
[9]
Brito AF, Moreira LKS, Menegatti R, Costa EA. Piperazine derivatives with central pharmacological activity used as therapeutic tools. Fundam Clin Pharmacol 2019; 33(1): 13-24.
[http://dx.doi.org/10.1111/fcp.12408] [PMID: 30151922]
[10]
Brito AF, Fajemiroye JO, Neri HFS, et al. Anxiolytic-like effect of 2-(4-((1-phenyl-1H-pyrazol-4-yl)methyl)piperazin-1-yl)ethan-1-ol is mediated through the benzodiazepine and nicotinic pathways. Chem Biol Drug Des 2017; 90(3): 432-42.
[http://dx.doi.org/10.1111/cbdd.12961] [PMID: 28160425]
[11]
Sood A, Warren Beach J, Webster SJ, Terry AV, Buccafusco JJ. The effects of JWB1-84-1 on memory-related task performance by amyloid Abeta transgenic mice and by young and aged monkeys. Neuropharmacology 2007; 53(5): 588-600.
[http://dx.doi.org/10.1016/j.neuropharm.2007.06.028] [PMID: 17698153]
[12]
Lister RG. The use of a plus-maze to measure anxiety in the mouse. Psychopharmacology (Berl) 1987; 92(2): 180-5.
[http://dx.doi.org/10.1007/BF00177912] [PMID: 3110839]
[13]
Pellow S, Chopin P, File SE, Briley M. Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 1985; 14(3): 149-67.
[http://dx.doi.org/10.1016/0165-0270(85)90031-7] [PMID: 2864480]
[14]
Porsolt RD, Le Pichon M, Jalfre M. Depression: a new animal model sensitive to antidepressant treatments. Nature 1977; 266(5604): 730-2.
[http://dx.doi.org/10.1038/266730a0] [PMID: 559941]
[15]
Finar I, Hurlock R. The preparation of some trinitrophenylpyrazoles. J Chem Soc 1957; 3024-3027
[http://dx.doi.org/10.1039/jr9570003024]
[16]
De Oliveira CHA, Mairink LM, Pazini F, et al. Chemoselective and regiospecific formylation of 1-phenyl-1H-pyrazoles through the Duff reaction. Synth Commun 2013; 43: 1633-9.
[http://dx.doi.org/10.1080/00397911.2012.657764]
[17]
Luo G, Mattson GK, Bruce MA, et al. Isosteric N-arylpiperazine replacements in a series of dihydropyridine NPY1 receptor antagonists. Bioorg Med Chem Lett 2004; 14(24): 5975-8.
[http://dx.doi.org/10.1016/j.bmcl.2004.10.005] [PMID: 15546711]
[18]
Lugemwa FN, Shaikh K, Hochstedt E. Facile and efficient acetylation of primary alcohols and phenols with acetic anhydride catalyzed by dried sodium bicarbonate. Catalysts 2013; 3(4): 954-65.
[http://dx.doi.org/10.3390/catal3040954]
[19]
Rathi AK, Syed R, Shin HS, Patel RV. Piperazine derivatives for therapeutic use: a patent review (2010-present). Expert Opin Ther Pat 2016; 26(7): 777-97.
[http://dx.doi.org/10.1080/13543776.2016.1189902] [PMID: 27177234]
[20]
Galdino PM, de Oliveira DR, Florentino IF, et al. Involvement of the monoamine system in antidepressant-like properties of 4-(1-phenyl-1h-pyrazol-4-ylmethyl)-piperazine-1-carboxylic acid ethyl ester. Life Sci 2015; 143: 187-93.
[http://dx.doi.org/10.1016/j.lfs.2015.11.009] [PMID: 26569034]
[21]
Belzung C, Griebel G. Measuring normal and pathological anxiety-like behaviour in mice: A review. Behav Brain Res 2001; 125(1-2): 141-9.
[http://dx.doi.org/10.1016/S0166-4328(01)00291-1] [PMID: 11682105]
[22]
Roy V, Chapillon P, Jeljeli M, Caston J, Belzung C. Free versus forced exposure to an elevated plus-maze: evidence for new behavioral interpretations during test and retest. Psychopharmacology (Berl) 2009; 203(1): 131-41.
[http://dx.doi.org/10.1007/s00213-008-1378-2] [PMID: 18998112]
[23]
Carobrez AP, Bertoglio LJ. Ethological and temporal analyses of anxiety-like behavior: the elevated plus-maze model 20 years on. Neurosci Biobehav Rev 2005; 29(8): 1193-205.
[http://dx.doi.org/10.1016/j.neubiorev.2005.04.017] [PMID: 16084592]
[24]
Bourin M, Petit-Demoulière B, Dhonnchadha BN, Hascöet M. Animal models of anxiety in mice. Fundam Clin Pharmacol 2007; 21(6): 567-74.
[http://dx.doi.org/10.1111/j.1472-8206.2007.00526.x] [PMID: 18034657]
[25]
Griebel G, Rodgers RJ, Perrault G, Sanger DJ. Risk assessment behaviour: evaluation of utility in the study of 5-HT-related drugs in the rat elevated plus-maze test. Pharmacol Biochem Behav 1997; 57(4): 817-27.
[http://dx.doi.org/10.1016/S0091-3057(96)00402-9] [PMID: 9259011]
[26]
Nuss P. Anxiety disorders and GABA neurotransmission: A disturbance of modulation. Neuropsychiatr Dis Treat 2015; 11: 165-75.
[http://dx.doi.org/10.2147/NDT.S58841] [PMID: 25653526]
[27]
Ciranna L. Serotonin as a modulator of glutamate- and GABA-mediated neurotransmission: implications in physiological functions and in pathology. Curr Neuropharmacol 2006; 4(2): 101-14.
[http://dx.doi.org/10.2174/157015906776359540] [PMID: 18615128]
[28]
Didier M, Belin MF, Aguera M, Buda M, Pujol JF. Pharmacological effects of GABA on serotonin metabolism in the rat brain. Neurochem Int 1985; 7(3): 481-9.
[http://dx.doi.org/10.1016/0197-0186(85)90172-X] [PMID: 20492951]
[29]
Żmudzka E, Sałaciak K, Sapa J, Pytka K. Serotonin receptors in depression and anxiety: Insights from animal studies. Life Sci 2018; 210: 106-24.
[http://dx.doi.org/10.1016/j.lfs.2018.08.050] [PMID: 30144453]
[30]
Graeff FG, Guimarães FS, De Andrade TG, Deakin JF. Role of 5-HT in stress, anxiety, and depression. Pharmacol Biochem Behav 1996; 54(1): 129-41.
[http://dx.doi.org/10.1016/0091-3057(95)02135-3] [PMID: 8728550]
[31]
O’Leary OF, Bechtholt AJ, Crowley JJ, Hill TE, Page ME, Lucki I. Depletion of serotonin and catecholamines block the acute behavioral response to different classes of antidepressant drugs in the mouse tail suspension test. Psychopharmacology (Berl) 2007; 192(3): 357-71.
[http://dx.doi.org/10.1007/s00213-007-0728-9] [PMID: 17318507]
[32]
Coplan JD, Aaronson CJ, Panthangi V, Kim Y. Treating comorbid anxiety and depression: Psychosocial and pharmacological approaches. World J Psychiatry 2015; 5(4): 366-78.
[http://dx.doi.org/10.5498/wjp.v5.i4.366] [PMID: 26740928]
[33]
World Health Organization Depression and Other Common Mental Disorders: Global Health Estimates World Health Organization, Ginebra. 2017.
[34]
Bogdanova OV, Kanekar S, D’Anci KE, Renshaw PF. Factors influencing behavior in the forced swim test. Physiol Behav 2013; 118: 227-39.
[http://dx.doi.org/10.1016/j.physbeh.2013.05.012] [PMID: 23685235]
[35]
Nestler EJ, Hyman SE. Animal models of neuropsychiatric disorders. Nat Neurosci 2010; 13(10): 1161-9.
[http://dx.doi.org/10.1038/nn.2647] [PMID: 20877280]
[36]
de Kloet ER, Molendijk ML. Coping with the Forced Swim Stressor: Towards Understanding an Adaptive Mechanism. Neural Plast 2016; 2016: 6503162.
[http://dx.doi.org/10.1155/2016/6503162] [PMID: 27034848]
[37]
Cowen PJ, Browning M. What has serotonin to do with depression? World Psychiatry 2015; 14(2): 158-60.
[http://dx.doi.org/10.1002/wps.20229] [PMID: 26043325]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy