Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Structural, Morphological, and Magnetic Characterization of Iron Oxide Nanoparticles Synthesized at Different Reaction Times via Thermal Decomposition Method

Author(s): Nurcan Dogan*, Fatmahan Ozel and Hasan Koten

Volume 19, Issue 1, 2023

Published on: 14 January, 2022

Page: [33 - 38] Pages: 6

DOI: 10.2174/1573413717666211108123413

Price: $65

Abstract

Background: Superparamagnetic Iron Oxide Nanoparticles (SPIONs) were synthesized by the thermal decomposition method.

Methods: In this work, the properties of the nanoparticles synthesized at different reaction times were investigated. Fourier Transformed Infrared Spectroscopy (FTIR) and thermal analysis were carried out to characterize oleate adsorbed on the surface of nanoparticles.

Results: The oleate-coated surfaces were obtained for all samples, and the amount of oleate on the surfaces of the particles changed with the change in reaction time. The size, size distribution, and shape of SPIONs were determined by X-ray Diffraction (XRD), transmission electron microscopy (SEM), and Dynamic Light Scattering (DLS). It was seen that changing the reaction time affected the shape of the nanoparticles, but almost the same sized nanoparticles were obtained with the increase of reaction time. The sample's crystallite size of 12.5-14.2 nm achieved with XRD is in good agreement with the mean size of 15-16.4 that was obtained by TEM results. Maximum magnetic saturation of the sample was achieved at 3 h reaction time.

Conclusion: The magnetic properties of iron oxide nanoparticles were characterized by Electron- Spin Resonance (ESR) and Physical Properties Measurement System (PPMS). All samples showed superparamagnetic behaviors at room temperature.

Keywords: Iron oxide nanoparticles, thermal decomposition, superparamagnetism, simulation, microemulsions, high boiling point.

[1]
Kandasamy, G.; Maity, D. Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics. Int. J. Pharm., 2015, 496(2), 191-218.
[http://dx.doi.org/10.1016/j.ijpharm.2015.10.058] [PMID: 26520409]
[2]
Qiao, R.; Yang, C.; Gao, M. Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications. J. Mater. Chem., 2009, 19, 6274-6293.
[http://dx.doi.org/10.1039/b902394a]
[3]
Tietze, R.; Zaloga, J.; Unterweger, H.; Lyer, S.; Friedrich, R.P.; Janko, C.; Pöttler, M.; Dürr, S.; Alexiou, C. Magnetic nanoparticle-based drug delivery for cancer therapy. Biochem. Biophys. Res. Commun., 2015, 468(3), 463-470.
[http://dx.doi.org/10.1016/j.bbrc.2015.08.022] [PMID: 26271592]
[4]
Bañobre-López, M.; Teijeiro, A.; Rivas, J. Magnetic nanoparticle-based hyperthermia for cancer treatment. Rep. Pract. Oncol. Radiother., 2013, 18(6), 397-400.
[http://dx.doi.org/10.1016/j.rpor.2013.09.011] [PMID: 24416585]
[5]
Dulińska-Litewka, J.; Łazarczyk, A.; Hałubiec, P.; Szafrański, O.; Karnas, K.; Karewicz, A. Superparamagnetic iron oxide nanoparticles-current and prospective medical applications. Materials (Basel), 2019, 12(4), 617.
[http://dx.doi.org/10.3390/ma12040617] [PMID: 30791358]
[6]
Ali, A.; Zafar, H.; Zia, M.; Ul Haq, I.; Phull, A.R.; Ali, J.S.; Hussain, A. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol. Sci. Appl., 2016, 9, 49-67.
[http://dx.doi.org/10.2147/NSA.S99986] [PMID: 27578966]
[7]
Tran, N.; Webster, T. J. Magnetic nanoparticles: biomedical applications and challenges. J. Mater. Chem., 2010, 20, 8760-8767.
[http://dx.doi.org/10.1039/c0jm00994f]
[8]
Mody, V.V.; Cox, A.; Shah, S.; Singh, A.; Bevins, W.; Parihar, H. Magnetic nanoparticle drug delivery systems for targeting tumor. Appl. Nanosci., 2014, 4, 385-392.
[http://dx.doi.org/10.1007/s13204-013-0216-y]
[9]
Hufschmid, R.; Arami, H.; Ferguson, R.M.; Gonzales, M.; Teeman, E.; Brush, L.N.; Browning, N.D.; Krishnan, K.M. Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition. Nanoscale, 2015, 7(25), 11142-11154.
[http://dx.doi.org/10.1039/C5NR01651G] [PMID: 26059262]
[10]
Chen, Z. Size and Shape Controllable Synthesis of Monodisperse Iron Oxide Nanoparticles by Thermal Decomposition of Iron Oleate Complex. Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 2012, 42, 1040-1046.
[http://dx.doi.org/10.1080/15533174.2012.680126]
[11]
Sun, S-N.; Wei, C.; Zhu, Z-Z.; Hou, Y-L.; Venkatraman, S.S.; Xu, Z-C. Magnetic iron oxide nanoparticles: Synthesis and surface coating techniques for biomedical applications. Chin. Phys. B, 2014, 23, 037503.
[http://dx.doi.org/10.1088/1674-1056/23/3/037503]
[12]
Park, J.; An, K.; Hwang, Y.; Park, J-G.; Noh, H-J.; Kim, J-Y.; Park, J-H.; Hwang, N-M.; Hyeon, T. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater., 2004, 3(12), 891-895.
[http://dx.doi.org/10.1038/nmat1251] [PMID: 15568032]
[13]
Kim, B.H.; Lee, N.; Kim, H.; An, K.; Park, Y.I.; Choi, Y.; Shin, K.; Lee, Y.; Kwon, S.G.; Na, H.B.; Park, J-G.; Ahn, T-Y.; Kim, Y-W.; Moon, W.K.; Choi, S.H.; Hyeon, T. Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T1 magnetic resonance imaging contrast agents. J. Am. Chem. Soc., 2011, 133(32), 12624-12631.
[http://dx.doi.org/10.1021/ja203340u] [PMID: 21744804]
[14]
Guardia, P.; Labarta, A.; Batlle, X. Tuning the Size, the Shape, and the Magnetic Properties of Iron Oxide Nanoparticles. J. Phys. Chem. C, 2011, 115, 390-396.
[http://dx.doi.org/10.1021/jp1084982]
[15]
Guardia, P.; Pérez, N.; Labarta, A.; Batlle, X. Controlled synthesis of iron oxide nanoparticles over a wide size range. Langmuir, 2010, 26(8), 5843-5847.
[http://dx.doi.org/10.1021/la903767e] [PMID: 20000725]
[16]
Maity, D.; Ding, J.; Xue, J-m. Synthesis of magnetite nanoparticles by thermal decomposition: time, temperature, surfactant and solvent effects. Funct. Mater. Lett. (Singap.), 2008, 01, 189-193.
[http://dx.doi.org/10.1142/S1793604708000381]
[17]
Baaziz, W.; Pichon, B.P.; Fleutot, S.; Liu, Y.; Lefevre, C.; Greneche, J-M.; Toumi, M.; Mhiri, T.; Begin-Colin, S. Magnetic iron oxide nanoparticles: reproducible tuning of the size and nanosized-dependent composition, defects, and spin canting. J. Phys. Chem. C, 2014, 118, 3795-3810.
[http://dx.doi.org/10.1021/jp411481p]
[18]
Herrera, A.P.; Polo-Corrales, L.; Chavez, E.; Cabarcas-Bolivar, J.; Uwakweh, O.N.C.; Rinaldi, C. Influence of aging time of oleate precursor on the magnetic relaxation of cobalt ferrite nanoparticles synthesized by the thermal decomposition method. J. Magn. Magn. Mater., 2013, 328, 41-52.
[http://dx.doi.org/10.1016/j.jmmm.2012.09.069]
[19]
Wu, W.; Wu, Z.; Yu, T.; Jiang, C.; Kim, W-S. Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci. Technol. Adv. Mater., 2015, 16(2), 023501.
[http://dx.doi.org/10.1088/1468-6996/16/2/023501] [PMID: 27877761]
[20]
Song, M.; Zhang, Y.; Hu, S.; Song, L.; Dong, J.; Chen, Z.; Gu, N. Influence of morphology and surface exchange reaction on magnetic properties of monodisperse magnetite nanoparticles. Colloids Surf. A Physicochem. Eng. Asp., 2012, 408, 114-121.
[http://dx.doi.org/10.1016/j.colsurfa.2012.05.039]
[21]
Perez De Berti, I.O.; Cagnoli, M.V.; Pecchi, G.; Alessandrini, J.L.; Stewart, S.J.; Bengoa, J.F.; Marchetti, S.G. Alternative low-cost approach to the synthesis of magnetic iron oxide nanoparticles by thermal decomposition of organic precursors. Nanotechnology, 2013, 24(17), 175601.
[http://dx.doi.org/10.1088/0957-4484/24/17/175601] [PMID: 23548801]
[22]
Jana, N.R.; Chen, Y.; Peng, X. Size- and Shape-Controlled Magnetic (Cr, Mn, Fe, Co, Ni) Oxide Nanocrystals via a Simple and General Approach. Chem. Mater., 2004, 16, 3931-3935.
[http://dx.doi.org/10.1021/cm049221k]
[23]
Kayal, S.; Ramanujan, R.V. Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery. Mater. Sci. Eng. C, 2010, 30, 484-490.
[http://dx.doi.org/10.1016/j.msec.2010.01.006]
[24]
Al Boukhari, J.; Zeidan, L.; Khalaf, A.; Awad, R. Synthesis, characterization, optical and magnetic properties of pure and Mn, Fe and Zn doped NiO nanoparticles. Chem. Phys., 2019, 516, 116-124.
[http://dx.doi.org/10.1016/j.chemphys.2018.07.046]
[25]
Guoxin, H.; Xu, Z. Monodisperse iron oxide nanoparticle-reduced graphene oxide composites formed by self-assembly in aqueous phase, fullerenes. Nanotubes and Carbon Nanostructures, 2015, 23, 283-289.
[http://dx.doi.org/10.1080/1536383X.2013.812633]
[26]
Sharma, K.S.; Ningthoujam, R.S.; Dubey, A.K.; Chattopadhyay, A.; Phapale, S.; Juluri, R.R.; Mukherjee, S.; Tewari, R.; Shetake, N.G.; Pandey, B.N.; Vatsa, R.K. Synthesis and characterization of monodispersed water dispersible Fe3O4 nanoparticles and in vitro studies on human breast carcinoma cell line under hyperthermia condition. Sci. Rep., 2018, 8(1), 14766.
[http://dx.doi.org/10.1038/s41598-018-32934-w] [PMID: 30283083]
[27]
Jadhav, N.V.; Prasad, A.I.; Kumar, A.; Mishra, R.; Dhara, S.; Babu, K.R.; Prajapat, C.L.; Misra, N.L.; Ningthoujam, R.S.; Pandey, B.N.; Vatsa, R.K. Synthesis of oleic acid functionalized Fe3O4 magnetic nanoparticles and studying their interaction with tumor cells for potential hyperthermia applications. Colloids Surf. B Biointerfaces, 2013, 108, 158-168.
[http://dx.doi.org/10.1016/j.colsurfb.2013.02.035] [PMID: 23537834]
[28]
Jalaiah, K.; Vijaya Babu, K. Structural, magnetic and electrical properties of nickel doped Mn-Zn spinel ferrite synthesized by sol-gel method. J. Magn. Magn. Mater., 2017, 423, 275-280.
[http://dx.doi.org/10.1016/j.jmmm.2016.09.114]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy