Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Gallic Acid: A Dietary Polyphenol that Exhibits Anti-neoplastic Activities by Modulating Multiple Oncogenic Targets

Author(s): Hardeep Singh Tuli*, Hiral Mistry, Ginpreet Kaur, Diwakar Aggarwal, Vivek Kumar Garg, Sonam Mittal, Mükerrem Betül Yerer, Katrin Sak and Md Asaduzzaman Khan

Volume 22, Issue 3, 2022

Published on: 31 December, 2021

Page: [499 - 514] Pages: 16

DOI: 10.2174/1871520621666211119085834

Price: $65

Abstract

Phytochemicals are being used for thousands of years to prevent dreadful malignancy. Side effects of existing allopathic treatment have also initiated intense research in the field of bioactive phytochemicals. Gallic acid, a natural polyphenolic compound, exists freely as well as in polymeric forms. The anti-cancer properties of gallic acid are indomitable by a variety of cellular pathways such as induction of programmed cell death, cell cycle apprehension, reticence of vasculature and tumor migration, and inflammation. Furthermore, gallic acid is found to show synergism with other existing chemotherapeutic drugs. Therefore, the antineoplastic role of gallic acid suggests its promising therapeutic candidature in the near future. The present review describes all these aspects of gallic acid at a single platform. In addition nanotechnology-mediated approaches are also discussed to enhance bioavailability and therapeutic efficacy.

Keywords: Gallic acid, apoptosis, anti-proliferation, anti-angiogenesis, anti-metastasis, dietary polyphenol.

Graphical Abstract

[1]
Tsao, R. Chemistry and biochemistry of dietary polyphenols. Nutrients, 2010, 2(12), 1231-1246.
[http://dx.doi.org/10.3390/nu2121231] [PMID: 22254006]
[2]
Dai, X.; Zhang, J.; Arfuso, F.; Chinnathambi, A.; Zayed, M.E.; Alharbi, S.A.; Kumar, A.P.; Ahn, K.S.; Sethi, G. Targeting TNF-Related Apoptosis-Inducing Ligand (TRAIL) receptor by natural products as a potential therapeutic approach for cancer therapy. Exp. Biol. Med. (Maywood), 2015, 240(6), 760-773.
[http://dx.doi.org/10.1177/1535370215579167] [PMID: 25854879]
[3]
Prasannan, R.; Kalesh, K.A.; Shanmugam, M.K.; Nachiyappan, A.; Ramachandran, L.; Nguyen, A.H.; Kumar, A.P.; Lakshmanan, M.; Ahn, K.S.; Sethi, G. Key cell signaling pathways modulated by zerumbone: role in the prevention and treatment of cancer. Biochem. Pharmacol., 2012, 84(10), 1268-1276.
[http://dx.doi.org/10.1016/j.bcp.2012.07.015] [PMID: 22842489]
[4]
Deng, S.; Shanmugam, M.K.; Kumar, A.P.; Yap, C.T.; Sethi, G.; Bishayee, A. Targeting autophagy using natural compounds for cancer prevention and therapy. Cancer, 2019, 125(8), 1228-1246.
[http://dx.doi.org/10.1002/cncr.31978] [PMID: 30748003]
[5]
Tan, S.M.L.; Li, F.; Rajendran, P.; Kumar, A.P.; Hui, K.M.; Sethi, G. Identification of β-escin as a novel inhibitor of signal transducer and activator of transcription 3/Janus-activated kinase 2 signaling pathway that suppresses proliferation and induces apoptosis in human hepatocellular carcinoma cells. J. Pharmacol. Exp. Ther., 2010, 334(1), 285-293.
[http://dx.doi.org/10.1124/jpet.110.165498] [PMID: 20378717]
[6]
Kim, C.; Cho, S.K.; Kapoor, S.; Kumar, A.; Vali, S.; Abbasi, T.; Kim, S.H.; Sethi, G.; Ahn, K.S. β-Caryophyllene oxide inhibits constitutive and inducible STAT3 signaling pathway through induction of the SHP-1 protein tyrosine phosphatase. Mol. Carcinog., 2014, 53(10), 793-806.
[http://dx.doi.org/10.1002/mc.22035] [PMID: 23765383]
[7]
Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The role of polyphenols in human health and food systems: a mini-review. Front. Nutr., 2018, 5, 87.
[http://dx.doi.org/10.3389/fnut.2018.00087] [PMID: 30298133]
[8]
Li, A.N.; Li, S.; Zhang, Y.J.; Xu, X.R.; Chen, Y.M.; Li, H.B. Resources and biological activities of natural polyphenols. Nutrients, 2014, 6(12), 6020-6047.
[http://dx.doi.org/10.3390/nu6126020] [PMID: 25533011]
[9]
Daglia, M.; Di Lorenzo, A.; Nabavi, S.F.; Talas, Z.S.; Nabavi, S.M. Polyphenols: well beyond the antioxidant capacity: gallic acid and related compounds as neuroprotective agents: you are what you eat! Curr. Pharm. Biotechnol., 2014, 15(4), 362-372.
[http://dx.doi.org/10.2174/138920101504140825120737] [PMID: 24938889]
[10]
Locatelli, C.; Filippin-Monteiro, F.B.; Creczynski-Pasa, T.B. Alkyl esters of gallic acid as anticancer agents: a review. Eur. J. Med. Chem., 2013, 60, 233-239.
[http://dx.doi.org/10.1016/j.ejmech.2012.10.056] [PMID: 23291333]
[11]
Lan, L.; Wang, H.; Yang, R.; Liu, F.; Bi, Q.; Wang, S.; Wei, X.; Yan, H.; Su, R. R2-8018 reduces the proliferation and migration of non-small cell lung cancer cells by disturbing transactivation between M3R and EGFR. Life Sci., 2019, 234116742
[http://dx.doi.org/10.1016/j.lfs.2019.116742] [PMID: 31401315]
[12]
Xiang, L.P.; Wang, A.; Ye, J.H.; Zheng, X.Q.; Polito, C.A.; Lu, J.L.; Li, Q.S.; Liang, Y.R. Suppressive effects of tea catechins on breast cancer. Nutrients, 2016, 8(8), 458.
[http://dx.doi.org/10.3390/nu8080458] [PMID: 27483305]
[13]
Sánchez-Carranza, J.N.; Díaz, J.F.; Redondo-Horcajo, M.; Barasoain, I.; Alvarez, L.; Lastres, P.; Romero-Estrada, A.; Aller, P.; González-Maya, L. Gallic acid sensitizes paclitaxel-resistant human ovarian carcinoma cells through an increase in reactive oxygen species and subsequent downregulation of ERK activation. Oncol. Rep., 2018, 39(6), 3007-3014.
[PMID: 29693189]
[14]
Jang, Y.G.; Ko, E.B.; Choi, K.C. Gallic acid, a phenolic acid, hinders the progression of prostate cancer by inhibition of histone deacetylase 1 and 2 expression. J. Nutr. Biochem., 2020, 84108444
[http://dx.doi.org/10.1016/j.jnutbio.2020.108444] [PMID: 32615369]
[15]
Yoshioka, K.; Kataoka, T.; Hayashi, T.; Hasegawa, M.; Ishi, Y.; Hibasami, H. Induction of apoptosis by gallic acid in human stomach cancer KATO III and colon adenocarcinoma COLO 205 cell lines. Oncol. Rep., 2000, 7(6), 1221-1223.
[http://dx.doi.org/10.3892/or.7.6.1221] [PMID: 11032918]
[16]
Jaganathan, S.K.; Supriyanto, E.; Mandal, M. Events associated with apoptotic effect of p-Coumaric acid in HCT-15 colon cancer cells. World J. Gastroenterol., 2013, 19(43), 7726-7734.
[http://dx.doi.org/10.3748/wjg.v19.i43.7726] [PMID: 24282361]
[17]
Sguizzato, M.; Valacchi, G.; Pecorelli, A.; Boldrini, P.; Simelière, F.; Huang, N.; Cortesi, R.; Esposito, E. Gallic acid loaded poloxamer gel as new adjuvant strategy for melanoma: a preliminary study. Colloids Surf. B Biointerfaces, 2020, 185110613
[http://dx.doi.org/10.1016/j.colsurfb.2019.110613] [PMID: 31715454]
[18]
Alfei, S.; Marengo, B.; Zuccari, G.; Turrini, F.; Domenicotti, C. Dendrimer nanodevices and gallic acid as novel strategies to fight chemoresistance in neuroblastoma cells. Nanomaterials (Basel), 2020, 10(6), 1243.
[http://dx.doi.org/10.3390/nano10061243] [PMID: 32604768]
[19]
Al Zahrani, N.A.; El-Shishtawy, R.M.; Asiri, A.M. Recent developments of gallic acid derivatives and their hybrids in medicinal chemistry: a review. Eur. J. Med. Chem., 2020, 204112609
[http://dx.doi.org/10.1016/j.ejmech.2020.112609] [PMID: 32731188]
[20]
Liu, Y.G.; Zheng, X.L.; Liu, F.M. The mechanism and inhibitory effect of recombinant human P53 adenovirus injection combined with paclitaxel on human cervical cancer cell HeLa. Eur. Rev. Med. Pharmacol. Sci., 2015, 19(6), 1037-1042.
[PMID: 25855930]
[21]
Ow, Y-Y.; Stupans, I. Gallic acid and gallic acid derivatives: effects on drug metabolizing enzymes. Curr. Drug Metab., 2003, 4(3), 241-248.
[http://dx.doi.org/10.2174/1389200033489479] [PMID: 12769668]
[22]
Kahkeshani, N.; Farzaei, F.; Fotouhi, M.; Alavi, S.S.; Bahramsoltani, R.; Naseri, R.; Momtaz, S.; Abbasabadi, Z.; Rahimi, R.; Farzaei, M.H.; Bishayee, A. Pharmacological effects of gallic acid in health and diseases: a mechanistic review. Iran. J. Basic Med. Sci., 2019, 22(3), 225-237.
[PMID: 31156781]
[23]
Barnes, R.C.; Krenek, K.A.; Meibohm, B.; Mertens-Talcott, S.U.; Talcott, S.T. Urinary metabolites from mango (Mangifera indica L. cv. Keitt) galloyl derivatives and in vitro hydrolysis of gallotannins in physiological conditions. Mol. Nutr. Food Res., 2016, 60(3), 542-550.
[http://dx.doi.org/10.1002/mnfr.201500706] [PMID: 26640139]
[24]
Shahrzad, S.; Bitsch, I. Determination of gallic acid and its metabolites in human plasma and urine by high-performance liquid chromatography. J. Chromatogr. B Biomed. Sci. Appl., 1998, 705(1), 87-95.
[http://dx.doi.org/10.1016/S0378-4347(97)00487-8] [PMID: 9498674]
[25]
Booth, A.N.; Masri, M.S.; Robbins, D.J.; Emerson, O.H.; Jones, F.T.; De Eds, F. The metabolic fate of gallic acid and related compounds. J. Biol. Chem., 1959, 234(11), 3014-3016.
[http://dx.doi.org/10.1016/S0021-9258(18)69715-7] [PMID: 13802679]
[26]
Shahrzad, S.; Aoyagi, K.; Winter, A.; Koyama, A.; Bitsch, I. Pharmacokinetics of gallic acid and its relative bioavailability from tea in healthy humans. J. Nutr., 2001, 131(4), 1207-1210.
[http://dx.doi.org/10.1093/jn/131.4.1207] [PMID: 11285327]
[27]
Hodgson, J.M.; Morton, L.W.; Puddey, I.B.; Beilin, L.J.; Croft, K.D. Gallic acid metabolites are markers of black tea intake in humans. J. Agric. Food Chem., 2000, 48(6), 2276-2280.
[http://dx.doi.org/10.1021/jf000089s] [PMID: 10888536]
[28]
Inoue, M.; Sakaguchi, N.; Isuzugawa, K.; Tani, H.; Ogihara, Y. Role of reactive oxygen species in gallic acid-induced apoptosis. Biol. Pharm. Bull., 2000, 23(10), 1153-1157.
[http://dx.doi.org/10.1248/bpb.23.1153] [PMID: 11041242]
[29]
Sakaguchi, N.; Inoue, M.; Ogihara, Y. Reactive oxygen species and intracellular Ca2+, common signals for apoptosis induced by gallic acid. Biochem. Pharmacol., 1998, 55(12), 1973-1981.
[http://dx.doi.org/10.1016/S0006-2952(98)00041-0] [PMID: 9714317]
[30]
Kirtonia, A.; Sethi, G.; Garg, M. The multifaceted role of reactive oxygen species in tumorigenesis. Cell. Mol. Life Sci., 2020, 77(22), 4459-4483.
[http://dx.doi.org/10.1007/s00018-020-03536-5] [PMID: 32358622]
[31]
Aggarwal, V.; Tuli, H.S.; Varol, A.; Thakral, F.; Yerer, M.B.; Sak, K.; Varol, M.; Jain, A.; Khan, M.A.; Sethi, G. Role of reactive oxygen species in cancer progression: Molecular mechanisms and recent advancements. Biomolecules, 2019, 9(11), 9.
[http://dx.doi.org/10.3390/biom9110735] [PMID: 31766246]
[32]
Lo, C.; Lai, T-Y.; Yang, J-H.; Yang, J-S.; Ma, Y-S.; Weng, S-W.; Chen, Y-Y.; Lin, J.G.; Chung, J.G. Gallic acid induces apoptosis in A375.S2 human melanoma cells through caspase-dependent and -independent pathways. Int. J. Oncol., 2010, 37(2), 377-385.
[PMID: 20596665]
[33]
Rezaei-Seresht, H.; Cheshomi, H.; Falanji, F.; Movahedi-Motlagh, F.; Hashemian, M.; Mireskandari, E. Cytotoxic activity of caffeic acid and gallic acid against MCF-7 human breast cancer cells: an in silico and in vitro study. Avicenna J. Phytomed., 2019, 9(6), 574-586.
[PMID: 31763216]
[34]
Moghtaderi, H.; Sepehri, H.; Delphi, L.; Attari, F. Gallic acid and curcumin induce cytotoxicity and apoptosis in human breast cancer cell MDA-MB-231. Bioimpacts, 2018, 8(3), 185-194.
[http://dx.doi.org/10.15171/bi.2018.21] [PMID: 30211078]
[35]
Tsai, C.L.; Chiu, Y.M.; Ho, T.Y.; Hsieh, C.T.; Shieh, D.C.; Lee, Y.J.; Tsay, G.J.; Wu, Y.Y. Gallic acid induces apoptosis in human gastric adenocarcinoma cells. Anticancer Res., 2018, 38(4), 2057-2067.
[PMID: 29599323]
[36]
Wang, R.; Ma, L.; Weng, D.; Yao, J.; Liu, X.; Jin, F. Gallic acid induces apoptosis and enhances the anticancer effects of cisplatin in human small cell lung cancer H446 cell line via the ROS-dependent mitochondrial apoptotic pathway. Oncol. Rep., 2016, 35(5), 3075-3083.
[http://dx.doi.org/10.3892/or.2016.4690] [PMID: 26987028]
[37]
Nam, B.; Rho, J.K.; Shin, D.M.; Son, J. Gallic acid induces apoptosis in EGFR-mutant non-small cell lung cancers by accelerating EGFR turnover. Bioorg. Med. Chem. Lett., 2016, 26(19), 4571-4575.
[http://dx.doi.org/10.1016/j.bmcl.2016.08.083] [PMID: 27597244]
[38]
Gu, R.; Zhang, M.; Meng, H.; Xu, D.; Xie, Y. Gallic acid targets acute myeloid leukemia via Akt/mTOR-dependent mitochondrial respiration inhibition. Biomed. Pharmacother., 2018, 105, 491-497.
[http://dx.doi.org/10.1016/j.biopha.2018.05.158] [PMID: 29883944]
[39]
Lu, Y.C.; Lin, M.L.; Su, H.L.; Chen, S.S. ER-dependent Ca++-mediated cytosolic ROS as an effector for induction of mitochondrial apoptotic and ATM-JNK signal pathways in gallic acid-treated human oral cancer cells. Anticancer Res., 2016, 36(2), 697-705.
[PMID: 26851027]
[40]
Lima, K.G.; Krause, G.C.; Schuster, A.D.; Catarina, A.V.; Basso, B.S.; De Mesquita, F.C.; Pedrazza, L.; Marczak, E.S.; Martha, B.A.; Nunes, F.B.; Chiela, E.C.F.; Jaeger, N.; Thomé, M.P.; Haute, G.V.; Dias, H.B.; Donadio, M.V.F.; De Oliveira, J.R. Gallic acid reduces cell growth by induction of apoptosis and reduction of IL-8 in HepG2 cells. Biomed. Pharmacother., 2016, 84, 1282-1290.
[http://dx.doi.org/10.1016/j.biopha.2016.10.048] [PMID: 27810785]
[41]
Hsieh, S.C.; Wu, C.C.; Hsu, S.L.; Yen, J.H. Molecular mechanisms of gallic acid-induced growth inhibition, apoptosis, and necrosis in hypertrophic scar fibroblasts. Life Sci., 2017, 179, 130-138.
[http://dx.doi.org/10.1016/j.lfs.2016.08.006] [PMID: 27515506]
[42]
Lee, H.L.; Lin, C.S.; Kao, S.H.; Chou, M.C. Gallic acid induces G1 phase arrest and apoptosis of triple-negative breast cancer cell MDA-MB-231 via p38 mitogen-activated protein kinase/p21/p27 axis. Anticancer Drugs, 2017, 28(10), 1150-1156.
[http://dx.doi.org/10.1097/CAD.0000000000000565] [PMID: 28938245]
[43]
Hseu, Y.C.; Chen, S.C.; Lin, W.H.; Hung, D.Z.; Lin, M.K.; Kuo, Y.H.; Wang, M.T.; Cho, H.J.; Wang, L.; Yang, H.L. Toona sinensis (leaf extracts) inhibit vascular endothelial growth factor (VEGF)-induced angiogenesis in vascular endothelial cells. J. Ethnopharmacol., 2011, 134(1), 111-121.
[http://dx.doi.org/10.1016/j.jep.2010.11.058] [PMID: 21130856]
[44]
Ou, T.T.; Wang, C.J.; Lee, Y.S.; Wu, C.H.; Lee, H.J. Gallic acid induces G2/M phase cell cycle arrest via regulating 14-3-3β release from Cdc25C and Chk2 activation in human bladder transitional carcinoma cells. Mol. Nutr. Food Res., 2010, 54(12), 1781-1790.
[http://dx.doi.org/10.1002/mnfr.201000096] [PMID: 20564478]
[45]
Jin, L.; Piao, Z.H.; Liu, C.P.; Sun, S.; Liu, B.; Kim, G.R.; Choi, S.Y.; Ryu, Y.; Kee, H.J.; Jeong, M.H. Gallic acid attenuates calcium calmodulin-dependent kinase II-induced apoptosis in spontaneously hypertensive rats. J. Cell. Mol. Med., 2018, 22(3), 1517-1526.
[http://dx.doi.org/10.1111/jcmm.13419] [PMID: 29266709]
[46]
Mehraban, Z.; Ghaffari Novin, M.; Golmohammadi, M.G.; Sagha, M.; Pouriran, K.; Nazarian, H. Protective effect of gallic acid on apoptosis of sperm and in vitro fertilization in adult male mice treated with cyclophosphamide. J. Cell. Biochem., 2019, 120(10), 17250-17257.
[http://dx.doi.org/10.1002/jcb.28987] [PMID: 31135067]
[47]
Chandrasekhar, Y.; Phani Kumar, G.; Ramya, E.M.; Anilakumar, K.R. Gallic acid protects 6-OHDA induced neurotoxicity by attenuating oxidative stress in human dopaminergic cell line. Neurochem. Res., 2018, 43(6), 1150-1160.
[http://dx.doi.org/10.1007/s11064-018-2530-y] [PMID: 29671234]
[48]
Shanmugam, M.K.; Warrier, S.; Kumar, A.P.; Sethi, G.; Arfuso, F. Potential role of natural compounds as anti-angiogenic agents in cancer. Curr. Vasc. Pharmacol., 2017, 15(6), 503-519.
[http://dx.doi.org/10.2174/1570161115666170713094319] [PMID: 28707601]
[49]
Siveen, K.S.; Ahn, K.S.; Ong, T.H.; Shanmugam, M.K.; Li, F.; Yap, W.N.; Kumar, A.P.; Fong, C.W.; Tergaonkar, V.; Hui, K.M.; Sethi, G. Y-tocotrienol inhibits angiogenesis-dependent growth of human hepatocellular carcinoma through abrogation of AKT/mTOR pathway in an orthotopic mouse model. Oncotarget, 2014, 5(7), 1897-1911.
[http://dx.doi.org/10.18632/oncotarget.1876] [PMID: 24722367]
[50]
He, Z.; Chen, A.Y.; Rojanasakul, Y.; Rankin, G.O.; Chen, Y.C. Gallic acid, a phenolic compound, exerts anti-angiogenic effects via the PTEN/AKT/HIF-1α/VEGF signaling pathway in ovarian cancer cells. Oncol. Rep., 2016, 35(1), 291-297.
[http://dx.doi.org/10.3892/or.2015.4354] [PMID: 26530725]
[51]
Wang, X.; Liu, K.; Ruan, M.; Yang, J.; Gao, Z. Gallic acid inhibits fibroblast growth and migration in keloids through the AKT/ERK signaling pathway. Acta Biochim. Biophys. Sin. (Shanghai), 2018, 50(11), 1114-1120.
[http://dx.doi.org/10.1093/abbs/gmy115] [PMID: 30265275]
[52]
Tuli, H.S.; Kashyap, D.; Bedi, S.K.; Kumar, P.; Kumar, G.; Sandhu, S.S. Molecular aspects of Metal Oxide Nanoparticle (MO-NPs) mediated pharmacological effects. Life Sci., 2015, 143, 71-79.
[http://dx.doi.org/10.1016/j.lfs.2015.10.021] [PMID: 26524969]
[53]
Puar, Y.R.; Shanmugam, M.K.; Fan, L.; Arfuso, F.; Sethi, G.; Tergaonkar, V. Evidence for the involvement of the master transcription factor NF-κB in cancer initiation and progression. Biomedicines, 2018, 6(3), 6.
[http://dx.doi.org/10.3390/biomedicines6030082] [PMID: 30060453]
[54]
Kashyap, D.; Kumar, G.; Sharma, A.; Sak, K.; Tuli, H.S.; Mukherjee, T.K. Mechanistic insight into carnosol-mediated pharmacological effects: recent trends and advancements. Life Sci., 2017, 169, 27-36.
[http://dx.doi.org/10.1016/j.lfs.2016.11.013] [PMID: 27871947]
[55]
Kashyap, D.; Mondal, R.; Tuli, H.S.; Kumar, G.; Sharma, A.K. Molecular targets of gambogic acid in cancer: recent trends and advancements. Tumour Biol., 2016, 37(10), 12915-12925.
[http://dx.doi.org/10.1007/s13277-016-5194-8] [PMID: 27448303]
[56]
Kumar, G.; Tuli, H.S.; Mittal, S.; Shandilya, J.K.; Tiwari, A.; Sandhu, S.S. Isothiocyanates: a class of bioactive metabolites with chemopreventive potential. Tumour Biol., 2015, 36(6), 4005-4016.
[http://dx.doi.org/10.1007/s13277-015-3391-5] [PMID: 25835976]
[57]
Patel, S.M.; Nagulapalli Venkata, K.C.; Bhattacharyya, P. Potential of neem (Azadirachta indica L.) for prevention and treatment of oncologic diseases. Semin. Cancer Biol., 2016, 40-41, 100-115.
[58]
Shin, E.M.; Hay, H.S.; Lee, M.H.; Goh, J.N.; Tan, T.Z.; Sen, Y.P.; Lim, S.W.; Yousef, E.M.; Ong, H.T.; Thike, A.A.; Kong, X.; Wu, Z.; Mendoz, E.; Sun, W.; Salto-Tellez, M.; Lim, C.T.; Lobie, P.E.; Lim, Y.P.; Yap, C.T.; Zeng, Q.; Sethi, G.; Lee, M.B.; Tan, P.; Goh, B.C.; Miller, L.D.; Thiery, J.P.; Zhu, T.; Gaboury, L.; Tan, P.H.; Hui, K.M.; Yip, G.W.; Miyamoto, S.; Kumar, A.P.; Tergaonkar, V. DEAD-box helicase DP103 defines metastatic potential of human breast cancers. J. Clin. Invest., 2014, 124(9), 3807-3824.
[http://dx.doi.org/10.1172/JCI73451] [PMID: 25083991]
[59]
Lo, C.; Lai, T.Y.; Yang, J.S.; Yang, J.H.; Ma, Y.S.; Weng, S.W.; Lin, H.Y.; Chen, H.Y.; Lin, J.G.; Chung, J.G. Gallic acid inhibits the migration and invasion of A375.S2 human melanoma cells through the inhibition of matrix metalloproteinase-2 and Ras. Melanoma Res., 2011, 21(4), 267-273.
[http://dx.doi.org/10.1097/CMR.0b013e3283414444] [PMID: 21734530]
[60]
Liao, C.C.; Chen, S.C.; Huang, H.P.; Wang, C.J. Gallic acid inhibits bladder cancer cell proliferation and migration via regulating Fatty Acid Synthase (FAS). J. Food Drug Anal.,, 2018, 26(2), 620-627.
[http://dx.doi.org/10.1016/j.jfda.2017.06.006] [PMID: 29567231]
[61]
Ho, H.H.; Chang, C.S.; Ho, W.C.; Liao, S.Y.; Wu, C.H.; Wang, C.J. Anti-metastasis effects of gallic acid on gastric cancer cells involves inhibition of NF-kappaB activity and downregulation of PI3K/AKT/small GTPase signals. Food Chem. Toxicol., 2010, 48(8-9), 2508-2516.
[http://dx.doi.org/10.1016/j.fct.2010.06.024] [PMID: 20600540]
[62]
Zhao, B.; Hu, M. Gallic acid reduces cell viability, proliferation, invasion and angiogenesis in human cervical cancer cells. Oncol. Lett., 2013, 6(6), 1749-1755.
[http://dx.doi.org/10.3892/ol.2013.1632] [PMID: 24843386]
[63]
Chen, Y.J.; Lin, K.N.; Jhang, L.M.; Huang, C.H.; Lee, Y.C.; Chang, L.S. Gallic acid abolishes the EGFR/Src/Akt/Erk-mediated expression of matrix metalloproteinase-9 in MCF-7 breast cancer cells. Chem. Biol. Interact., 2016, 252, 131-140.
[http://dx.doi.org/10.1016/j.cbi.2016.04.025] [PMID: 27087131]
[64]
Pang, J.S.; Yen, J.H.; Wu, H.T.; Huang, S.T. Gallic acid inhibited matrix invasion and AP-1/ETS-1-mediated MMP-1 transcription in human nasopharyngeal carcinoma cells. Int. J. Mol. Sci., 2017, 18(7), 18.
[http://dx.doi.org/10.3390/ijms18071354] [PMID: 28672814]
[65]
Verma, S.; Singh, A.; Mishra, A. Gallic acid: molecular rival of cancer. Environ. Toxicol. Pharmacol., 2013, 35(3), 473-485.
[http://dx.doi.org/10.1016/j.etap.2013.02.011] [PMID: 23501608]
[66]
Santos, E.M.S.; da Rocha, R.G.; Santos, H.O.; Guimarães, T.A.; de Carvalho Fraga, C.A.; da Silveira, L.H.; Batista, P.R.; de Oliveira, P.S.L.; Melo, G.A.; Santos, S.H.; de Paula, A.M.B.; Guimarães, A.L.S.; Farias, L.C. Gallic acid modulates phenotypic behavior and gene expression in oral squamous cell carcinoma cells by interfering with leptin pathway. Pathol. Res. Pract., 2018, 214(1), 30-37.
[http://dx.doi.org/10.1016/j.prp.2017.11.022] [PMID: 29254802]
[67]
Avila-Carrasco, L.; Majano, P.; Sánchez-Toméro, J.A.; Selgas, R.; López-Cabrera, M.; Aguilera, A.; González Mateo, G. Natural plants compounds as modulators of epithelial-to-mesenchymal transition. Front. Pharmacol., 2019, 10, 715.
[http://dx.doi.org/10.3389/fphar.2019.00715] [PMID: 31417401]
[68]
Loh, C.Y.; Chai, J.Y.; Tang, T.F.; Wong, W.F.; Sethi, G.; Shanmugam, M.K.; Chong, P.P.; Looi, C.Y. The e-cadherin and n-cadherin switch in epithelial-to-mesenchymal transition: signaling, therapeutic implications, and challenges. Cells, 2019, 8(10), 1118.
[http://dx.doi.org/10.3390/cells8101118] [PMID: 31547193]
[69]
Yang, M.H.; Lee, J.H.; Ko, J.H.; Jung, S.H.; Sethi, G.; Ahn, K.S. Brassinin represses invasive potential of lung carcinoma cells through deactivation of PI3K/Akt/mTOR signaling cascade. Molecules, 2019, 24(8), 24.
[http://dx.doi.org/10.3390/molecules24081584] [PMID: 31013639]
[70]
Sunil Gowda, S.N.; Rajasowmiya, S.; Vadivel, V.; Banu Devi, S.; Celestin Jerald, A.; Marimuthu, S.; Devipriya, N. Gallic acid-coated sliver nanoparticle alters the expression of radiation-induced epithelial-mesenchymal transition in non-small lung cancer cells. Toxicol. In Vitro, 2018, 52, 170-177.
[http://dx.doi.org/10.1016/j.tiv.2018.06.015] [PMID: 29928970]
[71]
Sakagami, H.; Satoh, K. Prooxidant action of two antioxidants: ascorbic acid and gallic acid. Anticancer Res., 1997, 17(1A), 221-224.
[PMID: 9066655]
[72]
Yen, G.C.; Der Duh, P.; Tsai, H.L. Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid. Food Chem., 2002, 79, 307-313.
[http://dx.doi.org/10.1016/S0308-8146(02)00145-0]
[73]
Aruoma, O.I.; Murcia, A.; Butler, J. Evaluation of the antioxidant and prooxidant actions of gallic acid and its derivatives. J. Agric. Food Chem., 1993, 41, 1880-1885.
[http://dx.doi.org/10.1021/jf00035a014]
[74]
Long, L.H.; Clement, M.V.; Halliwell, B. Artifacts in cell culture: rapid generation of hydrogen peroxide on addition of (-)-epigallocatechin, (-)-epigallocatechin gallate, (+)-catechin, and quercetin to commonly used cell culture media. Biochem. Biophys. Res. Commun., 2000, 273(1), 50-53.
[http://dx.doi.org/10.1006/bbrc.2000.2895] [PMID: 10873562]
[75]
Lu, Y.; Jiang, F.; Jiang, H.; Wu, K.; Zheng, X.; Cai, Y.; Katakowski, M.; Chopp, M.; To, S.S. Gallic acid suppresses cell viability, proliferation, invasion and angiogenesis in human glioma cells. Eur. J. Pharmacol., 2010, 641(2-3), 102-107.
[http://dx.doi.org/10.1016/j.ejphar.2010.05.043] [PMID: 20553913]
[76]
Liao, C.L.; Lai, K.C.; Huang, A.C.; Yang, J.S.; Lin, J.J.; Wu, S.H.; Gibson Wood, W.; Lin, J.G.; Chung, J.G. Gallic acid inhibits migration and invasion in human osteosarcoma U-2 OS cells through suppressing the matrix metalloproteinase-2/-9, protein kinase B (PKB) and PKC signaling pathways. Food Chem. Toxicol., 2012, 50(5), 1734-1740.
[http://dx.doi.org/10.1016/j.fct.2012.02.033] [PMID: 22387266]
[77]
Benlloch, M.; Ortega, A.; Ferrer, P.; Segarra, R.; Obrador, E.; Asensi, M.; Carretero, J.; Estrela, J.M. Acceleration of glutathione efflux and inhibition of γ-glutamyltranspeptidase sensitize metastatic B16 melanoma cells to endothelium-induced cytotoxicity. J. Biol. Chem., 2005, 280(8), 6950-6959.
[http://dx.doi.org/10.1074/jbc.M408531200] [PMID: 15561710]
[78]
Swamy, S.M.K.; Huat, B.T.K. Intracellular glutathione depletion and reactive oxygen species generation are important in α-hederin-induced apoptosis of P388 cells. Mol. Cell. Biochem., 2003, 245(1-2), 127-139.
[PMID: 12708752]
[79]
Lu, Z.; Nie, G.; Belton, P.S.; Tang, H.; Zhao, B. Structure-activity relationship analysis of antioxidant ability and neuroprotective effect of gallic acid derivatives. Neurochem. Int., 2006, 48(4), 263-274.
[http://dx.doi.org/10.1016/j.neuint.2005.10.010] [PMID: 16343693]
[80]
Ortega, A.; Ferrer, P.; Carretero, J.; Obrador, E.; Asensi, M.; Pellicer, J.A.; Estrela, J.M. Down-regulation of glutathione and Bcl-2 synthesis in mouse B16 melanoma cells avoids their survival during interaction with the vascular endothelium. J. Biol. Chem., 2003, 278(41), 39591-39599.
[http://dx.doi.org/10.1074/jbc.M303753200] [PMID: 12881529]
[81]
Locatelli, C.; Leal, P.C.; Yunes, R.A.; Nunes, R.J.; Creczynski-Pasa, T.B. Gallic acid ester derivatives induce apoptosis and cell adhesion inhibition in melanoma cells: the relationship between free radical generation, glutathione depletion and cell death. Chem. Biol. Interact., 2009, 181(2), 175-184.
[http://dx.doi.org/10.1016/j.cbi.2009.06.019] [PMID: 19577552]
[82]
Kim, Y.J. Antimelanogenic and antioxidant properties of gallic acid. Biol. Pharm. Bull., 2007, 30(6), 1052-1055.
[http://dx.doi.org/10.1248/bpb.30.1052] [PMID: 17541153]
[83]
Ahn, K.S.; Sethi, G.; Jain, A.K.; Jaiswal, A.K.; Aggarwal, B.B. Genetic deletion of NAD(P)H:quinone oxidoreductase 1 abrogates activation of nuclear factor-kappaB, IkappaBalpha kinase, c-Jun N-terminal kinase, Akt, p38, and p44/42 mitogen-activated protein kinases and potentiates apoptosis. J. Biol. Chem., 2006, 281(29), 19798-19808.
[http://dx.doi.org/10.1074/jbc.M601162200] [PMID: 16682409]
[84]
Sawhney, M.; Rohatgi, N.; Kaur, J.; Shishodia, S.; Sethi, G.; Gupta, S.D.; Deo, S.V.; Shukla, N.K.; Aggarwal, B.B.; Ralhan, R. Expression of NF-kappaB parallels COX-2 expression in oral precancer and cancer: association with smokeless tobacco. Int. J. Cancer, 2007, 120(12), 2545-2556.
[http://dx.doi.org/10.1002/ijc.22657] [PMID: 17354234]
[85]
Siveen, K.S.; Mustafa, N.; Li, F.; Kannaiyan, R.; Ahn, K.S.; Kumar, A.P.; Chng, W.J.; Sethi, G. Thymoquinone overcomes chemoresistance and enhances the anticancer effects of bortezomib through abrogation of NF-κB regulated gene products in multiple myeloma xenograft mouse model. Oncotarget, 2014, 5(3), 634-648.
[http://dx.doi.org/10.18632/oncotarget.1596] [PMID: 24504138]
[86]
Rahman, I.; MacNee, W. Regulation of redox glutathione levels and gene transcription in lung inflammation: therapeutic approaches. Free Radic. Biol. Med., 2000, 28(9), 1405-1420.
[http://dx.doi.org/10.1016/S0891-5849(00)00215-X] [PMID: 10924859]
[87]
Manna, S.K.; Kuo, M.T.; Aggarwal, B.B. Overexpression of γ-glutamylcysteine synthetase suppresses tumor necrosis factor-induced apoptosis and activation of nuclear transcription factor-kappa B and activator protein-1. Oncogene, 1999, 18(30), 4371-4382.
[http://dx.doi.org/10.1038/sj.onc.1202811] [PMID: 10439045]
[88]
Park, J.M.; Kim, A.; Oh, J.H.; Chung, A.S. Methylseleninic acid inhibits PMA-stimulated pro-MMP-2 activation mediated by MT1-MMP expression and further tumor invasion through suppression of NF-kappaB activation. Carcinogenesis, 2007, 28(4), 837-847.
[http://dx.doi.org/10.1093/carcin/bgl203] [PMID: 17071627]
[89]
Li, F.; Shanmugam, M.K.; Chen, L.; Chatterjee, S.; Basha, J.; Kumar, A.P.; Kundu, T.K.; Sethi, G. Garcinol, a polyisoprenylated benzophenone modulates multiple proinflammatory signaling cascades leading to the suppression of growth and survival of head and neck carcinoma. Cancer Prev. Res. (Phila.), 2013, 6(8), 843-854.
[http://dx.doi.org/10.1158/1940-6207.CAPR-13-0070] [PMID: 23803415]
[90]
Shanmugam, M.K.; Ong, T.H.; Kumar, A.P.; Lun, C.K.; Ho, P.C.; Wong, P.T.; Hui, K.M.; Sethi, G. Ursolic acid inhibits the initiation, progression of prostate cancer and prolongs the survival of TRAMP mice by modulating pro-inflammatory pathways. PLoS One, 2012, 7(3)e32476
[http://dx.doi.org/10.1371/journal.pone.0032476] [PMID: 22427843]
[91]
Ho, H.H.; Chang, C.S.; Ho, W.C.; Liao, S.Y.; Lin, W.L.; Wang, C.J. Gallic acid inhibits gastric cancer cells metastasis and invasive growth via increased expression of RhoB, downregulation of AKT/small GTPase signals and inhibition of NF-κB activity. Toxicol. Appl. Pharmacol., 2013, 266(1), 76-85.
[http://dx.doi.org/10.1016/j.taap.2012.10.019] [PMID: 23153558]
[92]
Reddy, T.C.; Aparoy, P.; Babu, N.K.; Kumar, K.A.; Kalangi, S.K.; Reddanna, P. Kinetics and docking studies of a COX-2 inhibitor isolated from Terminalia bellerica fruits. Protein Pept. Lett., 2010, 17(10), 1251-1257.
[http://dx.doi.org/10.2174/092986610792231537] [PMID: 20441561]
[93]
Chandramohan Reddy, T.; Bharat Reddy, D.; Aparna, A.; Arunasree, K.M.; Gupta, G.; Achari, C.; Reddy, G.V.; Lakshmipathi, V.; Subramanyam, A.; Reddanna, P. Anti-leukemic effects of gallic acid on human leukemia K562 cells: downregulation of COX-2, inhibition of BCR/ABL kinase and NF-κB inactivation. Toxicol. In Vitro, 2012, 26(3), 396-405.
[http://dx.doi.org/10.1016/j.tiv.2011.12.018] [PMID: 22245431]
[94]
Liu, Z.; Li, D.; Yu, L.; Niu, F. Gallic acid as a cancer-selective agent induces apoptosis in pancreatic cancer cells. Chemotherapy, 2012, 58(3), 185-194.
[http://dx.doi.org/10.1159/000337103] [PMID: 22739044]
[95]
Hsiang, C.Y.; Hseu, Y.C.; Chang, Y.C.; Kumar, K.J.; Ho, T.Y.; Yang, H.L. Toona sinensis and its major bioactive compound gallic acid inhibit LPS-induced inflammation in nuclear factor-κB transgenic mice as evaluated by in vivo bioluminescence imaging. Food Chem., 2013, 136(2), 426-434.
[http://dx.doi.org/10.1016/j.foodchem.2012.08.009] [PMID: 23122080]
[96]
Heidarian, E.; Keloushadi, M.; Ghatreh-Samani, K.; Valipour, P. The reduction of IL-6 gene expression, pAKT, pERK1/2, pSTAT3 signaling pathways and invasion activity by gallic acid in prostate cancer PC3 cells. Biomed. Pharmacother., 2016, 84, 264-269.
[http://dx.doi.org/10.1016/j.biopha.2016.09.046] [PMID: 27665471]
[97]
Manu, K.A.; Shanmugam, M.K.; Ramachandran, L.; Li, F.; Siveen, K.S.; Chinnathambi, A.; Zayed, M.E.; Alharbi, S.A.; Arfuso, F.; Kumar, A.P.; Ahn, K.S.; Sethi, G. Isorhamnetin augments the anti-tumor effect of capecitabine through the negative regulation of NF-κB signaling cascade in gastric cancer. Cancer Lett., 2015, 363(1), 28-36.
[http://dx.doi.org/10.1016/j.canlet.2015.03.033] [PMID: 25827070]
[98]
Moon, A.; Agrawal, T.; Gupta, P. Anti-cancer therapy: chlorogenic acid, gallic acid and ellagic acid in synergism. IOSR J. Pharm. Biol. Sci., 2017, 12, 48-52.
[http://dx.doi.org/10.9790/3008-1203064852]
[99]
Aborehab, N.M.; Osama, N. Effect of Gallic acid in potentiating chemotherapeutic effect of Paclitaxel in HeLa cervical cancer cells. Cancer Cell Int., 2019, 19, 154.
[http://dx.doi.org/10.1186/s12935-019-0868-0] [PMID: 31171918]
[100]
Kawada, M.; Ohno, Y.; Ri, Y.; Ikoma, T.; Yuugetu, H.; Asai, T.; Watanabe, M.; Yasuda, N.; Akao, S.; Takemura, G.; Minatoguchi, S.; Gotoh, K.; Fujiwara, H.; Fukuda, K. Anti-tumor effect of gallic acid on LL-2 lung cancer cells transplanted in mice. Anticancer Drugs, 2001, 12(10), 847-852.
[http://dx.doi.org/10.1097/00001813-200111000-00009] [PMID: 11707653]
[101]
Chen, H.M.; Wu, Y.C.; Chia, Y.C.; Chang, F.R.; Hsu, H.K.; Hsieh, Y.C.; Chen, C.C.; Yuan, S.S. Gallic acid, a major component of Toona sinensis leaf extracts, contains a ROS-mediated anti-cancer activity in human prostate cancer cells. Cancer Lett., 2009, 286(2), 161-171.
[http://dx.doi.org/10.1016/j.canlet.2009.05.040] [PMID: 19589639]
[102]
Gao, Y.; Li, W.; Jia, L.; Li, B.; Chen, Y.C.; Tu, Y. Enhancement of (-)-epigallocatechin-3-gallate and theaflavin-3-3′-digallate induced apoptosis by ascorbic acid in human lung adenocarcinoma SPC-A-1 cells and esophageal carcinoma Eca-109 cells via MAPK pathways. Biochem. Biophys. Res. Commun., 2013, 438(2), 370-374.
[http://dx.doi.org/10.1016/j.bbrc.2013.07.078] [PMID: 23892041]
[103]
Yu, Z.; Song, F.; Jin, Y.C.; Zhang, W.M.; Zhang, Y.; Liu, E.J.; Zhou, D.; Bi, L.L.; Yang, Q.; Li, H.; Zhang, B.L.; Wang, S.W. Comparative pharmacokinetics of gallic acid after oral administration of Gallic acid monohydrate in normal and isoproterenol-induced myocardial infarcted rats. Front. Pharmacol., 2018, 9, 328.
[http://dx.doi.org/10.3389/fphar.2018.00328] [PMID: 29681855]
[104]
Choubey, S.; Varughese, L.R.; Kumar, V.; Beniwal, V. Medicinal importance of gallic acid and its ester derivatives: a patent review. Pharm. Pat. Anal., 2015, 4(4), 305-315.
[http://dx.doi.org/10.4155/ppa.15.14] [PMID: 26174568]
[105]
Kosuru, R.Y.; Roy, A.; Das, S.K.; Bera, S. Gallic acid and gallates in human health and disease: do mitochondria hold the key to success? Mol. Nutr. Food Res., 2018, 62(1), 62.
[http://dx.doi.org/10.1002/mnfr.201700699] [PMID: 29178387]
[106]
Khan, B.A.; Mahmood, T.; Menaa, F.; Shahzad, Y.; Yousaf, A.M.; Hussain, T.; Ray, S.D. New perspectives on the efficacy of gallic acid in cosmetics & nanocosmeceuticals. Curr. Pharm. Des., 2018, 24(43), 5181-5187.
[http://dx.doi.org/10.2174/1381612825666190118150614] [PMID: 30657034]
[107]
Choubey, S.; Goyal, S.; Varughese, L.R.; Kumar, V.; Sharma, A.K.; Beniwal, V. Probing gallic acid for its broad spectrum applications. Mini Rev. Med. Chem., 2018, 18(15), 1283-1293.
[http://dx.doi.org/10.2174/1389557518666180330114010] [PMID: 29600764]
[108]
Khalil, I.; Yehye, W.A.; Etxeberria, A.E.; Alhadi, A.A.; Dezfooli, S.M.; Julkapli, N.B.M.; Basirun, W.J.; Seyfoddin, A. Nanoantioxidants: recent trends in antioxidant delivery applications. Antioxidants, 2019, 9(1), 9.
[http://dx.doi.org/10.3390/antiox9010024] [PMID: 31888023]
[109]
de Cristo Soares Alves, A.; Mainardes, R.M.; Khalil, N.M. Nanoencapsulation of gallic acid and evaluation of its cytotoxicity and antioxidant activity. Mater. Sci. Eng. C, 2016, 60, 126-134.
[http://dx.doi.org/10.1016/j.msec.2015.11.014] [PMID: 26706515]
[110]
Daduang, J.; Palasap, A.; Daduang, S.; Boonsiri, P.; Suwannalert, P.; Limpaiboon, T. Gallic acid enhancement of gold nanoparticle anticancer activity in cervical cancer cells. Asian Pac. J. Cancer Prev., 2015, 16(1), 169-174.
[http://dx.doi.org/10.7314/APJCP.2015.16.1.169] [PMID: 25640346]
[111]
Acevedo, F.; Hermosilla, J.; Sanhueza, C.; Mora-Lagos, B.; Fuentes, I.; Rubilar, M.; Concheiro, A.; Alvarez-Lorenzo, C. Gallic acid loaded PEO-core/zein-shell nanofibers for chemopreventive action on gallbladder cancer cells. Eur. J. Pharm. Sci., 2018, 119, 49-61.
[http://dx.doi.org/10.1016/j.ejps.2018.04.009] [PMID: 29630938]
[112]
Dorniani, D.; Kura, A.U.; Hussein-Al-Ali, S.H. In vitro sustained release study of gallic acid coated with magnetite-PEG and magnetite-PVA for drug delivery system. The Sci. World J., 2014, 2014416354
[113]
Dorniani, D.; Hussein, M.Z.; Kura, A.U.; Fakurazi, S.; Shaari, A.H.; Ahmad, Z. Preparation of Fe O magnetic nanoparticles coated with gallic acid for drug delivery. Int. J. Nanomed, 2012, 7, 5745-5756.
[http://dx.doi.org/10.2147/IJN.S35746] [PMID: 23166439]
[114]
Rosman, R.; Saifullah, B.; Maniam, S.; Dorniani, D.; Hussein, M.Z.; Fakurazi, S. Improved anticancer effect of magnetite nanocomposite formulation of gallic acid (Fe3O4 -peg-ga) against lung, breast and colon cancer cells. Nanomaterials (Basel), 2018, 8(2), 8.
[http://dx.doi.org/10.3390/nano8020083] [PMID: 29393902]
[115]
Peng, W.; Luo, P.; Gui, D.; Jiang, W.; Wu, H.; Zhang, J. Enhanced anticancer effect of fabricated gallic acid/CdS on the rGO nanosheets on human glomerular mesangial (IP15) and epithelial proximal (HK2) kidney cell lines - Cytotoxicity investigations. J. Photochem. Photobiol. B, 2018, 178, 243-248.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.11.012] [PMID: 29161651]
[116]
Faralli, A.; Shekarforoush, E.; Mendes, A.C.; Chronakis, I.S. Enhanced transepithelial permeation of gallic acid and (-)-epigallocatechin gallate across human intestinal Caco-2 cells using electrospun xanthan nanofibers. Pharmaceutics, 2019, 11(4), 11.
[http://dx.doi.org/10.3390/pharmaceutics11040155] [PMID: 30939805]
[117]
Behl, G.; Sharma, M.; Sikka, M.; Dahiya, S.; Chhikara, A.; Chopra, M. Gallic acid loaded disulfide cross-linked biocompatible polymeric nanogels as controlled release system: synthesis, characterization, and antioxidant activity. J. Biomater. Sci. Polym. Ed., 2013, 24(7), 865-881.
[http://dx.doi.org/10.1080/09205063.2012.723958] [PMID: 23594074]
[118]
Chen, Y.J.; Lee, Y.C.; Huang, C.H.; Chang, L.S. Gallic acid-capped gold nanoparticles inhibit EGF-induced MMP-9 expression through suppression of p300 stabilization and NFκB/c-Jun activation in breast cancer MDA-MB-231 cells. Toxicol. Appl. Pharmacol., 2016, 310, 98-107.
[http://dx.doi.org/10.1016/j.taap.2016.09.007] [PMID: 27634460]
[119]
Rajalakshmi, K.; Devaraj, H.; Niranjali Devaraj, S. Assessment of the no-observed-adverse-effect level (NOAEL) of gallic acid in mice. Food Chem. Toxicol., 2001, 39(9), 919-922.
[http://dx.doi.org/10.1016/S0278-6915(01)00022-9] [PMID: 11498268]
[120]
Niho, N.; Shibutani, M.; Tamura, T.; Toyoda, K.; Uneyama, C.; Takahashi, N.; Hirose, M. Subchronic toxicity study of gallic acid by oral administration in F344 rats. Food Chem. Toxicol., 2001, 39(11), 1063-1070.
[http://dx.doi.org/10.1016/S0278-6915(01)00054-0] [PMID: 11527565]
[121]
Variya, B.C.; Bakrania, A.K.; Madan, P.; Patel, S.S. Acute and 28-days repeated dose sub-acute toxicity study of gallic acid in albino mice. Regul. Toxicol. Pharmacol., 2019, 101, 71-78.
[http://dx.doi.org/10.1016/j.yrtph.2018.11.010] [PMID: 30465803]
[122]
Roberts, A.T.; Martin, C.K.; Liu, Z.; Amen, R.J.; Woltering, E.A.; Rood, J.C.; Caruso, M.K.; Yu, Y.; Xie, H.; Greenway, F.L. The safety and efficacy of a dietary herbal supplement and gallic acid for weight loss. J. Med. Food, 2007, 10(1), 184-188.
[http://dx.doi.org/10.1089/jmf.2006.272] [PMID: 17472485]
[123]
Kuo, C.L.; Lai, K.C.; Ma, Y.S.; Weng, S.W.; Lin, J.P.; Chung, J.G. Gallic acid inhibits migration and invasion of SCC-4 human oral cancer cells through actions of NF-κB, Ras and matrix metalloproteinase-2 and -9. Oncol. Rep., 2014, 32(1), 355-361.
[http://dx.doi.org/10.3892/or.2014.3209] [PMID: 24859325]
[124]
Khorsandi, K.; Kianmehr, Z.; Hosseinmardi, Z.; Hosseinzadeh, R. Anti-cancer effect of gallic acid in presence of low level laser irradiation: ROS production and induction of apoptosis and ferroptosis. Cancer Cell Int., 2020, 20, 18.
[http://dx.doi.org/10.1186/s12935-020-1100-y] [PMID: 31956296]
[125]
Hsu, J.D.; Kao, S.H.; Ou, T.T.; Chen, Y.J.; Li, Y.J.; Wang, C.J. Gallic acid induces G2/M phase arrest of breast cancer cell MCF-7 through stabilization of p27(Kip1) attributed to disruption of p27(Kip1)/Skp2 complex. J. Agric. Food Chem., 2011, 59(5), 1996-2003.
[http://dx.doi.org/10.1021/jf103656v] [PMID: 21299246]
[126]
García-Rivera, D.; Delgado, R.; Bougarne, N.; Haegeman, G.; Berghe, W.V. Gallic acid indanone and mangiferin xanthone are strong determinants of immunosuppressive anti-tumour effects of Mangifera indica L. bark in MDA-MB231 breast cancer cells. Cancer Lett., 2011, 305(1), 21-31.
[http://dx.doi.org/10.1016/j.canlet.2011.02.011] [PMID: 21420233]
[127]
Ho, I.Y.M.; Abdul Aziz, A.; Mat Junit, S. Evaluation of anti-proliferative effects of Barringtonia racemosa and Gallic acid on Caco-2 cells. Sci. Rep., 2020, 10(1), 9987.
[http://dx.doi.org/10.1038/s41598-020-66913-x] [PMID: 32561807]
[128]
Subramanian, A.P.; Jaganathan, S.K.; Mandal, M.; Supriyanto, E.; Muhamad, I.I. Gallic acid induced apoptotic events in HCT-15 colon cancer cells. World J. Gastroenterol., 2016, 22(15), 3952-3961.
[http://dx.doi.org/10.3748/wjg.v22.i15.3952] [PMID: 27099438]
[129]
Kang, D.Y.; Sp, N.; Jo, E.S. The inhibitory mechanisms of tumor PD-l1 expression by natural bioactive gallic acid in Non-Small-Cell Lung Cancer (NCLC) cells. Cancers (Basel), 2020, 12(3), 727.
[130]
Wang, D.; Bao, B. Gallic acid impedes non-small cell lung cancer progression via suppression of EGFR-dependent CARM1-PELP1 complex. Drug Des. Devel. Ther., 2020, 14, 1583-1592.
[http://dx.doi.org/10.2147/DDDT.S228123] [PMID: 32425504]
[131]
Zhang, T.; Ma, L.; Wu, P.; Li, W.; Li, T.; Gu, R.; Dan, X.; Li, Z.; Fan, X.; Xiao, Z. Gallic acid has anticancer activity and enhances the anticancer effects of cisplatin in non small cell lung cancer A549 cells via the JAK/STAT3 signaling pathway. Oncol. Rep., 2019, 41(3), 1779-1788.
[http://dx.doi.org/10.3892/or.2019.6976] [PMID: 30747218]
[132]
You, B.R.; Kim, S.Z.; Kim, S.H.; Park, W.H. Gallic acid-induced lung cancer cell death is accompanied by ROS increase and glutathione depletion. Mol. Cell. Biochem., 2011, 357(1-2), 295-303.
[http://dx.doi.org/10.1007/s11010-011-0900-8] [PMID: 21625953]
[133]
Chuang, C.Y.; Liu, H.C.; Wu, L.C.; Chen, C.Y.; Chang, J.T.; Hsu, S.L. Gallic acid induces apoptosis of lung fibroblasts via a reactive oxygen species-dependent ataxia telangiectasia mutated-p53 activation pathway. J. Agric. Food Chem., 2010, 58(5), 2943-2951.
[http://dx.doi.org/10.1021/jf9043265] [PMID: 20151649]
[134]
Choi, K.C.; Lee, Y.H.; Jung, M.G.; Kwon, S.H.; Kim, M.J.; Jun, W.J.; Lee, J.; Lee, J.M.; Yoon, H.G. Gallic acid suppresses lipopolysaccharide-induced nuclear factor-kappaB signaling by preventing RelA acetylation in A549 lung cancer cells. Mol. Cancer Res., 2009, 7(12), 2011-2021.
[http://dx.doi.org/10.1158/1541-7786.MCR-09-0239] [PMID: 19996305]
[135]
Maruszewska, A.; Tarasiuk, J. Antitumour effects of selected plant polyphenols, gallic acid and ellagic acid, on sensitive and multidrug-resistant leukaemia HL60 cells. Phytother. Res., 2019, 33(4), 1208-1221.
[http://dx.doi.org/10.1002/ptr.6317] [PMID: 30838722]
[136]
Sourani, Z.; Shirzad, H.; Shirzad, M.; Pourgheysari, B. Interaction between Gallic acid and Asparaginase to potentiate anti-proliferative effect on lymphoblastic leukemia cell line. Biomed. Pharmacother., 2017, 96, 1045-1054.
[http://dx.doi.org/10.1016/j.biopha.2017.11.122] [PMID: 29217160]
[137]
Varela-Rodríguez, L.; Sánchez-Ramírez, B.; Hernández-Ramírez, V.I. Effect of gallic acid and myricetin on ovarian cancer models: a possible alternative antitumoral treatment. BMC Complement. Med. Ther., 2020, 20(1), 110.
[138]
Park, W.H. Gallic acid induces HeLa cell death via increasing GSH depletion rather than ROS levels. Oncol. Rep., 2017, 37(2), 1277-1283.
[http://dx.doi.org/10.3892/or.2016.5335] [PMID: 28035417]
[139]
You, B.R.; Moon, H.J.; Han, Y.H.; Park, W.H. Gallic acid inhibits the growth of HeLa cervical cancer cells via apoptosis and/or necrosis. Food Chem. Toxicol., 2010, 48(5), 1334-1340.
[http://dx.doi.org/10.1016/j.fct.2010.02.034] [PMID: 20197077]
[140]
Liu, K.C.; Huang, A.C.; Wu, P.P.; Lin, H.Y.; Chueh, F.S.; Yang, J.S.; Lu, C.C.; Chiang, J.H.; Meng, M.; Chung, J.G. Gallic acid suppresses the migration and invasion of PC-3 human prostate cancer cells via inhibition of matrix metalloproteinase-2 and -9 signaling pathways. Oncol. Rep., 2011, 26(1), 177-184.
[PMID: 21503582]
[141]
Reddivari, L.; Vanamala, J.; Safe, S.H.; Miller, J.C., Jr The bioactive compounds α-chaconine and gallic acid in potato extracts decrease survival and induce apoptosis in LNCaP and PC3 prostate cancer cells. Nutr. Cancer, 2010, 62(5), 601-610.
[http://dx.doi.org/10.1080/01635580903532358] [PMID: 20574921]
[142]
Agarwal, C.; Tyagi, A.; Agarwal, R. Gallic acid causes inactivating phosphorylation of CDC25A/CDC25C-CDC2 via ATM-Chk2 activation, leading to cell cycle arrest, and induces apoptosis in human prostate carcinoma DU145 cells. Mol. Cancer Ther., 2006, 5(12), 3294-3302.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0483] [PMID: 17172433]
[143]
Filipiak, K.; Hidalgo, M.; Silvan, J.M.; Fabre, B.; Carbajo, R.J.; Pineda-Lucena, A.; Ramos, A.; de Pascual-Teresa, B.; de Pascual-Teresa, S. Dietary gallic acid and anthocyanin cytotoxicity on human fibrosarcoma HT1080 cells. A study on the mode of action. Food Funct., 2014, 5(2), 381-389.
[http://dx.doi.org/10.1039/C3FO60465A] [PMID: 24413695]
[144]
Jara, J.A.; Castro-Castillo, V.; Saavedra-Olavarría, J.; Peredo, L.; Pavanni, M.; Jaña, F.; Letelier, M.E.; Parra, E.; Becker, M.I.; Morello, A.; Kemmerling, U.; Maya, J.D.; Ferreira, J. Antiproliferative and uncoupling effects of delocalized, lipophilic, cationic gallic acid derivatives on cancer cell lines. Validation in vivo in singenic mice. J. Med. Chem., 2014, 57(6), 2440-2454.
[http://dx.doi.org/10.1021/jm500174v] [PMID: 24568614]
[145]
Liang, C.Z.; Zhang, X.; Li, H.; Tao, Y.Q.; Tao, L.J.; Yang, Z.R.; Zhou, X.P.; Shi, Z.L.; Tao, H.M. Gallic acid induces the apoptosis of human osteosarcoma cells in vitro and in vivo via the regulation of mitogen-activated protein kinase pathways. Cancer Biother. Radiopharm., 2012, 27(10), 701-710.
[http://dx.doi.org/10.1089/cbr.2012.1245] [PMID: 22849560]
[146]
Banerjee, N.; Kim, H.; Krenek, K.; Talcott, S.T.; Mertens-Talcott, S.U. Mango polyphenolics suppressed tumor growth in breast cancer xenografts in mice: role of the PI3K/AKT pathway and associated microRNAs. Nutr. Res., 2015, 35(8), 744-751.
[http://dx.doi.org/10.1016/j.nutres.2015.06.002] [PMID: 26194618]
[147]
Kim, H.; Banerjee, N.; Barnes, R.C.; Pfent, C.M.; Talcott, S.T.; Dashwood, R.H.; Mertens-Talcott, S.U. Mango polyphenolics reduce inflammation in intestinal colitis-involvement of the miR-126/PI3K/AKT/mTOR axis in vitro and in vivo. Mol. Carcinog., 2017, 56(1), 197-207.
[http://dx.doi.org/10.1002/mc.22484] [PMID: 27061150]
[148]
Aglan, H.A.; Ahmed, H.H.; El-Toumy, S.A.; Mahmoud, N.S. Gallic acid against hepatocellular carcinoma: an integrated scheme of the potential mechanisms of action from in vivo study. Tumour Biol., 2017, 39(6)1010428317699127
[http://dx.doi.org/10.1177/1010428317699127] [PMID: 28618930]
[149]
Shao, Y.; Luo, W.; Guo, Q.; Li, X.; Zhang, Q.; Li, J. In vitro and in vivo effect of hyaluronic acid modified, doxorubicin and gallic acid co-delivered lipid-polymeric hybrid nano-system for leukemia therapy. Drug Des. Devel. Ther., 2019, 13, 2043-2055.
[http://dx.doi.org/10.2147/DDDT.S202818] [PMID: 31388296]
[150]
Huang, P.J.; Hseu, Y.C.; Lee, M.S.; Senthil Kumar, K.J.; Wu, C.R.; Hsu, L.S.; Liao, J.W.; Cheng, I.S.; Kuo, Y.T.; Huang, S.Y.; Yang, H.L. In vitro and in vivo activity of gallic acid and Toona sinensis leaf extracts against HL-60 human premyelocytic leukemia. Food Chem. Toxicol., 2012, 50(10), 3489-3497.
[http://dx.doi.org/10.1016/j.fct.2012.06.046] [PMID: 22771367]
[151]
Ho, C.C.; Lin, S.Y.; Yang, J.S.; Liu, K.C.; Tang, Y.J.; Yang, M.D.; Chiang, J.H.; Lu, C.C.; Wu, C.L.; Chiu, T.H.; Chung, J.G. Gallic acid inhibits murine leukemia WEHI-3 cells in vivo and promotes macrophage phagocytosis. In Vivo, 2009, 23(3), 409-413.
[PMID: 19454506]
[152]
Phan, A.N.H.; Hua, T.N.M.; Kim, M.K.; Vo, V.T.; Choi, J.W.; Kim, H.W.; Rho, J.K.; Kim, K.W.; Jeong, Y. Gallic acid inhibition of Src-Stat3 signaling overcomes acquired resistance to EGF receptor tyrosine kinase inhibitors in advanced non-small cell lung cancer. Oncotarget, 2016, 7(34), 54702-54713.
[http://dx.doi.org/10.18632/oncotarget.10581] [PMID: 27419630]
[153]
Bin-Chuan, J.I.; Hsu, W.H.; Yang, J.S. Gallic acid induces apoptosis via caspase-3 and mitochondrion-dependent pathways in vitro and suppresses lung xenograft tumor growth in vivo. J. Agricul Food Chem., 2009, 57, 7596-7604.
[154]
Raina, K.; Rajamanickam, S.; Deep, G.; Singh, M.; Agarwal, R.; Agarwal, C. Chemopreventive effects of oral gallic acid feeding on tumor growth and progression in TRAMP mice. Mol. Cancer Ther., 2008, 7(5), 1258-1267.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-2220] [PMID: 18445658]
[155]
Kaur, M.; Velmurugan, B.; Rajamanickam, S.; Agarwal, R.; Agarwal, C. Gallic acid, an active constituent of grape seed extract, exhibits anti-proliferative, pro-apoptotic and anti-tumorigenic effects against prostate carcinoma xenograft growth in nude mice. Pharm. Res., 2009, 26(9), 2133-2140.
[http://dx.doi.org/10.1007/s11095-009-9926-y] [PMID: 19543955]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy