Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Repurposing Drugs as Novel Triple-negative Breast Cancer Therapeutics

Author(s): Amiya Das, Pallavi Agarwal, Gaurav Kumar Jain, Geeta Aggarwal, Viney Lather* and Deepti Pandita*

Volume 22, Issue 3, 2022

Published on: 31 December, 2021

Page: [515 - 550] Pages: 36

DOI: 10.2174/1871520621666211021143255

Price: $65

Abstract

Background: Triple-Negative Breast Cancer (TNBC) is the most aggressive form of Breast Cancer (BC), with high rates of metastasis and recurrence and limited treatment options. Chemotherapy and radiotherapy, for example, have several harmful side effects, and no FDA-approved therapies are currently available. Repurposing old clinically approved drugs to target various TNBC targets is a novel method that has fewer side effects and leads to successful, low-cost drug development in a shorter amount of time. Medicinal plants containing various phytoconstituents (flavonoids, alkaloids, phenols, essential oils, tannins, glycosides, lactones) play a very crucial role in combating various types of diseases and are used in the drug development process because of having lesser side effects.

Objective: The present review summarizes various categories of repurposed drugs that target multiple targets of TNBC, as well as phytochemical categories that target TNBC singly or in combination with old synthetic drugs.

Methods: Literature information was collected from various databases such as Pubmed, Web of Science, Scopus, and Medline to understand and clarify the role and mechanism of repurposed synthetic drugs and phytoconstituents against TNBC by using keywords like “breast cancer”, “repurposed drugs”, “TNBC” and “phytoconstituents”.

Results: Various repurposed drugs and phytochemicals that target different signaling pathways and exert their cytotoxic activities on TNBC cells ultimately lead to cell apoptosis, reducing the recurrence rate and stopping the metastasis process.

Conclusion: Inhibitory effects can be seen at various levels, providing information and evidence to researchers in the drug development process. As a result, more research and investigations are needed to develop better therapeutic treatment options for TNBC.

Keywords: TNBC, drug repurposing, signaling pathways, PARP, HSP90, apoptosis, phytoconstituents.

Graphical Abstract

[1]
Li, T.; Mello-Thoms, C.; Brennan, P.C. Descriptive epidemiology of breast cancer in China: incidence, mortality, survival and prevalence. Breast Cancer Res. Treat., 2016, 159(3), 395-406.
[http://dx.doi.org/10.1007/s10549-016-3947-0] [PMID: 27562585]
[3]
Evans-Knowell, A.; LaRue, A.C.; Findlay, V.J. MicroRNAs and their impact on breast cancer, the tumor microenvironment, and disparities.Adv. Cancer Res., 2017, 133, 51-76.,
[http://dx.doi.org/10.1016/bs.acr.2016.08.003] [PMID: 28052821]
[4]
Osborne, C.K.; Shou, J.; Massarweh, S.; Schiff, R. Crosstalk between estrogen receptor and growth factor receptor pathways as a cause for endocrine therapy resistance in breast cancer. Clin. Cancer Res., 2005, 11(2 Pt 2), 865s-870s.
[PMID: 15701879]
[5]
Bosch, A.; Eroles, P.; Zaragoza, R.; Viña, J.R.; Lluch, A. Triple-negative breast cancer: molecular features, pathogenesis, treatment and current lines of research. Cancer Treat. Rev., 2010, 36(3), 206-215.
[http://dx.doi.org/10.1016/j.ctrv.2009.12.002] [PMID: 20060649]
[6]
Kalimutho, M.; Parsons, K.; Mittal, D.; López, J.A.; Srihari, S.; Khanna, K.K. Targeted therapies for triple-negative breast cancer: combating a stubborn disease. Trends Pharmacol. Sci., 2015, 36(12), 822-846.
[http://dx.doi.org/10.1016/j.tips.2015.08.009] [PMID: 26538316]
[7]
Hamilton, E.; Kimmick, G.; Hopkins, J.; Marcom, P.K.; Rocha, G.; Welch, R.; Broadwater, G.; Blackwell, K. Nab-paclitaxel/bevacizumab/carboplatin chemotherapy in first-line triple negative metastatic breast cancer. Clin. Breast Cancer, 2013, 13(6), 416-420.
[http://dx.doi.org/10.1016/j.clbc.2013.08.003] [PMID: 24099649]
[8]
Hwang, S.Y.; Park, S.; Kwon, Y. Recent therapeutic trends and promising targets in triple negative breast cancer. Pharmacol. Ther., 2019, 199, 30-57.
[http://dx.doi.org/10.1016/j.pharmthera.2019.02.006] [PMID: 30825473]
[9]
Bianchini, G.; Balko, J.M.; Mayer, I.A.; Sanders, M.E.; Gianni, L. Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. Nat. Rev. Clin. Oncol., 2016, 13(11), 674-690.
[http://dx.doi.org/10.1038/nrclinonc.2016.66] [PMID: 27184417]
[10]
Checchi, P.M.; Nettles, J.H.; Zhou, J.; Snyder, J.P.; Joshi, H.C. Microtubule-interacting drugs for cancer treatment. Trends Pharmacol. Sci., 2003, 24(7), 361-365.
[http://dx.doi.org/10.1016/S0165-6147(03)00161-5] [PMID: 12871669]
[11]
Jaspers, J.E.; Rottenberg, S.; Jonkers, J. Therapeutic options for triple-negative breast cancers with defective homologous recombination. Biochim. Biophys. Acta, 2009, 1796(2), 266-280.
[PMID: 19616605]
[12]
Talevi, A.; Bellera, C.L. Challenges and opportunities with drug repurposing: finding strategies to find alternative uses of therapeutics. Expert Opin. Drug Discov., 2020, 15(4), 397-401.
[http://dx.doi.org/10.1080/17460441.2020.1704729] [PMID: 31847616]
[13]
Shim, J.S.; Liu, J.O. Recent advances in drug repositioning for the discovery of new anticancer drugs. Int. J. Biol. Sci., 2014, 10(7), 654-663.
[http://dx.doi.org/10.7150/ijbs.9224] [PMID: 25013375]
[14]
Zheng, W.; Sun, W.; Simeonov, A. Drug repurposing screens and synergistic drug-combinations for infectious diseases. Br. J. Pharmacol., 2018, 175(2), 181-191.
[http://dx.doi.org/10.1111/bph.13895] [PMID: 28685814]
[15]
Collins, F.S. Reengineering translational science: the time is right.Sci. Transl. Med., 2011, 3(90), 90cm17.,
[http://dx.doi.org/10.1126/scitranslmed.3002747] [PMID: 21734173]
[16]
Bahi, M.; Batouche, M. Deep semi-supervised learning for DTI prediction using large datasets and H2O-spark platform. International Conference on Intelligent Systems and Computer Vision (ISCV), 2018, pp. 1-7.
[http://dx.doi.org/10.1109/ISACV.2018.8354081]
[17]
Rakha, E.A.; El-Sayed, M.E.; Green, A.R.; Lee, A.H.; Robertson, J.F.; Ellis, I.O. Prognostic markers in triple-negative breast cancer. Cancer, 2007, 109(1), 25-32.
[http://dx.doi.org/10.1002/cncr.22381] [PMID: 17146782]
[18]
Foulkes, W.D.; Smith, I.E.; Reis-Filho, J.S. Triple-negative breast cancer. N. Engl. J. Med., 2010, 363(20), 1938-1948..
[http://dx.doi.org/10.1056/NEJMra1001389] [PMID: 21067385]
[19]
Brewster, A.M.; Chavez-MacGregor, M.; Brown, P. Epidemiology, biology, and treatment of triple-negative breast cancer in women of African ancestry. Lancet Oncol., 2014, 15(13), e625-e634.
[http://dx.doi.org/10.1016/S1470-2045(14)70364-X] [PMID: 25456381]
[20]
Lehmann, B.D.; Jovanović, B.; Chen, X.; Estrada, M.V.; Johnson, K.N.; Shyr, Y.; Moses, H.L.; Sanders, M.E.; Pietenpol, J.A. Refinement of tripleRepurposing Drugs as Novel Triple-negative Breast Cancer Therapeutics negative breast cancer molecular subtypes: implications for neoadjuvant chemotherapy selection. PLoS One, 2016, 11(6), e0157368.,
[http://dx.doi.org/10.1371/journal.pone.0157368] [PMID: 27310713]
[21]
Lehmann, B.D.; Pietenpol, J.A. Identification and use of biomarkers in treatment strategies for triple-negative breast cancer subtypes. J. Pathol., 2014, 232(2), 142-150.,
[http://dx.doi.org/10.1002/path.4280] [PMID: 24114677]
[22]
Jang, M.H.; Kim, H.J.; Kim, E.J.; Chung, Y.R.; Park, S.Y. Expression of epithelial-mesenchymal transition-related markers in triple-negative breast cancer: ZEB1 as a potential biomarker for poor clinical outcome. Hum. Pathol., 2015, 46(9), 1267-1274..
[http://dx.doi.org/10.1016/j.humpath.2015.05.010] [PMID: 26170011]
[23]
Reis-Filho, J.S.; Tutt, A.N. Triple negative tumours: a critical review.Histopathology, 2008, 52(1), 108-118.,
[http://dx.doi.org/10.1111/j.1365-2559.2007.02889.x] [PMID: 18171422]
[24]
Anders, C.K.; Carey, L.A. Biology, metastatic patterns, and treatment of patients with triple-negative breast cancer.Clin. Breast Cancer, 2009, 9(Suppl. 2), S73-S81.,
[http://dx.doi.org/10.3816/CBC.2009.s.008] [PMID: 19596646]
[25]
Saha, A.; Chattopadhyay, S.; Azam, M.; Sur, P.K. Clinical outcome and pattern of recurrence in patients with triple negative breast cancer as compared with non-triple negative breast cancer group.Clin. Cancer Investig. J., 2012, 1(4), 201.,
[http://dx.doi.org/10.4103/2278-0513.106256]
[26]
Chikarmane, S.A.; Tirumani, S.H.; Howard, S.A.; Jagannathan, J.P.; DiPiro, P.J. Metastatic patterns of breast cancer subtypes: what radiologists should know in the era of personalized cancer medicine.Clin. Radiol., 2015, 70(1), 1-10.,
[http://dx.doi.org/10.1016/j.crad.2014.08.015] [PMID: 25300558]
[27]
Gucalp, A.; Traina, T.A. Triple-negative breast cancer: adjuvant therapeutic options.Chemother. Res. Pract., 2011, 2011, 696208.,
[http://dx.doi.org/10.1155/2011/696208] [PMID: 22312556]
[28]
Lukong, K.E. Understanding breast cancer - The long and winding road. BBA Clin., 2017, 7, 64-77.,
[http://dx.doi.org/10.1016/j.bbacli.2017.01.001] [PMID: 28194329]
[29]
Brouckaert, O.; Wildiers, H.; Floris, G.; Neven, P. Update on triple-negative breast cancer: prognosis and management strategies. Int. J. Womens Health, 2012, 4(1), 511-520.
[PMID: 23071421]
[30]
Rezai, M.; Kraemer, S.; Kimmig, R.; Kern, P. Breast conservative surgery and local recurrence.Breast, 2015, 24(Suppl. 2), S100-S107.,
[http://dx.doi.org/10.1016/j.breast.2015.07.024] [PMID: 26432359]
[31]
Won, K.A.; Spruck, C. Triple-negative breast cancer therapy: current and future perspectives (Review). Int. J. Oncol., 2020, 57(6), 1245-1261.,
[http://dx.doi.org/10.3892/ijo.2020.5135] [PMID: 33174058]
[32]
Yagata, H.; Kajiura, Y.; Yamauchi, H. Current strategy for triple-negative breast cancer: appropriate combination of surgery, radiation, and chemotherapy.Breast Cancer, 2011, 18(3), 165-173.,
[http://dx.doi.org/10.1007/s12282-011-0254-9] [PMID: 21290263]
[33]
Isakoff, S.J. Triple-negative breast cancer: role of specific chemotherapy agents.Cancer J., 2010, 16(1), 53-61.,
[http://dx.doi.org/10.1097/PPO.0b013e3181d24ff7] [PMID: 20164691]
[34]
Rivera, E. Implications of anthracycline-resistant and taxane-resistant metastatic breast cancer and new therapeutic options. Breast J., 2010, 16(3), 252- 263.,
[http://dx.doi.org/10.1111/j.1524-4741.2009.00896.x] [PMID: 20408828]
[35]
Lee, A.; Djamgoz, M.B.A. Triple negative breast cancer: Emerging therapeutic modalities and novel combination therapies. Cancer Treat. Rev., 2018, 62, 110-122.,
[http://dx.doi.org/10.1016/j.ctrv.2017.11.003] [PMID: 29202431]
[36]
Siena, S.; Sartore-Bianchi, A.; Di Nicolantonio, F.; Balfour, J.; Bardelli, A. Biomarkers predicting clinical outcome of epidermal growth factor receptortargeted therapy in metastatic colorectal cancer. J. Natl. Cancer Inst., 2009, 101(19), 1308-1324..
[http://dx.doi.org/10.1093/jnci/djp280] [PMID: 19738166]
[37]
Podo, F.; Buydens, L.M.; Degani, H.; Hilhorst, R.; Klipp, E.; Gribbestad, I.S.; Van Huffel, S.; van Laarhoven, H.W.; Luts, J.; Monleon, D.; Postma, G.J.; Schneiderhan-Marra, N.; Santoro, F.; Wouters, H.; Russnes, H.G.; Sørlie, T.; Tagliabue, E.; Børresen-Dale, A.L. Triple-negative breast cancer: present challenges and new perspectives.Mol. Oncol., 2010, 4(3), 209-229.,
[http://dx.doi.org/10.1016/j.molonc.2010.04.006] [PMID: 20537966]
[38]
Denkert, C.; Liedtke, C.; Tutt, A.; von Minckwitz, G. Molecular alterations in triple-negative breast cancer-the road to new treatment strategies.Lancet, 2017, 389(10087), 2430-2442.,
[http://dx.doi.org/10.1016/S0140-6736(16)32454-0] [PMID: 27939063]
[39]
Yap, T.A.; Sandhu, S.K.; Workman, P.; de Bono, J.S. Envisioning the future of early anticancer drug development.Nat. Rev. Cancer, 2010, 10(7), 514- 523.,
[http://dx.doi.org/10.1038/nrc2870] [PMID: 20535131]
[40]
Saini, M.; Parihar, N.; Soni, S.L.; Sharma, V. Drug repurposing: an overview. Asian J. Pharma. Res. Develop., 2020, 8(4), 194-212.
[41]
Bertolini, F.; Sukhatme, V.P.; Bouche, G. Drug repurposing in oncology-patient and health systems opportunities.Nat. Rev. Clin. Oncol., 2015, 12(12), 732-742.,
[http://dx.doi.org/10.1038/nrclinonc.2015.169] [PMID: 26483297]
[42]
Antoszczak, M.; Markowska, A.; Markowska, J.; Huczyński, A. Old wine in new bottles: drug repurposing in oncology.Eur. J. Pharmacol., 2020, 866, 172784.,
[http://dx.doi.org/10.1016/j.ejphar.2019.172784] [PMID: 31730760]
[43]
Van Norman, G.A. Drugs, devices, and the FDA: part 1: an overview of approval processes for drugs. JACC Basic Transl. Sci., 2016, 1(3), 170-179.,
[http://dx.doi.org/10.1016/j.jacbts.2016.03.002] [PMID: 30167510]
[44]
Ashburn, T.T.; Thor, K.B. Drug repositioning: identifying and developing new uses for existing drugs.Nat. Rev. Drug Discov., 2004, 3(8), 673-683.,
[http://dx.doi.org/10.1038/nrd1468] [PMID: 15286734]
[45]
Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; Norris, A.; Sanseau, P.; Cavalla, D.; Pirmohamed, M. Drug repurposing: progress, challenges and recommendations.Nat. Rev. Drug Discov., 2019, 18(1), 41-58.,
[http://dx.doi.org/10.1038/nrd.2018.168 ] [PMID: 30310233]
[46]
Kirtonia, A.; Gala, K.; Fernandes, S.G.; Pandya, G.; Pandey, A.K.; Sethi, G.; Khattar, E.; Garg, M. Repurposing of drugs: an attractive pharmacological strategy for cancer therapeutics. Semin. Cancer Biol., 2021, 68, 258-278.
[47]
Gns, H.S.; Saraswathy, G.R.; Murahari, M.; Krishnamurthy, M. An update on drug repurposing: re-written saga of the drug’s fate. Biomed. Pharmacother., 2019, 110, 700-716.,
[http://dx.doi.org/10.1016/j.biopha.2018.11.127]
[48]
Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe, E.W., Jr Computational methods in drug discovery.Pharmacol. Rev., 2013, 66(1), 334-395.,
[http://dx.doi.org/10.1124/pr.112.007336] [PMID: 24381236]
[49]
Wahba, H.A.; El-Hadaad, H.A. Current approaches in treatment of triple-negative breast cancer. Cancer Biol. Med., 2015, 12(2), 106-116.
[PMID: 26175926]
[50]
Feng, Z.; Xia, Y.; Gao, T.; Xu, F.; Lei, Q.; Peng, C.; Yang, Y.; Xue, Q.; Hu, X.; Wang, Q.; Wang, R.; Ran, Z.; Zeng, Z.; Yang, N.; Xie, Z.; Yu, L. The antipsychotic agent trifluoperazine hydrochloride suppresses triple-negative breast cancer tumor growth and brain metastasis by inducing G0/G1 arrest and apoptosis. Cell Death Dis., 2018, 9(10), 1006.,
[http://dx.doi.org/10.1038/s41419-018-1046-3] [PMID: 30258182]
[51]
Abbott, N.J. Blood-brain barrier structure and function and the challenges for CNS drug delivery. J. Inherit. Metab. Dis., 2013, 36(3), 437-449.,
[http://dx.doi.org/10.1007/s10545-013-9608-0] [PMID: 23609350]
[52]
Xue, Q.; Liu, Z.; Feng, Z.; Xu, Y.; Zuo, W.; Wang, Q.; Gao, T.; Zeng, J.; Hu, X.; Jia, F.; Zhu, Y.; Xia, Y.; Yu, L. Penfluridol: an antipsychotic agent suppresses lung cancer cell growth and metastasis by inducing G0/G1 arrest and apoptosis. Biomed. Pharmacother., 2020, 121, 109598.
[http://dx.doi.org/10.1016/j.biopha.2019.109598] [PMID: 31733572]
[53]
Xu, F.; Xia, Y.; Feng, Z.; Lin, W.; Xue, Q.; Jiang, J.; Yu, X.; Peng, C.; Luo, M.; Yang, Y.; Wei, Y.; Yu, L. Repositioning antipsychotic fluphenazine hydrochloride for treating triple negative breast cancer with brain metastases and lung metastases. Am. J. Cancer Res., 2019, 9(3), 459-478.
[PMID: 30949404]
[54]
Colavito, S.A. AXL as a target in breast cancer therapy. J. Oncol., 2020, 2020, 5291952.,
[http://dx.doi.org/10.1155/2020/5291952] [PMID: 32148495]
[55]
Dees, S.; Pontiggia, L.; Jasmin, J.F.; Mercier, I. Phosphorylated STAT3 (Tyr705) as a biomarker of response to pimozide treatment in triple-negative breast cancer. Cancer Biol. Ther., 2020, 21(6), 506-521.,
[http://dx.doi.org/10.1080/15384047.2020.1726718] [PMID: 32164483]
[56]
Lorenzo, C.R.; Koo, J. Pimozide in dermatologic practice: a comprehensive review.Am. J. Clin. Dermatol., 2004, 5(5), 339-349.,
[http://dx.doi.org/10.2165/00128071-200405050-00007] [PMID: 15554735]
[57]
Tang, Y.; Liang, J.; Wu, A.; Chen, Y.; Zhao, P.; Lin, T.; Zhang, M.; Xu, Q.; Wang, J.; Huang, Y. Co-delivery of trichosanthin and albendazole by nano-self-assembly for overcoming tumor multidrug-resistance and metastasis.ACS Appl. Mater. Interfaces, 2017, 9(32), 26648-26664.,
[http://dx.doi.org/10.1021/acsami.7b05292 ] [PMID: 28741923]
[58]
Castro, L.S.; Kviecinski, M.R.; Ourique, F.; Parisotto, E.B.; Grinevicius, V.M.; Correia, J.F.; Wilhelm Filho, D.; Pedrosa, R.C. Albendazole as a promising molecule for tumor control.Redox Biol., 2016, 10, 90-99.,
[http://dx.doi.org/10.1016/j.redox.2016.09.013] [PMID: 27710854]
[59]
Melotti, A.; Mas, C.; Kuciak, M.; Lorente-Trigos, A.; Borges, I.; Ruiz i Altaba, A. The river blindness drug Ivermectin and related macrocyclic lactones inhibit WNT-TCF pathway responses in human cancer. EMBO Mol. Med., 2014, 6(10), 1263-1278.,
[http://dx.doi.org/10.15252/emmm.201404084] [PMID: 25143352]
[60]
Kwon, Y.J.; Petrie, K.; Leibovitch, B.A.; Zeng, L.; Mezei, M.; Howell, L.; Gil, V.; Christova, R.; Bansal, N.; Yang, S.; Sharma, R.; Ariztia, E.V.; Frankum, J.; Brough, R.; Sbirkov, Y.; Ashworth, A.; Lord, C.J.; Zelent, A.; Farias, E.; Zhou, M.M.; Waxman, S. Selective inhibition of SIN3 corepressor with avermectins as a novel therapeutic strategy in triple-negative breast cancer.Mol. Cancer Ther., 2015, 14(8), 1824-1836.,
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0980-T] [PMID: 26078298]
[61]
Raimondi, S.; Botteri, E.; Munzone, E.; Cipolla, C.; Rotmensz, N.; DeCensi, A.; Gandini, S. Use of beta-blockers, angiotensin-converting enzyme inhibitors and angiotensin receptor blockers and breast cancer survival: systematic review and meta-analysis. Int. J. Cancer, 2016, 139(1), 212-219.,
[http://dx.doi.org/10.1002/ijc.30062] [PMID: 26916107]
[62]
Munzone, E.; Botteri, E.; Rotmensz, N.; Cipolla, C.M.; Zanelotti, A.; Adamoli, L.; Viale, G.; Goldhirsch, A.; Gandini, S. Prognostic effect of beta blockers (BB) in triple-negative breast cancer (TNBC) patients. J. Clin. Oncol., 2013, 31(15), 1061-1061.
[63]
Spini, A.; Roberto, G.; Gini, R.; Bartolini, C.; Bazzani, L.; Donnini, S.; Crispino, S.; Ziche, M. Evidence of β-blockers drug repurposing for the treatment of triple negative breast cancer: a systematic review. Neoplasma, 2019, 66(6), 963-970.,
[http://dx.doi.org/10.4149/neo_2019_190110N34] [PMID: 31607128]
[64]
Pon, C.K.; Lane, J.R.; Sloan, E.K.; Halls, M.L. The β2-adrenoceptor activates a positive cAMP-calcium feedforward loop to drive breast cancer cell invasion. FASEB J., 2016, 30(3), 1144-1154.,
[http://dx.doi.org/10.1096/fj.15-277798] [PMID: 26578688]
[65]
Montoya, A.; Varela-Ramirez, A.; Dickerson, E.; Pasquier, E.; Torabi, A.; Aguilera, R.; Nahleh, Z.; Bryan, B. The beta adrenergic receptor antagonist propranolol alters mitogenic and apoptotic signaling in late stage breast cancer. Biomed. J., 2019, 42(3), 155-165.
[66]
Arnedos, M.; Bihan, C.; Delaloge, S.; Andre, F. Triple-negative breast cancer: are we making headway at least?Ther. Adv. Med. Oncol., 2012, 4(4), 195-210.,
[http://dx.doi.org/10.1177/1758834012444711] [PMID: 22754593]
[67]
Botteri, E.; Munzone, E.; Rotmensz, N.; Cipolla, C.; De Giorgi, V.; Santillo, B.; Zanelotti, A.; Adamoli, L.; Colleoni, M.; Viale, G.; Goldhirsch, A.; Gandini, S. Therapeutic effect of β-blockers in triple-negative breast cancer postmenopausal women.Breast Cancer Res. Treat., 2013, 140(3), 567-575.,
[http://dx.doi.org/10.1007/s10549-013-2654-3] [PMID: 23912960]
[68]
Melhem-Bertrandt, A.; Chavez-Macgregor, M.; Lei, X.; Brown, E.N.; Lee, R.T.; Meric-Bernstam, F.; Sood, A.K.; Conzen, S.D.; Hortobagyi, G.N.; Gonzalez-Angulo, A.M. Beta-blocker use is associated with improved relapse- free survival in patients with triple-negative breast cancer. J. Clin. Oncol., 2011, 29(19), 2645-2652.,
[http://dx.doi.org/10.1200/JCO.2010.33.4441] [PMID: 21632501]
[69]
Michalopoulos, A.S.; Tsiodras, S.; Rellos, K.; Mentzelopoulos, S.; Falagas, M.E. Colistin treatment in patients with ICU-acquired infections caused by multiresistant Gram-negative bacteria: the renaissance of an old antibiotic. Clin. Microbiol. Infect., 2005, 11(2), 115-121.,
[http://dx.doi.org/10.1111/j.1469-0691.2004.01043.x] [PMID: 15679485]
[70]
Blagodatski, A.; Klimenko, A.; Jia, L.; Katanaev, V.L. Small molecule wnt pathway modulators from natural sources: history, state of the art and perspectives.Cells, 2020, 9(3), 589.,
[http://dx.doi.org/10.3390/cells9030589] [PMID: 32131438]
[71]
Ahmed, K.; Koval, A.; Xu, J.; Bodmer, A.; Katanaev, V.L. Towards the first targeted therapy for triple-negative breast cancer: repositioning of clofazimine as a chemotherapy-compatible selective Wnt pathway inhibitor.Cancer Lett., 2019, 449, 45-55.,
[http://dx.doi.org/10.1016/j.canlet.2019.02.018] [PMID: 30771433]
[72]
Liao, C.; Zhang, Y.; Fan, C.; Herring, L.E.; Liu, J.; Locasale, J.W.; Takada, M.; Zhou, J.; Zurlo, G.; Hu, L.; Simon, J.M.; Ptacek, T.S.; Andrianov, V.G.; Loza, E.; Peng, Y.; Yang, H.; Perou, C.M.; Zhang, Q. Identification of BBOX1 as a therapeutic target in triple-negative breast cancer.Cancer Discov., 2020, 10(11), 1706-1721.,
[http://dx.doi.org/10.1158/2159-8290.CD-20-0288] [PMID: 32690540]
[73]
Scatena, C.; Roncella, M.; Di Paolo, A.; Aretini, P.; Menicagli, M.; Fanelli, G.; Marini, C.; Mazzanti, C.M.; Ghilli, M.; Sotgia, F.; Lisanti, M.P.; Naccarato, A.G. Doxycycline, an inhibitor of mitochondrial biogenesis, effectively reduces Cancer Stem Cells (CSCs) in early breast cancer patients: a clinical pilot study. Front. Oncol., 2018, 8, 452.,
[http://dx.doi.org/10.3389/fonc.2018.00452 ] [PMID: 30364293]
[74]
Yang, N.; Zhou, T.C.; Lei, X.X.; Wang, C.; Yan, M.; Wang, Z.F.; Liu, W.; Wang, J.; Ming, K.H.; Wang, B.C.; Xu, B.L.; Liu, Q. .Inhibition of sonic hedgehog signaling pathway by thiazole antibiotic thiostrepton attenuates the CD44+/CD24-stem-like population and sphere-forming capacity in triplenegative breast cancer. Cell. Physiol. Biochem., 2016, 38(3), 1157-1170.,
[http://dx.doi.org/10.1159/000443066] [PMID: 26963129]
[75]
Vellanki, S.H.; Cruz, R.G.B.; Richards, C.E.; Smith, Y.E.; Hudson, L.; Jahns, H.; Hopkins, A.M. Antibiotic Tetrocarcin-A down-regulates JAM-A, IAPs and induces apoptosis in triple-negative breast cancer models. Anticancer Res., 2019, 39(3), 1197-1204.,
[http://dx.doi.org/10.21873/anticanres.13230] [PMID: 30842150]
[76]
Shaimerdenova, M.; Karapina, O.; Mektepbayeva, D.; Alibek, K.; Akilbekova, D. The effects of antiviral treatment on breast cancer cell line.Infect. Agent. Cancer, 2017, 12(1), 18.,
[http://dx.doi.org/10.1186/s13027-017-0128-7] [PMID: 28344640]
[77]
Byun, W.S.; Kim, W.K.; Yoon, J.S.; Jarhad, D.B.; Jeong, L.S.; Lee, S.K. Antiproliferative and antimigration activities of fluoro-neplanocin a via inhibition of histone H3 methylation in triple-negative breast cancer.Biomolecules, 2020, 10(4), 530.,
[http://dx.doi.org/10.3390/biom10040530] [PMID: 32244385]
[78]
Zhang, L.; Deng, L.; Chen, F.; Yao, Y.; Wu, B.; Wei, L.; Mo, Q.; Song, Y. Inhibition of histone H3K79 methylation selectively inhibits proliferation, self-renewal and metastatic potential of breast cancer. Oncotarget, 2014, 5(21), 10665-10677.,
[http://dx.doi.org/10.18632/oncotarget.2496] [PMID: 25359765]
[79]
Yule, M.; Davidsen, K.; Bloe, M.; Hodneland, L.; Engelsen, A.; Lie, M.; Bougnaud, S.; D’Mello, S.; Aguilera, K.; Ahmed, L.; Rybika, A. Combination of bemcentinib (BGB324): a first-in-class selective oral AXL inhibitor, with pembrolizumab in patients with triple negative breast cancer and adenocarcinoma of the lung. J. Clin. Oncol., 2018, 36(5).,
[http://dx.doi.org/10.1200/JCO.2018.36.5_suppl.TPS43]
[80]
Phillips, M.B.; Stuart, J.D.; Rodríguez Stewart, R.M.; Berry, J.T.; Mainou, B.A.; Boehme, K.W. Current understanding of reovirus oncolysis mechanisms.Oncolytic Virother., 2018, 7, 53-63.,
[http://dx.doi.org/10.2147/OV.S143808] [PMID: 29942799]
[81]
Rodríguez Stewart, R.M.; Berry, J.T.L.; Berger, A.K.; Yoon, S.B.; Hirsch, A.L.; Guberman, J.A.; Patel, N.B.; Tharp, G.K.; Bosinger, S.E.; Mainou, B.A. .Enhanced killing of triple-negative breast cancer cells by reassortant reovirus and topoisomerase inhibitors. J. Virol., 2019, 93(23), e01411-19.,
[http://dx.doi.org/10.1128/JVI.01411-19] [PMID: 31511390]
[82]
Clements, D.; Helson, E.; Gujar, S.A.; Lee, P.W. Reovirus in cancer therapy: an evidence-based review. Oncolytic Virother., 2014, 3, 69-82.
[PMID: 27512664]
[83]
Bozorgi, A.; Khazaei, S.; Khademi, A.; Khazaei, M. Natural and herbal compounds targeting breast cancer, a review based on cancer stem cells. Iran. J. Basic Med. Sci., 2020, 23(8), 970-983.
[PMID: 32952942]
[84]
Afshar, E.; Hashemi-Arabi, M.; Salami, S.; Peirouvi, T.; Pouriran, R. Screening of acetaminophen-induced alterations in epithelial-to-mesenchymal transition-related expression of microRNAs in a model of stem-like triple-negative breast cancer cells: the possible functional impacts. Gene, 2019, 702, 46-55.
[http://dx.doi.org/10.1016/j.gene.2019.02.106] [PMID: 30898700]
[85]
Ivanova, L.; Zandberga, E.; Siliņa, K.; Kalniņa, Z.; Ābols, A.; Endzeliņš, E.; Vendina, I.; Romanchikova, N.; Hegmane, A.; Trapencieris, P.; Eglītis, J.; Linē, A. Prognostic relevance of carbonic anhydrase IX expression is distinct in various subtypes of breast cancer and its silencing suppresses self-renewal capacity of breast cancer cells. Cancer Chemother. Pharmacol., 2015, 75(2), 235-246.
[http://dx.doi.org/10.1007/s00280-014-2635-1] [PMID: 25422154]
[86]
Spini, A.; Donnini, S.; Pantziarka, P.; Crispino, S.; Ziche, M. Repurposing of drugs for triple negative breast cancer: an overview. ecancer. Med. Sci., 2020, 14, 1071.
[87]
Canonici, A.; Ibrahim, M.F.; Fanning, K.; Cremona, M.; Morgan, C.; Hennessy, B.; Solca, F.; Crown, J.; O’Donovan, N. Biomarkers for afatinib and dasatinib treatment in triple negative breast cancer. Ann. Oncol., 2016, 27, vi34.
[http://dx.doi.org/10.1093/annonc/mdw363.58]
[88]
Priotti, J.; Leonardi, D.; Pico, G.; Lamas, M.C. Application of fluorescence emission for characterization of albendazole and ricobendazole micellar systems: elucidation of the molecular mechanism of drug solubilization process. AAPS PharmSciTech, 2018, 19(3), 1152-1159.
[http://dx.doi.org/10.1208/s12249-017-0927-6] [PMID: 29218582]
[89]
Tentler, J.J.; Ionkina, A.A.; Tan, A.C.; Newton, T.P.; Pitts, T.M.; Glogowska, M.J.; Kabos, P.; Sartorius, C.A.; Sullivan, K.D.; Espinosa, J.M.; Eckhardt, S.G.; Diamond, J.R. p53 family members regulate phenotypic response to Aurora kinase A inhibition in triple-negative breast cancer. Mol. Cancer Ther., 2015, 14(5), 1117-1129.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0538-T] [PMID: 25758253]
[90]
Tsimafeyeu, I.; Ludes-Meyers, J.; Stepanova, E.; Daeyaert, F.; Khochenkov, D.; Joose, J.B.; Solomko, E.; Van Akene, K.; Peretolchina, N.; Yin, W.; Ryabaya, O.; Byakhov, M.; Tjulandin, S. Targeting FGFR2 with alofanib (RPT835) shows potent activity in tumour models. Eur. J. Cancer, 2016, 61, 20-28.,
[http://dx.doi.org/10.1016/j.ejca.2016.03.068] [PMID: 27136102]
[91]
Amith, S.R.; Wilkinson, J.M.; Baksh, S.; Fliegel, L. The Na+/H+ exchanger (NHE1) as a novel co-adjuvant target in paclitaxel therapy of triple-negative breast cancer cells. Oncotarget, 2015, 6(2), 1262-1275.
[http://dx.doi.org/10.18632/oncotarget.2860] [PMID: 25514463]
[92]
Hu, X.; Cao, J.; Hu, W.; Wu, C.; Pan, Y.; Cai, L.; Tong, Z.; Wang, S.; Li, J.; Wang, Z.; Wang, B.; Chen, X.; Yu, H. Multicenter phase II study of apatinib in non-triple-negative metastatic breast cancer. BMC Cancer, 2014, 14(1), 820.
[http://dx.doi.org/10.1186/1471-2407-14-820] [PMID: 25376790]
[93]
Robinson, P.; Kasembeli, M.; Bharadwaj, U.; Engineer, N.; Eckols, K.T.; Tweardy, D.J. Substance P receptor signaling mediates doxorubicin-induced cardiomyocyte apoptosis and triple-negative breast cancer chemoresistance. BioMed Res. Int., 2016, 20161959270
[http://dx.doi.org/10.1155/2016/1959270] [PMID: 26981525]
[94]
Greenshields, A.L.; Fernando, W.; Hoskin, D.W. .The anti-malarial drug artesunate causes cell cycle arrest and apoptosis of triple-negative MDAMB- 468 and HER2-enriched SK-BR-3 breast cancer cells. Exp. Mol. Pathol., 2019, 107, 10-22.,
[http://dx.doi.org/10.1016/j.yexmp.2019.01.006] [PMID: 30660598]
[95]
Wu, C.W.; Liu, H.C.; Yu, Y.L.; Hung, Y.T.; Wei, C.W.; Yiang, G.T. Combined treatment with vitamin C and methotrexate inhibits triple-negative breast cancer cell growth by increasing H2O2 accumulation and activating caspase-3 and p38 pathways. Oncol. Rep., 2017, 37(4), 2177-2184.
[http://dx.doi.org/10.3892/or.2017.5439] [PMID: 28259996]
[96]
Shiao, J.; Thomas, K.M.; Rahimi, A.S.; Rao, R.; Yan, J.; Xie, X.J.; DaSilva, M.; Spangler, A.; Leitch, M.; Wooldridge, R.; Rivers, A.; Farr, D.; Haley, B.; Kim, D.W. Aspirin/antiplatelet agent use improves disease-free survival and reduces the risk of distant metastases in Stage II and III triple-negative breast cancer patients. Breast Cancer Res. Treat., 2017, 161(3), 463-471.
[http://dx.doi.org/10.1007/s10549-016-4081-8] [PMID: 28005245]
[97]
Talarico, G.; Orecchioni, S.; Dallaglio, K.; Reggiani, F.; Mancuso, P.; Calleri, A.; Gregato, G.; Labanca, V.; Rossi, T.; Noonan, D.M.; Albini, A.; Bertolini, F. Aspirin and atenolol enhance metformin activity against breast cancer by targeting both neoplastic and microenvironment cells. Sci. Rep., 2016, 6, 18673.
[http://dx.doi.org/10.1038/srep18673] [PMID: 26728433]
[98]
Solinas, C.; Gombos, A.; Latifyan, S.; Piccart-Gebhart, M.; Kok, M.; Buisseret, L. Targeting immune checkpoints in breast cancer: an update of early results. ESMO Open, 2017, 2(5)e000255
[http://dx.doi.org/10.1136/esmoopen-2017-000255] [PMID: 29177095]
[99]
Rachner, T.D.; Göbel, A.; Thiele, S.; Rauner, M.; Benad-Mehner, P.; Hadji, P.; Bauer, T.; Muders, M.H.; Baretton, G.B.; Jakob, F.; Ebert, R.; Bornhäuser, M.; Schem, C.; Hofbauer, L.C. Dickkopf-1 is regulated by the mevalonate pathway in breast cancer. Breast Cancer Res., 2014, 16(1), R20.
[http://dx.doi.org/10.1186/bcr3616] [PMID: 24528599]
[100]
Raninga, P.V.; Lee, A.C.; Sinha, D.; Shih, Y.Y.; Mittal, D.; Makhale, A.; Bain, A.L.; Nanayakarra, D.; Tonissen, K.F.; Kalimutho, M.; Khanna, K.K. Therapeutic cooperation between auranofin, a thioredoxin reductase inhibitor and anti-PD-L1 antibody for treatment of triple-negative breast cancer. Int. J. Cancer, 2020, 146(1), 123-136.
[http://dx.doi.org/10.1002/ijc.32410] [PMID: 31090219]
[101]
Fu, S.; Chen, X.; Lo, H.W.; Lin, J. Combined bazedoxifene and paclitaxel treatments inhibit cell viability, cell migration, colony formation, and tumor growth and induce apoptosis in breast cancer. Cancer Lett., 2019, 448, 11-19.
[http://dx.doi.org/10.1016/j.canlet.2019.01.026] [PMID: 30707920]
[102]
Park, S.H.; Chung, Y.M.; Ma, J.; Yang, Q.; Berek, J.S.; Hu, M.C. Pharmacological activation of FOXO3 suppresses triple-negative breast cancer in vitro and in vivo. Oncotarget, 2016, 7(27), 42110-42125.
[http://dx.doi.org/10.18632/oncotarget.9881] [PMID: 27283899]
[103]
McNamara, K.M.; Yoda, T.; Takagi, K.; Miki, Y.; Suzuki, T.; Sasano, H. Androgen receptor in triple negative breast cancer. J. Steroid Biochem. Mol. Biol., 2013, 133, 66-76.
[http://dx.doi.org/10.1016/j.jsbmb.2012.08.007] [PMID: 22982153]
[104]
Orecchioni, S.; Reggiani, F.; Talarico, G.; Mancuso, P.; Calleri, A.; Gregato, G.; Labanca, V.; Noonan, D.M.; Dallaglio, K.; Albini, A.; Bertolini, F. The biguanides metformin and phenformin inhibit angiogenesis, local and metastatic growth of breast cancer by targeting both neoplastic and microenvironment cells. Int. J. Cancer, 2015, 136(6), E534-E544.
[http://dx.doi.org/10.1002/ijc.29193] [PMID: 25196138]
[105]
Sameni, M.; Tovar, E.A.; Essenburg, C.J.; Chalasani, A.; Linklater, E.S.; Borgman, A.; Cherba, D.M.; Anbalagan, A.; Winn, M.E.; Graveel, C.R.; Sloane, B.F. Cabozantinib (XL184) inhibits growth and invasion of preclinical TNBC models. Clin. Cancer Res., 2016, 22(4), 923-934.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0187] [PMID: 26432786]
[106]
Liu, J.F.; Tolaney, S.M.; Birrer, M.; Fleming, G.F.; Buss, M.K.; Dahlberg, S.E.; Lee, H.; Whalen, C.; Tyburski, K.; Winer, E.; Ivy, P.; Matulonis, U.A. A Phase 1 trial of the poly(ADP-ribose) polymerase inhibitor olaparib (AZD2281) in combination with the anti-angiogenic cediranib (AZD2171) in recurrent epithelial ovarian or triple-negative breast cancer. Eur. J. Cancer, 2013, 49(14), 2972-2978.
[http://dx.doi.org/10.1016/j.ejca.2013.05.020] [PMID: 23810467]
[107]
Chow, L.W.; Tung, S.Y.; Ng, T.Y. Im, S.A.; Lee, M.H.; Yip, A.Y.; Toi, M.; Glück, S. Concurrent celecoxib with 5-fluorouracil/epirubicin/cyclophosphamide followed by docetaxel for stages II - III invasive breast cancer: the OOTR-N001 study. Expert Opin. Investig. Drugs, 2013, 22(3), 299-307.
[http://dx.doi.org/10.1517/13543784.2013.766715] [PMID: 23394482]
[108]
Deka, S.J.; Roy, A.; Ramakrishnan, V.; Manna, D.; Trivedi, V. Danazol has potential to cause PKC translocation, cell cycle dysregulation, and apoptosis in breast cancer cells. Chem. Biol. Drug Des., 2017, 89(6), 953-963.
[http://dx.doi.org/10.1111/cbdd.12921] [PMID: 27933735]
[109]
Qian, X.L.; Zhang, J.; Li, P.Z.; Lang, R.G.; Li, W.D.; Sun, H.; Liu, F.F.; Guo, X.J.; Gu, F.; Fu, L. Dasatinib inhibits c-src phosphorylation and prevents the proliferation of Triple-Negative Breast Cancer (TNBC) cells which overexpress Syndecan-Binding Protein (SDCBP). PLoS One, 2017, 12(1)e0171169
[http://dx.doi.org/10.1371/journal.pone.0171169] [PMID: 28141839]
[110]
André, F.; Bachelot, T.; Campone, M.; Dalenc, F.; Perez-Garcia, J.M.; Hurvitz, S.A.; Turner, N.; Rugo, H.; Smith, J.W.; Deudon, S.; Shi, M.; Zhang, Y.; Kay, A.; Porta, D.G.; Yovine, A.; Baselga, J. Targeting FGFR with dovitinib (TKI258): preclinical and clinical data in breast cancer. Clin. Cancer Res., 2013, 19(13), 3693-3702.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0190] [PMID: 23658459]
[111]
Lin, C.C.; Lo, M.C.; Moody, R.R.; Stevers, N.O.; Tinsley, S.L.; Sun, D. Doxycycline targets aldehyde dehydrogenase positive breast cancer stem cells. Oncol. Rep., 2018, 39(6), 3041-3047.
[http://dx.doi.org/10.3892/or.2018.6337] [PMID: 29620216]
[112]
von Wahlde, M.K.; Hülsewig, C.; Ruckert, C.; Götte, M.; Kiesel, L.; Bernemann, C. The anti-androgen drug dutasteride renders triple negative breast cancer cells more sensitive to chemotherapy via inhibition of HIF-1α-/VEGF-signaling. Gynecol. Endocrinol., 2015, 31(2), 160-164.
[http://dx.doi.org/10.3109/09513590.2014.971235] [PMID: 25356777]
[113]
Bardia, A.; Gucalp, A.; DaCosta, N.; Gabrail, N.; Danso, M.; Ali, H.; Blackwell, K.L.; Carey, L.A.; Eisner, J.R.; Baskin-Bey, E.S.; Traina, T.A. Phase 1 study of seviteronel, a selective CYP17 lyase and androgen receptor inhibitor, in women with estrogen receptor-positive or triple-negative breast cancer. Breast Cancer Res. Treat., 2018, 171(1), 111-120.
[http://dx.doi.org/10.1007/s10549-018-4813-z] [PMID: 29744674]
[114]
Wang, B.Y.; Zhang, J.; Wang, J.L.; Sun, S.; Wang, Z.H.; Wang, L.P.; Zhang, Q.L.; Lv, F.F.; Cao, E.Y.; Shao, Z.M.; Fais, S.; Hu, X.C. Intermittent high dose proton pump inhibitor enhances the antitumor effects of chemotherapy in metastatic breast cancer. J. Exp. Clin. Cancer Res., 2015, 34(1), 85.
[http://dx.doi.org/10.1186/s13046-015-0194-x] [PMID: 26297142]
[115]
Goh, W.; Sleptsova-Freidrich, I.; Petrovic, N. Use of proton pump inhibitors as adjunct treatment for triple-negative breast cancers. An introductory study. J. Pharm. Pharm. Sci., 2014, 17(3), 439-446.
[http://dx.doi.org/10.18433/J34608] [PMID: 25224353]
[116]
Proia, D.A.; Zhang, C.; Sequeira, M.; Jimenez, J.P.; He, S.; Spector, N.; Shapiro, G.I.; Tolaney, S.; Nagai, M.; Acquaviva, J.; Smith, D.L.; Sang, J.; Bates, R.C.; El-Hariry, I. Preclinical activity profile and therapeutic efficacy of the HSP90 inhibitor ganetespib in triple-negative breast cancer. Clin. Cancer Res., 2014, 20(2), 413-424.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-2166] [PMID: 24173541]
[117]
Anders, C.; Deal, A.M.; Abramson, V.; Liu, M.C.; Storniolo, A.M.; Carpenter, J.T.; Puhalla, S.; Nanda, R.; Melhem-Bertrandt, A.; Lin, N.U.; Kelly Marcom, P.; Van Poznak, C.; Stearns, V.; Melisko, M.; Smith, J.K.; Karginova, O.; Parker, J.; Berg, J.; Winer, E.P.; Peterman, A.; Prat, A.; Perou, C.M.; Wolff, A.C.; Carey, L.A. TBCRC 018: phase II study of iniparib in combination with irinotecan to treat progressive triple negative breast cancer brain metastases. Breast Cancer Res. Treat., 2014, 146(3), 557-566.
[http://dx.doi.org/10.1007/s10549-014-3039-y] [PMID: 25001612]
[118]
Tsubamoto, H.; Sonoda, T.; Inoue, K. Impact of itraconazole on the survival of heavily pre-treated patients with triple-negative breast cancer. Anticancer Res., 2014, 34(7), 3839-3844.
[PMID: 24982411]
[119]
Retsky, M.; Rogers, R.; Demicheli, R.; Hrushesky, W.J.; Gukas, I.; Vaidya, J.S.; Baum, M.; Forget, P.; Dekock, M.; Pachmann, K. NSAID analgesic ketorolac used perioperatively may suppress early breast cancer relapse: particular relevance to triple negative subgroup. Breast Cancer Res. Treat., 2012, 134(2), 881-888.
[http://dx.doi.org/10.1007/s10549-012-2094-5] [PMID: 22622810]
[120]
Neophytou, C.; Boutsikos, P.; Papageorgis, P. Molecular mechanisms and emerging therapeutic targets of triple-negative breast cancer metastasis. Front. Oncol., 2018, 8, 31.
[http://dx.doi.org/10.3389/fonc.2018.00031] [PMID: 29520340]
[121]
Marra, A.; Viale, G.; Curigliano, G. Recent advances in triple negative breast cancer: the immunotherapy era. BMC Med., 2019, 17(1), 90.
[http://dx.doi.org/10.1186/s12916-019-1326-5] [PMID: 31068190]
[122]
Bayraktar, S.; Hernadez-Aya, L.F.; Lei, X.; Meric-Bernstam, F.; Litton, J.K.; Hsu, L.; Hortobagyi, G.N.; Gonzalez-Angulo, A.M. Effect of metformin on survival outcomes in diabetic patients with triple receptor-negative breast cancer. Cancer, 2012, 118(5), 1202-1211.
[http://dx.doi.org/10.1002/cncr.26439] [PMID: 21800293]
[123]
Kawai, M.; Nakashima, A.; Kamada, S.; Kikkawa, U. Midostaurin preferentially attenuates proliferation of triple-negative breast cancer cell lines through inhibition of Aurora kinase family. J. Biomed. Sci., 2015, 22(1), 48.
[http://dx.doi.org/10.1186/s12929-015-0150-2] [PMID: 26141684]
[124]
Nanda, R.; Stringer-Reasor, E.M.; Saha, P.; Kocherginsky, M.; Gibson, J.; Libao, B.; Hoffman, P.C.; Obeid, E.; Merkel, D.E.; Khramtsova, G.; Skor, M.; Krausz, T.; Cohen, R.N.; Ratain, M.J.; Fleming, G.F.; Conzen, S.D. A randomized phase I trial of nanoparticle albumin-bound paclitaxel with or without mifepristone for advanced breast cancer. Springerplus, 2016, 5(1), 947.
[http://dx.doi.org/10.1186/s40064-016-2457-1] [PMID: 27386391]
[125]
Barroso-Sousa, R.; Guo, H.; Barry, W.T.; Winship, G.; Overmoyer, B.; Duda, D.G.; Tolaney, S.M. A phase II study of nivolumab in combination with cabozantinib for metastatic triple-negative breast cancer (mTNBC). NPJ Breast Cancer, 2018, 7, 110.
[126]
Shangary, S.; Qin, D.; McEachern, D.; Liu, M.; Miller, R.S.; Qiu, S.; Nikolovska-Coleska, Z.; Ding, K.; Wang, G.; Chen, J.; Bernard, D.; Zhang, J.; Lu, Y.; Gu, Q.; Shah, R.B.; Pienta, K.J.; Ling, X.; Kang, S.; Guo, M.; Sun, Y.; Yang, D.; Wang, S. Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition. Proc. Natl. Acad. Sci. USA, 2008, 105(10), 3933-3938.
[http://dx.doi.org/10.1073/pnas.0708917105] [PMID: 18316739]
[127]
Teo, Z.L.; Versaci, S.; Dushyanthen, S.; Caramia, F.; Savas, P.; Mintoff, C.P.; Zethoven, M.; Virassamy, B.; Luen, S.J.; McArthur, G.A.; Phillips, W.A.; Darcy, P.K.; Loi, S. Combined CDK4/6 and PI3Kα inhibition is synergistic and immunogenic in triple-negative breast cancer. Cancer Res., 2017, 77(22), 6340-6352.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-2210] [PMID: 28947417]
[128]
Stecklein, S.R.; Kumaraswamy, E.; Behbod, F.; Wang, W.; Chaguturu, V.; Harlan-Williams, L.M.; Jensen, R.A. BRCA1 and HSP90 cooperate in homologous and non-homologous DNA double-strand-break repair and G2/M checkpoint activation. Proc. Natl. Acad. Sci. USA, 2012, 109(34), 13650-13655.
[http://dx.doi.org/10.1073/pnas.1203326109] [PMID: 22869732]
[129]
Vinayak, S.; Tolaney, S.M.; Schwartzberg, L.S.; Mita, M.M.; McCann, G.A.; Tan, A.R.; Wahner Hendrickson, A.E.; Forero-Torres, A.; Anders, C.K.; Wulf, G.M.; Dillon, P.M. TOPACIO/Keynote-162: Niraparib+ pembrolizumab in patients (pts) with metastatic triple-negative breast cancer (TNBC), a phase 2 trial. 2018 ASCO Annual Meeting, 2018, pp. 1011-1011.
[130]
Kou, X.; Jiang, X.; Liu, H.; Wang, X.; Sun, F.; Han, J.; Fan, J.; Feng, G.; Lin, Z.; Jiang, L.; Yang, Y. Simvastatin functions as a heat shock protein 90 inhibitor against triple-negative breast cancer. Cancer Sci., 2018, 109(10), 3272-3284.
[http://dx.doi.org/10.1111/cas.13748] [PMID: 30039622]
[131]
Bordonaro, S.; Berretta, M.; Tralongo, A.C.; Clementi, S.; Stanzione, B.; Tralongo, P. The real impact of target therapy in breast cancer patients: between hope and reality. Curr. Cancer Drug Targets, 2018, 18(5), 480-498.
[http://dx.doi.org/10.2174/1568009617666170209100322] [PMID: 28183251]
[132]
Lacerda, L.; Reddy, J.P.; Liu, D.; Larson, R.; Li, L.; Masuda, H.; Brewer, T.; Debeb, B.G.; Xu, W.; Hortobágyi, G.N.; Buchholz, T.A.; Ueno, N.T.; Woodward, W.A. Simvastatin radiosensitizes differentiated and stem-like breast cancer cell lines and is associated with improved local control in inflammatory breast cancer patients treated with postmastectomy radiation. Stem Cells Transl. Med., 2014, 3(7), 849-856.
[http://dx.doi.org/10.5966/sctm.2013-0204] [PMID: 24833589]
[133]
Timmerman, L.A.; Holton, T.; Yuneva, M.; Louie, R.J.; Padró, M.; Daemen, A.; Hu, M.; Chan, D.A.; Ethier, S.P.; van ’t Veer, L.J.; Polyak, K.; McCormick, F.; Gray, J.W. Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target. Cancer Cell, 2013, 24(4), 450-465.
[http://dx.doi.org/10.1016/j.ccr.2013.08.020] [PMID: 24094812]
[134]
Burstein, H.J.; Elias, A.D.; Rugo, H.S.; Cobleigh, M.A.; Wolff, A.C.; Eisenberg, P.D.; Lehman, M.; Adams, B.J.; Bello, C.L.; DePrimo, S.E.; Baum, C.M.; Miller, K.D. Phase II study of sunitinib malate, an oral multitargeted tyrosine kinase inhibitor, in patients with metastatic breast cancer previously treated with an anthracycline and a taxane. J. Clin. Oncol., 2008, 26(11), 1810-1816.
[http://dx.doi.org/10.1200/JCO.2007.14.5375] [PMID: 18347007]
[135]
Chan, N.; Willis, A.; Kornhauser, N.; Ward, M.M.; Lee, S.B.; Nackos, E.; Seo, B.R.; Chuang, E.; Cigler, T.; Moore, A.; Donovan, D.; Vallee Cobham, M.; Fitzpatrick, V.; Schneider, S.; Wiener, A.; Guillaume-Abraham, J.; Aljom, E.; Zelkowitz, R.; Warren, J.D.; Lane, M.E.; Fischbach, C.; Mittal, V.; Vahdat, L. Influencing the tumor microenvironment: a phase II study of copper depletion using tetrathiomolybdate in patients with breast cancer at high risk for recurrence and in preclinical models of lung metastases. Clin. Cancer Res., 2017, 23(3), 666-676.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-1326] [PMID: 27769988]
[136]
Tegowski, M.; Fan, C.; Baldwin, A.S. Thioridazine inhibits self-renewal in breast cancer cells via DRD2-dependent STAT3 inhibition, but induces a G1 arrest independent of DRD2. J. Biol. Chem., 2018, 293(41), 15977-15990.
[http://dx.doi.org/10.1074/jbc.RA118.003719] [PMID: 30131338]
[137]
Jin, K.; Pandey, N.B.; Popel, A.S. Simultaneous blockade of IL-6 and CCL5 signaling for synergistic inhibition of triple-negative breast cancer growth and metastasis. Breast Cancer Res., 2018, 20(1), 54.
[http://dx.doi.org/10.1186/s13058-018-0981-3] [PMID: 29898755]
[138]
Goyette, M.A.; Cusseddu, R.; Elkholi, I.; Abu-Thuraia, A.; El-Hachem, N.; Haibe-Kains, B.; Gratton, J.P.; Côté, J.F. AXL knockdown gene signature reveals a drug repurposing opportunity for a class of antipsychotics to reduce growth and metastasis of triple-negative breast cancer. Oncotarget, 2019, 10(21), 2055-2067.
[http://dx.doi.org/10.18632/oncotarget.26725] [PMID: 31007848]
[139]
Rodler, E.T.; Kurland, B.F.; Griffin, M.; Gralow, J.R.; Porter, P.; Yeh, R.F.; Gadi, V.K.; Guenthoer, J.; Beumer, J.H.; Korde, L.; Strychor, S.; Kiesel, B.F.; Linden, H.M.; Thompson, J.A.; Swisher, E.; Chai, X.; Shepherd, S.; Giranda, V.; Specht, J.M. Phase I study of veliparib (ABT-888) combined with cisplatin and vinorelbine in advanced triple-negative breast cancer and/or BRCA mutation-associated breast cancer. Clin. Cancer Res., 2016, 22(12), 2855-2864.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-2137] [PMID: 26801247]
[140]
Deshmukh, R.R.; Kim, S.; Elghoul, Y.; Dou, Q.P. P‐glycoprotein inhibition sensitizes human breast cancer cells to proteasome inhibitors. J. Cell. Biochem., 2017, 118(5), 1239-1248.
[http://dx.doi.org/10.1002/jcb.25783] [PMID: 27813130]
[141]
Li, Y.; Wang, S.; Wei, X.; Zhang, S.; Song, Z.; Chen, X.; Zhang, J. Role of inhibitor of yes-associated protein 1 in triple-negative breast cancer with taxol-based chemoresistance. Cancer Sci., 2019, 110(2), 561-567.
[http://dx.doi.org/10.1111/cas.13888] [PMID: 30467925]
[142]
Hasegawa, Y.; Tanino, H.; Horiguchi, J.; Miura, D.; Ishikawa, T.; Hayashi, M.; Takao, S.; Kim, S.J.; Yamagami, K.; Miyashita, M.; Konishi, M.; Shigeoka, Y.; Suzuki, M.; Taguchi, T.; Kubota, T.; Akazawa, K.; Kohno, N. Randomized controlled trial of zoledronic acid plus chemotherapy versus chemotherapy alone as neoadjuvant treatment of HER2-negative primary breast cancer (JONIE Study). PLoS One, 2015, 10(12)e0143643
[http://dx.doi.org/10.1371/journal.pone.0143643] [PMID: 26633806]
[143]
Mitra, S.; Dash, R. Natural products for the management and prevention of breast cancer. Evid. Based Complement. Alternat. Med., 2018, 20188324696
[http://dx.doi.org/10.1155/2018/8324696] [PMID: 29681985]
[144]
Jimenez-Garcia, S.N.; Vazquez-Cruz, M.A.; Guevara-Gonzalez, R.G.; Torres-Pacheco, I.; Cruz-Hernandez, A.; Feregrino-Perez, A.A. Current approaches for enhanced expression of secondary metabolites as bioactive compounds in plants for agronomic and human health purposes-a review. Pol. J. Food Nutr. Sci., 2013, 63(2), 67-78.
[http://dx.doi.org/10.2478/v10222-012-0072-6]
[145]
Souid, S.; Elsayed, H.E.; Ebrahim, H.Y.; Mohyeldin, M.M.; Siddique, A.B.; Karoui, H.; El Sayed, K.A.; Essafi-Benkhadir, K. 131 -oxophorbine protopheophorbide A from Ziziphus lotus as a novel mesenchymal-epithelial transition factor receptor inhibitory lead for the control of breast tumor growth in vitro and in vivo. Mol. Carcinog., 2018, 57(11), 1507-1524.
[http://dx.doi.org/10.1002/mc.22874] [PMID: 29978911]
[146]
Wu, X.X.; Yue, G.G.; Dong, J.R.; Lam, C.W.; Wong, C.K.; Qiu, M.H.; Lau, C.B. Actein inhibits the proliferation and adhesion of human breast cancer cells and suppresses migration in vivo. Front. Pharmacol., 2018, 9, 1466.
[http://dx.doi.org/10.3389/fphar.2018.01466] [PMID: 30618758]
[147]
Lou, C.; Xu, X.; Chen, Y.; Zhao, H.; Alisol, A. Alisol A suppresses proliferation, migration, and invasion in human breast cancer MDA-MB-231 cells. Molecules, 2019, 24(20), 3651.
[http://dx.doi.org/10.3390/molecules24203651] [PMID: 31658635]
[148]
Feng, T.; Cao, W.; Shen, W.; Zhang, L.; Gu, X.; Guo, Y.; Tsai, H.I.; Liu, X.; Li, J.; Zhang, J.; Li, S.; Wu, F.; Liu, Y. Arctigenin inhibits STAT3 and exhibits anticancer potential in human triple-negative breast cancer therapy. Oncotarget, 2017, 8(1), 329-344.
[http://dx.doi.org/10.18632/oncotarget.13393] [PMID: 27861147]
[149]
Webb, M.J.; Kukard, C. A review of natural therapies potentially relevant in triple negative breast cancer aimed at targeting cancer cell vulnerabilities. Integr. Cancer Ther., 2020, 191534735420975861
[http://dx.doi.org/10.1177/1534735420975861] [PMID: 33243021]
[150]
Ye, Q.; Su, L.; Chen, D.; Zheng, W.; Liu, Y. Astragaloside IV induced miR-134 expression reduces EMT and increases chemotherapeutic sensitivity by suppressing CREB1 signaling in colorectal cancer cell line SW-480. Cell. Physiol. Biochem., 2017, 43(4), 1617-1626.
[http://dx.doi.org/10.1159/000482025] [PMID: 29041002]
[151]
Liu, C.; Wang, K.; Zhuang, J.; Gao, C.; Li, H.; Liu, L.; Feng, F.; Zhou, C.; Yao, K.; Deng, L.; Wang, L.; Li, J.; Sun, C. The modulatory properties of Astragalus membranaceus treatment on triple-negative breast cancer: an integrated pharmacological method. Front. Pharmacol., 2019, 10, 1171.
[http://dx.doi.org/10.3389/fphar.2019.01171] [PMID: 31680955]
[152]
Luo, C.; Wang, Y.; Wei, C.; Chen, Y.; Ji, Z. The anti-migration and anti-invasion effects of Bruceine D in human triple-negative breast cancer MDA-MB-231 cells. Exp. Ther. Med., 2020, 19(1), 273-279.
[PMID: 31853299]
[153]
Li, H.C.; Xia, Z.H.; Chen, Y.F.; Yang, F.; Feng, W.; Cai, H.; Mei, Y.; Jiang, Y.M.; Xu, K.; Feng, D.X. Cantharidin inhibits the growth of triple-negative breast cancer cells by suppressing autophagy and inducing apoptosis in vitro and in vivo. Cell. Physiol. Biochem., 2017, 43(5), 1829-1840.
[http://dx.doi.org/10.1159/000484069] [PMID: 29050003]
[154]
Jin, J.; Qiu, S.; Wang, P.; Liang, X.; Huang, F.; Wu, H.; Zhang, B.; Zhang, W.; Tian, X.; Xu, R.; Shi, H. Cardamonin inhibits breast cancer growth by repressing HIF-1α-dependent metabolic reprogramming. J. Exp. Clin. Cancer Res., 2019, 38(1), 1-6.
[http://dx.doi.org/10.1186/s13046-019-1351-4] [PMID: 30606223]
[155]
Alsamri, H.; El Hasasna, H.; Al Dhaheri, Y.; Eid, A.H.; Attoub, S.; Iratni, R. Carnosol, a natural polyphenol, inhibits migration, metastasis and tumor growth of breast cancer via a ROS-dependent proteasome degradation of STAT3. Front. Oncol., 2019, 9, 743.
[http://dx.doi.org/10.3389/fonc.2019.00743] [PMID: 31456939]
[156]
Yang, B.; Huang, J.; Xiang, T.; Yin, X.; Luo, X.; Huang, J.; Luo, F.; Li, H.; Li, H.; Ren, G. Chrysin inhibits metastatic potential of human triple-negative breast cancer cells by modulating matrix metalloproteinase-10, epithelial to mesenchymal transition, and PI3K/Akt signaling pathway. J. Appl. Toxicol., 2014, 34(1), 105-112.
[http://dx.doi.org/10.1002/jat.2941] [PMID: 24122885]
[157]
Mehta, R.; Katta, H.; Alimirah, F.; Patel, R.; Murillo, G.; Peng, X.; Muzzio, M.; Mehta, R.G. Deguelin action involves c-Met and EGFR signaling pathways in triple negative breast cancer cells. PLoS One, 2013, 8(6)e65113
[http://dx.doi.org/10.1371/journal.pone.0065113] [PMID: 23762292]
[158]
Li, L.; Ji, Y.; Fan, J.; Li, F.; Li, Y.; Wu, M.; Cheng, H.; Xu, C. Demethylzeylasteral (T-96) inhibits triple-negative breast cancer invasion by blocking the canonical and non-canonical TGF-β signaling pathways. Naunyn Schmiedebergs Arch. Pharmacol., 2019, 392(5), 593-603.
[http://dx.doi.org/10.1007/s00210-019-01614-5] [PMID: 30729271]
[159]
Liu, Y.; Zhu, P.; Wang, Y.; Wei, Z.; Tao, L.; Zhu, Z.; Sheng, X.; Wang, S.; Ruan, J.; Liu, Z.; Cao, Y.; Shan, Y.; Sun, L.; Wang, A.; Chen, W.; Lu, Y. Antimetastatic therapies of the polysulfide diallyl trisulfide against triple-negative breast cancer (TNBC) via suppressing MMP2/9 by blocking NF-κB and ERK/MAPK signaling pathways. PLoS One, 2015, 10(4)e0123781
[http://dx.doi.org/10.1371/journal.pone.0123781] [PMID: 25927362]
[160]
Zhou, X.; Yue, G.G.; Chan, A.M.; Tsui, S.K.; Fung, K.P.; Sun, H.; Pu, J.; Lau, C.B. Eriocalyxin B, a novel autophagy inducer, exerts anti-tumor activity through the suppression of Akt/mTOR/p70S6K signaling pathway in breast cancer. Biochem. Pharmacol., 2017, 142, 58-70.
[http://dx.doi.org/10.1016/j.bcp.2017.06.133] [PMID: 28669564]
[161]
Zhou, R.; Xu, L.; Ye, M.; Liao, M.; Du, H.; Chen, H. Formononetin inhibits migration and invasion of MDA-MB-231 and 4T1 breast cancer cells by suppressing MMP-2 and MMP-9 through PI3K/AKT signaling pathways. Horm. Metab. Res., 2014, 46(11), 753-760.
[http://dx.doi.org/10.1055/s-0034-1376977] [PMID: 24977660]
[162]
Peng, F.; Xie, X.; Peng, C. Chinese herbal medicine-based cancer therapy: novel anticancer agents targeting MicroRNAs to regulate tumor growth and metastasis. Am. J. Chin. Med., 2019, 47(8), 1711-1735.
[http://dx.doi.org/10.1142/S0192415X19500873] [PMID: 31801358]
[163]
Yang, Y.; Hao, E.; Pan, X.; Tan, D.; Du, Z.; Xie, J.; Hou, X.; Deng, J.; Wei, K. Gomisin M2 from Baizuan suppresses breast cancer stem cell proliferation in a zebrafish xenograft model. Aging (Albany NY), 2019, 11(19), 8347-8361.
[http://dx.doi.org/10.18632/aging.102323] [PMID: 31612865]
[164]
Yen, M.C.; Shih, Y.C.; Hsu, Y.L.; Lin, E.S.; Lin, Y.S.; Tsai, E.M.; Ho, Y.W.; Hou, M.F.; Kuo, P.L. Isolinderalactone enhances the inhibition of SOCS3 on STAT3 activity by decreasing miR-30c in breast cancer. Oncol. Rep., 2016, 35(3), 1356-1364.
[http://dx.doi.org/10.3892/or.2015.4503] [PMID: 26707189]
[165]
Fatima, I.; El-Ayachi, I.; Taotao, L.; Lillo, M.A.; Krutilina, R.I.; Seagroves, T.N.; Radaszkiewicz, T.W.; Hutnan, M.; Bryja, V.; Krum, S.A.; Rivas, F.; Miranda-Carboni, G.A. The natural compound Jatrophone interferes with Wnt/β-catenin signaling and inhibits proliferation and EMT in human triple-negative breast cancer. PLoS One, 2017, 12(12)e0189864
[http://dx.doi.org/10.1371/journal.pone.0189864] [PMID: 29281678]
[166]
Huang, W.C.; Su, H.H.; Fang, L.W.; Wu, S.J.; Liou, C.J. Licochalcone A inhibits cellular motility by suppressing E-cadherin and MAPK signaling in breast cancer. Cells, 2019, 8(3), 218.
[http://dx.doi.org/10.3390/cells8030218] [PMID: 30841634]
[167]
Sun, X.; Chang, X.; Wang, Y.; Xu, B.; Cao, X. Oroxylin a suppresses the cell proliferation, migration, and EMT via NF-κB signaling pathway in human breast cancer cells. BioMed Res. Int., 2019, 20199241769
[http://dx.doi.org/10.1155/2019/9241769]
[168]
Zhang, J.F.; Liu, J.; Wang, Y.; Zhang, B. Novel therapeutic strategies for patients with triple-negative breast cancer.OncoTargets Ther., 2016, 9, 6519-6528.,
[http://dx.doi.org/10.2147/OTT.S105716] [PMID: 27799799]
[169]
Li, Y.; Gan, C.; Zhang, Y.; Yu, Y.; Fan, C.; Deng, Y.; Zhang, Q.; Yu, X.; Zhang, Y.; Wang, L.; He, F.; Xie, Y.; Ye, T.; Yin, W. Inhibition of Stat3 signaling pathway by natural product pectolinarigenin attenuates breast cancer metastasis. Front. Pharmacol., 2019, 10, 1195.
[http://dx.doi.org/10.3389/fphar.2019.01195] [PMID: 31649548]
[170]
Jaglanian, A.; Tsiani, E. Rosemary extract inhibits proliferation, survival, Akt, and mTOR signaling in triple-negative breast cancer cells. Int. J. Mol. Sci., 2020, 21(3), 810.
[http://dx.doi.org/10.3390/ijms21030810] [PMID: 32012648]
[171]
Xu, X.; Rajamanicham, V.; Xu, S.; Liu, Z.; Yan, T.; Liang, G.; Guo, G.; Zhou, H.; Wang, Y. Schisandrin A inhibits triple negative breast cancer cells by regulating Wnt/ER stress signaling pathway. Biomed. Pharmacother., 2019, 115108922
[http://dx.doi.org/10.1016/j.biopha.2019.108922] [PMID: 31048190]
[172]
Chen, Y.; Chen, Z.Y.; Chen, L.; Zhang, J.Y.; Fu, L.Y.; Tao, L.; Zhang, Y.; Hu, X.X.; Shen, X.C. Shikonin inhibits triple-negative breast cancer-cell metastasis by reversing the epithelial-to-mesenchymal transition via glycogen synthase kinase 3β-regulated suppression of β-catenin signaling. Biochem. Pharmacol., 2019, 166, 33-45.
[http://dx.doi.org/10.1016/j.bcp.2019.05.001] [PMID: 31071331]
[173]
Liu, D.; Zhao, Y.; He, J.; Kang, H.; Dai, Z.; Wang, X.; Zhang, S.; Zan, Y. Sinomenine inhibits breast cancer cell invasion and migration by suppressing NF-κB activation mediated by IL-4/miR-324-5p/CUEDC2 axis. Biochem. Biophys. Res. Commun., 2015, 464(3), 705-710.
[http://dx.doi.org/10.1016/j.bbrc.2015.07.004] [PMID: 26166821]
[174]
Huang, W.C.; Gu, P.Y.; Fang, L.W.; Huang, Y.L.; Lin, C.F.; Liou, C.J. Sophoraflavanone G from Sophora flavescens induces apoptosis in triple-negative breast cancer cells. Phytomedicine, 2019, 61152852
[http://dx.doi.org/10.1016/j.phymed.2019.152852] [PMID: 31035052]
[175]
Fultang, N.; Illendula, A.; Chen, B.; Wu, C.; Jonnalagadda, S.; Baird, N.; Klase, Z.; Peethambaran, B. Strictinin, a novel ROR1-inhibitor, represses triple negative breast cancer survival and migration via modulation of PI3K/AKT/GSK3ß activity. PLoS One, 2019, 14(5)e0217789
[http://dx.doi.org/10.1371/journal.pone.0217789] [PMID: 31150511]
[176]
Zeng, L.; Yuan, S.; Shen, J.; Wu, M.; Pan, L.; Kong, X. Suppression of human breast cancer cells by tectorigenin through downregulation of matrix metalloproteinases and MAPK signaling in vitro. Mol. Med. Rep., 2018, 17(3), 3935-3943.
[PMID: 29359782]
[177]
Kim, S.H.; Hahm, E.R.; Arlotti, J.A.; Samanta, S.K.; Moura, M.B.; Thorne, S.H.; Shuai, Y.; Anderson, C.J.; White, A.G.; Lokshin, A.; Lee, J.; Singh, S.V. Withaferin A inhibits in vivo growth of breast cancer cells accelerated by Notch2 knockdown. Breast Cancer Res. Treat., 2016, 157(1), 41-54.
[http://dx.doi.org/10.1007/s10549-016-3795-y] [PMID: 27097807]
[178]
Jiang, C.H.; Sun, T.L.; Xiang, D.X.; Wei, S.S.; Li, W.Q. Anticancer activity and mechanism of xanthohumol: a prenylated flavonoid from hops (Humulus lupulus L.). Front. Pharmacol., 2018, 9, 530.
[http://dx.doi.org/10.3389/fphar.2018.00530] [PMID: 29872398]
[179]
Huang, W.Y.; Cai, Y.Z.; Zhang, Y. Natural phenolic compounds from medicinal herbs and dietary plants: potential use for cancer prevention. Nutr. Cancer, 2010, 62(1), 1-20.
[http://dx.doi.org/10.1080/01635580903191585] [PMID: 20043255]
[180]
Tuñón, M.J.; García-Mediavilla, M.V.; Sánchez-Campos, S.; González-Gallego, J. Potential of flavonoids as anti-inflammatory agents: modulation of pro-inflammatory gene expression and signal transduction pathways. Curr. Drug Metab., 2009, 10(3), 256-271.
[http://dx.doi.org/10.2174/138920009787846369] [PMID: 19442088]
[181]
Le Marchand, L. Cancer preventive effects of flavonoids-a review. Biomed. Pharmacother., 2002, 56(6), 296-301.
[http://dx.doi.org/10.1016/S0753-3322(02)00186-5] [PMID: 12224601]
[182]
Malla, R.R.; Deepak, K.; Merchant, N.; Dasari, V.R. Breast tumor microenvironment: emerging target of therapeutic phytochemicals. Phytomedicine, 2020, 70153227
[http://dx.doi.org/10.1016/j.phymed.2020.153227] [PMID: 32339885]
[183]
Smith, M.L.; Murphy, K.; Doucette, C.D.; Greenshields, A.L.; Hoskin, D.W. The dietary flavonoid fisetin causes cell cycle arrest, caspase‐dependent apoptosis, and enhanced cytotoxicity of chemotherapeutic drugs in triple‐negative breast cancer cells. J. Cell. Biochem., 2016, 117(8), 1913-1925.
[http://dx.doi.org/10.1002/jcb.25490] [PMID: 26755433]
[184]
Zhang, H.W.; Hu, J.J.; Fu, R.Q.; Liu, X.; Zhang, Y.H.; Li, J.; Liu, L.; Li, Y.N.; Deng, Q.; Luo, Q.S.; Ouyang, Q.; Gao, N. Flavonoids inhibit cell proliferation and induce apoptosis and autophagy through downregulation of PI3Kγ mediated PI3K/AKT/mTOR/p70S6K/ULK signaling pathway in human breast cancer cells. Sci. Rep., 2018, 8(1), 11255.
[http://dx.doi.org/10.1038/s41598-018-29308-7] [PMID: 30050147]
[185]
Kikuchi, H.; Yuan, B.; Hu, X.; Okazaki, M. Chemopreventive and anticancer activity of flavonoids and its possibility for clinical use by combining with conventional chemotherapeutic agents. Am. J. Cancer Res., 2019, 9(8), 1517-1535.
[PMID: 31497340]
[186]
Obakan-Yerlikaya, P.; Arisan, E.D.; Coker-Gurkan, A.; Palavan-Unsal, N. Breast cancer and flavonoids as treatment strategy. Breast Cancer: From Biology to Medicine; Intech Open: UK, 2017.
[http://dx.doi.org/10.5772/66169]
[187]
Li, Y.; Li, S.; Meng, X.; Gan, R.Y.; Zhang, J.J.; Li, H.B. Dietary natural products for prevention and treatment of breast cancer. Nutrients, 2017, 9(7), 728.
[http://dx.doi.org/10.3390/nu9070728] [PMID: 28698459]
[188]
Sudhakaran, M.; Sardesai, S.; Doseff, A.I. Flavonoids: New frontier for immuno-regulation and breast cancer control. Antioxidants, 2019, 8(4), 103.
[http://dx.doi.org/10.3390/antiox8040103] [PMID: 30995775]
[189]
Srinivasan, A.; Thangavel, C.; Liu, Y.; Shoyele, S.; Den, R.B.; Selvakumar, P.; Lakshmikuttyamma, A. Quercetin regulates β-catenin signaling and reduces the migration of triple negative breast cancer. Mol. Carcinog., 2016, 55(5), 743-756.
[http://dx.doi.org/10.1002/mc.22318] [PMID: 25968914]
[190]
Saranya, T.; Kavithaa, K.; Paulpandi, M.; Ramya, S.; Preethi, S.; Balachandar, V.; Narayanasamy, A. Enhanced apoptogenesis and oncogene regulatory mechanism of troxerutin in triple negative breast cancer cells. Toxicol. Res. (Camb.), 2020, 9(3), 230-238.
[http://dx.doi.org/10.1093/toxres/tfaa029] [PMID: 32670554]
[191]
Habli, Z.; Toumieh, G.; Fatfat, M.; Rahal, O.N.; Gali-Muhtasib, H. Emerging cytotoxic alkaloids in the battle against cancer: overview of molecular mechanisms. Molecules, 2017, 22(2), 250.
[http://dx.doi.org/10.3390/molecules22020250] [PMID: 28208712]
[192]
Gupta, S.C.; Kim, J.H.; Prasad, S.; Aggarwal, B.B. Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals. Cancer Metastasis Rev., 2010, 29(3), 405-434.
[http://dx.doi.org/10.1007/s10555-010-9235-2] [PMID: 20737283]
[193]
Weaver, B.A. How Taxol/paclitaxel kills cancer cells. Mol. Biol. Cell, 2014, 25(18), 2677-2681.
[http://dx.doi.org/10.1091/mbc.e14-04-0916] [PMID: 25213191]
[194]
Lou, C.; Yokoyama, S.; Saiki, I.; Hayakawa, Y. Selective anticancer activity of hirsutine against HER2 positive breast cancer cells by inducing DNA damage. Oncol. Rep., 2015, 33(4), 2072-2076.
[http://dx.doi.org/10.3892/or.2015.3796] [PMID: 25672479]
[195]
Stan, S.D.; Zeng, Y.; Singh, S.V. Ayurvedic medicine constituent withaferin a causes G2 and M phase cell cycle arrest in human breast cancer cells. Nutr. Cancer, 2008, 60(S1)(Suppl. 1), 51-60.
[http://dx.doi.org/10.1080/01635580802381477] [PMID: 19003581]
[196]
Braicu, C.; Buse, M.; Busuioc, C.; Drula, R.; Gulei, D.; Raduly, L.; Rusu, A.; Irimie, A.; Atanasov, A.G.; Slaby, O.; Ionescu, C.; Berindan-Neagoe, I. A comprehensive review on MAPK: a promising therapeutic target in cancer. Cancers (Basel), 2019, 11(10), 1618.
[http://dx.doi.org/10.3390/cancers11101618] [PMID: 31652660]
[197]
Wang, W.; Nag, S.A.; Zhang, R. Targeting the NFκB signaling pathways for breast cancer prevention and therapy. Curr. Med. Chem., 2015, 22(2), 264-289.
[http://dx.doi.org/10.2174/0929867321666141106124315] [PMID: 25386819]
[198]
Yao, M.; Fan, X.; Yuan, B.; Takagi, N.; Liu, S.; Han, X.; Ren, J.; Liu, J. Berberine inhibits NLRP3 Inflammasome pathway in human triple-negative breast cancer MDA-MB-231 cell. BMC Complement. Altern. Med., 2019, 19(1), 216.
[http://dx.doi.org/10.1186/s12906-019-2615-4] [PMID: 31412862]
[199]
Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev., 2009, 2(5), 270-278.
[http://dx.doi.org/10.4161/oxim.2.5.9498] [PMID: 20716914]
[200]
Shahidi, F.; Yeo, J. Bioactivities of phenolics by focusing on suppression of chronic diseases: a review. Int. J. Mol. Sci., 2018, 19(6), 1573.
[http://dx.doi.org/10.3390/ijms19061573] [PMID: 29799460]
[201]
Galati, G.; O’Brien, P.J. Potential toxicity of flavonoids and other dietary phenolics: significance for their chemopreventive and anticancer properties. Free Radic. Biol. Med., 2004, 37(3), 287-303.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.04.034] [PMID: 15223063]
[202]
Khan, H.Y.; Zubair, H.; Ullah, M.F.; Ahmad, A.; Hadi, S.M. A prooxidant mechanism for the anticancer and chemopreventive properties of plant polyphenols. Curr. Drug Targets, 2012, 13(14), 1738-1749.
[http://dx.doi.org/10.2174/138945012804545560] [PMID: 23140285]
[203]
Zheng, D.; Wu, Z.; Han, J.; Guan, Q.; Li, Z.; Zuo, D.; Zhang, W.; Wu, Y. 2-Methoxy-5((3,4,5-trimethosyphenyl)seleninyl) phenol (SQ) inhibits cancer cell metastasis behavior of TNBC via suppressing EMT and VEGF. Chem. Biol. Interact., 2020, 329109202
[http://dx.doi.org/10.1016/j.cbi.2020.109202] [PMID: 32717189]
[204]
Assumpção, J.H.M.; Takeda, A.A.S.; Sforcin, J.M.; Rainho, C.A. Effects of propolis and phenolic acids on triple-negative breast cancer cell lines: potential involvement of epigenetic mechanisms. Molecules, 2020, 25(6), 1289.
[http://dx.doi.org/10.3390/molecules25061289] [PMID: 32178333]
[205]
Martin, A.C.B.M.; Fuzer, A.M.; Becceneri, A.B.; da Silva, J.A.; Tomasin, R.; Denoyer, D.; Kim, S.H.; McIntyre, K.A.; Pearson, H.B.; Yeo, B.; Nagpal, A.; Ling, X.; Selistre-de-Araújo, H.S.; Vieira, P.C.; Cominetti, M.R.; Pouliot, N. [10]-gingerol induces apoptosis and inhibits metastatic dissemination of triple negative breast cancer in vivo. Oncotarget, 2017, 8(42), 72260-72271.
[http://dx.doi.org/10.18632/oncotarget.20139] [PMID: 29069785]
[206]
Bernard, M.M.; McConnery, J.R.; Hoskin, D.W. [10]-Gingerol, a major phenolic constituent of ginger root, induces cell cycle arrest and apoptosis in triple-negative breast cancer cells. Exp. Mol. Pathol., 2017, 102(2), 370-376.
[http://dx.doi.org/10.1016/j.yexmp.2017.03.006] [PMID: 28315687]
[207]
Younas, M.; Hano, C.; Giglioli-Guivarc’h, N.; Abbasi, B.H. Mechanistic evaluation of phytochemicals in breast cancer remedy: current understanding and future perspectives. RSC Advances, 2018, 8(52), 29714-29744.
[http://dx.doi.org/10.1039/C8RA04879G]
[208]
Raut, J.S.; Karuppayil, S.M. A status review on the medicinal properties of essential oils. Ind. Crops Prod., 2014, 62, 250-264.
[http://dx.doi.org/10.1016/j.indcrop.2014.05.055]
[209]
Gautam, N.; Mantha, A.K.; Mittal, S. Essential oils and their constituents as anticancer agents: a mechanistic view. BioMed Res. Int., 2014, 2014154106
[http://dx.doi.org/10.1155/2014/154106] [PMID: 25003106]
[210]
Russo, A.; Cardile, V.; Graziano, A.C.E.; Avola, R.; Bruno, M.; Rigano, D. Involvement of Bax and Bcl-2 in induction of apoptosis by essential oils of three Lebanese Salvia species in human prostate cancer cells. Int. J. Mol. Sci., 2018, 19(1), 292.
[http://dx.doi.org/10.3390/ijms19010292] [PMID: 29351194]
[211]
Ghasemi, A.; Khanzadeh, T.; Zadi Heydarabad, M.; Khorrami, A.; Jahanban Esfahlan, A.; Ghavipanjeh, S.; Gholipour Belverdi, M.; Darvishani Fikouhi, S.; Darbin, A.; Najafpour, M.; Azimi, A. Evaluation of BAX and BCL-2 gene expression and apoptosis induction in acute lymphoblastic leukemia cell line CCRF-CEM after high-dose prednisolone treatment. Asian Pacific J. Cancer Prevent.: APJCP., 2018, 19(8), 2319-2323.
[PMID: 30141309]
[212]
Poma, P.; Labbozzetta, M.; D’Alessandro, N.; Notarbartolo, M. NF-κB is a potential molecular drug target in triple-negative breast cancers. OMICS, 2017, 21(4), 225-231.
[http://dx.doi.org/10.1089/omi.2017.0020] [PMID: 28388298]
[213]
Magalhães, I.D.; Tellis, C.J.; da Silva Calabrese, K.; Abreu-Silva, A.L.; Almeida-Souza, F. Essential oils’ potential in breast cancer treatment: an overview.In: Essential Oils-Bioactive Compounds; New Perspectives and Applications, Intech Open: UK, 2020.
[214]
Lovitt, C.J.; Shelper, T.B.; Avery, V.M. Doxorubicin resistance in breast cancer cells is mediated by extracellular matrix proteins. BMC Cancer, 2018, 18(1), 41.
[http://dx.doi.org/10.1186/s12885-017-3953-6] [PMID: 29304770]
[215]
Wen, C.; Fu, L.; Huang, J.; Dai, Y.; Wang, B.; Xu, G.; Wu, L.; Zhou, H. Curcumin reverses doxorubicin resistance via inhibition the efflux function of ABCB4 in doxorubicin resistant breast cancer cells. Mol. Med. Rep., 2019, 19(6), 5162-5168.
[http://dx.doi.org/10.3892/mmr.2019.10180] [PMID: 31059026]
[216]
Perveen, S.; Al-Taweel, A. Introductory chapter: terpenes and terpenoids. Terpenes Terpenoids, 2018, 5, 1-2.
[http://dx.doi.org/10.5772/intechopen.79683]
[217]
Bendaoud, H.; Romdhane, M.; Souchard, J.P.; Cazaux, S.; Bouajila, J. Chemical composition and anticancer and antioxidant activities of Schinus molle L. and Schinus terebinthifolius Raddi berries essential oils. J. Food Sci., 2010, 75(6), C466-C472.
[http://dx.doi.org/10.1111/j.1750-3841.2010.01711.x] [PMID: 20722898]
[218]
Yeo, S.K.; Ali, A.Y.; Hayward, O.A.; Turnham, D.; Jackson, T.; Bowen, I.D.; Clarkson, R. β‐Bisabolene, a sesquiterpene from the essential oil extract of opoponax (Commiphora guidottii), exhibits cytotoxicity in breast cancer cell lines. Phytother. Res., 2016, 30(3), 418-425.
[http://dx.doi.org/10.1002/ptr.5543] [PMID: 26666387]
[219]
Periasamy, V.S.; Athinarayanan, J.; Alshatwi, A.A. Anticancer activity of an ultrasonic nanoemulsion formulation of Nigella sativa L. essential oil on human breast cancer cells. Ultrason. Sonochem., 2016, 31, 449-455.
[http://dx.doi.org/10.1016/j.ultsonch.2016.01.035] [PMID: 26964971]
[220]
Sirerol, J.A.; Rodríguez, M.L.; Mena, S.; Asensi, M.A.; Estrela, J.M.; Ortega, A.L. Role of natural stilbenes in the prevention of cancer. Oxid. Med. Cell. Longev., 2016, 20163128951
[http://dx.doi.org/10.1155/2016/3128951] [PMID: 26798416]
[221]
Sun, Y.; Zhou, Q.M.; Lu, Y.Y.; Zhang, H.; Chen, Q.L.; Zhao, M.; Su, S.B. Resveratrol inhibits the migration and metastasis of MDA-MB-231 human breast cancer by reversing TGF-β1-induced epithelial-mesenchymal transition. Molecules, 2019, 24(6), 1131.
[http://dx.doi.org/10.3390/molecules24061131] [PMID: 30901941]
[222]
Sinha, D.; Sarkar, N.; Biswas, J.; Bishayee, A. Resveratrol for breast cancer prevention and therapy: preclinical evidence and molecular mechanisms. Semin. Cancer Biol., 2016, 40, 209-232.
[223]
Subedi, L.; Teli, M.K.; Lee, J.H.; Gaire, B.P.; Kim, M.H.; Kim, S.Y. A Stilbenoid isorhapontigenin as a potential anti-cancer agent against breast cancer through inhibiting sphingosine kinases/tubulin stabilization. Cancers (Basel), 2019, 11(12), 1947.
[http://dx.doi.org/10.3390/cancers11121947] [PMID: 31817453]
[224]
Pecyna, P.; Wargula, J.; Murias, M.; Kucinska, M. More than resveratrol: new insights into stilbene-based compounds. Biomolecules, 2020, 10(8), 1111.
[http://dx.doi.org/10.3390/biom10081111] [PMID: 32726968]
[225]
Chen, R.J.; Kuo, H.C.; Cheng, L.H.; Lee, Y.H.; Chang, W.T.; Wang, B.J., Jr; Wang, Y.J.; Cheng, H.C. Apoptotic and nonapoptotic activities of pterostilbene against cancer. Int. J. Mol. Sci., 2018, 19(1), 287.
[http://dx.doi.org/10.3390/ijms19010287] [PMID: 29346311]
[226]
Horgan, X.J.; Tatum, H.; Brannan, E.; Paull, D.H.; Rhodes, L.V. Resveratrol analogues surprisingly effective against triple negative breast cancer, independent of ERα. Oncol. Rep., 2019, 41(6), 3517-3526.
[http://dx.doi.org/10.3892/or.2019.7122] [PMID: 31002359]
[227]
Prassas, I.; Diamandis, E.P. Novel therapeutic applications of cardiac glycosides. Nat. Rev. Drug Discov., 2008, 7(11), 926-935.
[http://dx.doi.org/10.1038/nrd2682] [PMID: 18948999]
[228]
Patel, S. Plant-derived cardiac glycosides: role in heart ailments and cancer management. Biomed. Pharmacother., 2016, 84, 1036-1041.
[http://dx.doi.org/10.1016/j.biopha.2016.10.030] [PMID: 27780131]
[229]
Kaushik, V.; Azad, N.; Yakisich, J.S.; Iyer, A.K. Antitumor effects of naturally occurring cardiac glycosides convallatoxin and peruvoside on human ER+ and triple-negative breast cancers. Cell Death Discov., 2017, 3(1), 17009.
[http://dx.doi.org/10.1038/cddiscovery.2017.9] [PMID: 28250972]
[230]
Elbaz, H.A.; Stueckle, T.A.; Tse, W.; Rojanasakul, Y.; Dinu, C.Z. Digitoxin and its analogs as novel cancer therapeutics. Exp. Hematol. Oncol., 2012, 1(1), 4.
[http://dx.doi.org/10.1186/2162-3619-1-4] [PMID: 23210930]
[231]
Awad, A.R.; Youness, R.A.; Ibrahim, M.; Motaal, A.A.; El-Askary, H.I.; Assal, R.A.; Gad, M.Z. An acetylated derivative of vitexin halts MDA-MB-231 cellular progression and improves its immunogenic profile through tuning miR-20a-MICA/B axis. Nat. Prod. Res., 2019, 35(18), 3126-3130.
[http://dx.doi.org/10.1080/14786419.2019.1686372] [PMID: 31691589]
[232]
Howard, C.M.; Estrada, M.; Terrero, D.; Tiwari, A.K.; Raman, D. Identification of cardiac glycosides as novel inhibitors of eIF4A1-mediated translation in triple-negative breast cancer cells. Cancers (Basel), 2020, 12(8), 2169.
[http://dx.doi.org/10.3390/cancers12082169] [PMID: 32759815]
[233]
Acamovic, T.; Brooker, J.D. Biochemistry of plant secondary metabolites and their effects in animals. Proc. Nutr. Soc., 2005, 64(3), 403-412.
[http://dx.doi.org/10.1079/PNS2005449] [PMID: 16048675]
[234]
Koval, A.; Pieme, C.A.; Queiroz, E.F.; Ragusa, S.; Ahmed, K.; Blagodatski, A.; Wolfender, J.L.; Petrova, T.V.; Katanaev, V.L. Tannins from Syzygium guineense suppress Wnt signaling and proliferation of Wnt-dependent tumors through a direct effect on secreted Wnts. Cancer Lett., 2018, 435, 110-120.
[http://dx.doi.org/10.1016/j.canlet.2018.08.003] [PMID: 30098400]
[235]
Booth, B.W.; Inskeep, B.D.; Shah, H.; Park, J.P.; Hay, E.J.; Burg, K.J. Tannic Acid preferentially targets estrogen receptor-positive breast cancer. Int. J. Breast Cancer, 2013, 2013369609
[http://dx.doi.org/10.1155/2013/369609] [PMID: 24369505]
[236]
Baer-Dubowska, W.; Szaefer, H.; Majchrzak-Celińska, A.; Krajka-Kuźniak, V. Tannic acid: specific form of tannins in cancer chemoprevention and therapy-old and new applicationS. Curr. Pharmacol. Rep., 2020, 6(2), 28-37.
[http://dx.doi.org/10.1007/s40495-020-00211-y]
[237]
Darvin, P.; Joung, Y.H.; Kang, D.Y.; Sp, N.; Byun, H.J.; Hwang, T.S.; Sasidharakurup, H.; Lee, C.H.; Cho, K.H.; Park, K.D.; Lee, H.K.; Yang, Y.M. Tannic acid inhibits EGFR/STAT1/3 and enhances p38/STAT1 signalling axis in breast cancer cells. J. Cell. Mol. Med., 2017, 21(4), 720-734.
[http://dx.doi.org/10.1111/jcmm.13015] [PMID: 27862996]
[238]
Tikoo, K.; Sane, M.S.; Gupta, C. Tannic acid ameliorates doxorubicin-induced cardiotoxicity and potentiates its anti-cancer activity: potential role of tannins in cancer chemotherapy. Toxicol. Appl. Pharmacol., 2011, 251(3), 191-200.
[http://dx.doi.org/10.1016/j.taap.2010.12.012] [PMID: 21194538]
[239]
Moore, J.P.; Westall, K.L.; Ravenscroft, N.; Farrant, J.M.; Lindsey, G.G.; Brandt, W.F. The predominant polyphenol in the leaves of the resurrection plant Myrothamnus flabellifolius, 3,4,5 tri-O-galloylquinic acid, protects membranes against desiccation and free radical-induced oxidation. Biochem. J., 2005, 385(Pt 1), 301-308.
[http://dx.doi.org/10.1042/BJ20040499] [PMID: 15355309]
[240]
Bonfili, L.; Cecarini, V.; Amici, M.; Cuccioloni, M.; Angeletti, M.; Keller, J.N.; Eleuteri, A.M. Natural polyphenols as proteasome modulators and their role as anti-cancer compounds. FEBS J., 2008, 275(22), 5512-5526.
[http://dx.doi.org/10.1111/j.1742-4658.2008.06696.x] [PMID: 18959740]
[241]
Kregiel, D.; Berlowska, J.; Witonska, I.; Antolak, H.; Proestos, C.; Babic, M.; Babic, L.; Zhang, B. Saponin-based, biological-active surfactants from plants.Application and characterization of surfactants; Intech Open: UK, 2017, pp. 183-205.
[http://dx.doi.org/10.5772/68062]
[242]
Dou, J.W.; Shang, R.G.; Lei, X.Q.; Li, K.L.; Guo, Z.Z.; Ye, K.; Yang, X.J.; Li, Y.W.; Zhou, Y.Y.; Yao, J.; Huang, Q. Total saponins of Bolbostemma paniculatum (maxim.) Franquet exert antitumor activity against MDA-MB-231 human breast cancer cells via inhibiting PI3K/Akt/mTOR pathway. BMC Complement. Altern. Med., 2019, 19(1), 304.
[http://dx.doi.org/10.1186/s12906-019-2708-0] [PMID: 31703679]
[243]
Wang, Q.; Zheng, X.L.; Yang, L.; Shi, F.; Gao, L.B.; Zhong, Y.J.; Sun, H.; He, F.; Lin, Y.; Wang, X. Reactive oxygen species-mediated apoptosis contributes to chemosensitization effect of saikosaponins on cisplatin-induced cytotoxicity in cancer cells. J. Exp. Clin. Cancer Res., 2010, 29(1), 159.
[http://dx.doi.org/10.1186/1756-9966-29-159] [PMID: 21143894]
[244]
Wang, J.; Qi, H.; Zhang, X.; Si, W.; Xu, F.; Hou, T.; Zhou, H.; Wang, A.; Li, G.; Liu, Y.; Fang, Y.; Piao, H.L.; Liang, X. Saikosaponin D from Radix Bupleuri suppresses triple-negative breast cancer cell growth by targeting β-catenin signaling. Biomed. Pharmacother., 2018, 108, 724-733.
[http://dx.doi.org/10.1016/j.biopha.2018.09.038] [PMID: 30248540]
[245]
Mu, L.H.; Yan, H.; Wang, Y.N.; Yu, T.F.; Liu, P. Triterpenoid saponins from Ardisia gigantifolia and mechanism on inhibiting proliferation of MDA-MB-231 cells. Biol. Pharm. Bull., 2019, 42(2), 194-200.
[http://dx.doi.org/10.1248/bpb.b18-00569] [PMID: 30464092]
[246]
Rugo, H. ope S. Abstract OT1-08-03: Phase 3, randomized, double-blind, placebo-controlled study to evaluate the efficacy and safety of adagloxad simolenin (OBI-822) and OBI-821 treatment in patients with early-stage triplenegative breast cancer (TNBC) at high risk for recurrence. Conference: Abstracts:2019 San Antonio Breast Cancer Symposium,; December 10-14, 2019; San Antonio, Texas, 2020.,
[247]
Tian, W.; Wang, C.; Li, D.; Hou, H. Novel anthraquinone compounds as anticancer agents and their potential mechanism. Future Med. Chem., 2020, 12(7), 627-644.
[http://dx.doi.org/10.4155/fmc-2019-0322] [PMID: 32175770]
[248]
Fouillaud, M.; Venkatachalam, M.; Girard-Valenciennes, E.; Caro, Y.; Dufossé, L. Anthraquinones and derivatives from marine-derived fungi: structural diversity and selected biological activities. Mar. Drugs, 2016, 14(4), 64.
[http://dx.doi.org/10.3390/md14040064] [PMID: 27023571]
[249]
Huang, Q.; Lu, G.; Shen, H.M.; Chung, M.C.; Ong, C.N. Anti-cancer properties of anthraquinones from rhubarb. Med. Res. Rev., 2007, 27(5), 609-630.
[http://dx.doi.org/10.1002/med.20094] [PMID: 17022020]
[250]
Abu, N.; Zamberi, N.R.; Yeap, S.K.; Nordin, N.; Mohamad, N.E.; Romli, M.F.; Rasol, N.E.; Subramani, T.; Ismail, N.H.; Alitheen, N.B. Subchronic toxicity, immunoregulation and anti-breast tumor effect of Nordamnacantal, an anthraquinone extracted from the stems of Morinda citrifolia L. BMC Complement. Altern. Med., 2018, 18(1), 31.
[http://dx.doi.org/10.1186/s12906-018-2102-3] [PMID: 29374471]
[251]
Zou, G.; Zhang, X.; Wang, L.; Li, X.; Xie, T.; Zhao, J.; Yan, J.; Wang, L.; Ye, H.; Jiao, S.; Xiang, R.; Shi, Y. Herb-sourced emodin inhibits angiogenesis of breast cancer by targeting VEGFA transcription. Theranostics, 2020, 10(15), 6839-6853.
[http://dx.doi.org/10.7150/thno.43622] [PMID: 32550907]
[252]
Bhattacharjee, M.; Upadhyay, P.; Sarker, S.; Basu, A.; Das, S.; Ghosh, A.; Ghosh, S.; Adhikary, A. Combinatorial therapy of Thymoquinone and Emodin synergistically enhances apoptosis, attenuates cell migration and reduces stemness efficiently in breast cancer. Biochim. Biophys. Acta, Gen. Subj., 2020, 1864(11)129695
[http://dx.doi.org/10.1016/j.bbagen.2020.129695] [PMID: 32735937]
[253]
Chadwick, M.; Trewin, H.; Gawthrop, F.; Wagstaff, C. Sesquiterpenoids lactones: benefits to plants and people. Int. J. Mol. Sci., 2013, 14(6), 12780-12805.
[http://dx.doi.org/10.3390/ijms140612780] [PMID: 23783276]
[254]
Nakagawa-Goto, K.; Chen, J.Y.; Cheng, Y.T.; Lee, W.L.; Takeya, M.; Saito, Y.; Lee, K.H.; Shyur, L.F. Novel sesquiterpene lactone analogues as potent anti-breast cancer agents. Mol. Oncol., 2016, 10(6), 921-937.
[http://dx.doi.org/10.1016/j.molonc.2016.03.002] [PMID: 27055598]
[255]
Qu, Z.; Lin, Y.; Mok, D.K.; Bian, Q.; Tai, W.C.; Chen, S.; Arnicolide, D. Arnicolide D inhibits triple negative breast cancer cell proliferation by suppression of Akt/mTOR and STAT3 signaling pathways. Int. J. Med. Sci., 2020, 17(11), 1482-1490.
[http://dx.doi.org/10.7150/ijms.46925] [PMID: 32669950 Song, L.;]
[256]
Seca, A.M.; Silva, A.M.; Pinto, D.C. Parthenolide and parthenolide-like sesquiterpene lactones as multiple targets drugs: current knowledge and new developments.In: Studies in Natural Products Chemistry; Elsevier, 2017, Vol. 52, pp. 337-372.
[257]
Qu, Z.; Lin, Y.; Mok, D.K.; Bian, Q.; Tai, W.C.; Chen, S. Brevilin A, a natural sesquiterpene lactone inhibited the growth of triple-negative breast cancer cells via Akt/mTOR and STAT3 signaling pathways. OncoTargets Ther., 2020, 13, 5363-5373.
[http://dx.doi.org/10.2147/OTT.S256833] [PMID: 32606754]
[258]
Qin, J.J.; Yan, L.; Zhang, J.; Zhang, W.D. STAT3 as a potential therapeutic target in triple negative breast cancer: a systematic review. J. Exp. Clin. Cancer Res., 2019, 38(1), 195.
[http://dx.doi.org/10.1186/s13046-019-1206-z] [PMID: 31088482]
[259]
Lou, C.; Chen, Y.; Zhang, J.; Yang, B.; Zhao, H.; Eupalinolide, J. Eupalinolide J suppresses the growth of triple-negative breast cancer cells via targeting STAT3 signaling pathway. Front. Pharmacol., 2019, 10, 1071.
[http://dx.doi.org/10.3389/fphar.2019.01071] [PMID: 31607920]
[260]
Varghese, E.; Samuel, S.M.; Abotaleb, M.; Cheema, S.; Mamtani, R.; Büsselberg, D. The “yin and yang” of natural compounds in anticancer therapy of triple-negative breast cancers. Cancers (Basel), 2018, 10(10), 346.
[http://dx.doi.org/10.3390/cancers10100346] [PMID: 30248941]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy