Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Garlic (Allium sativum L.): Its Chemistry, Nutritional Composition, Toxicity, and Anticancer Properties

Author(s): Abdur Rauf, Tareq Abu-Izneid, Muthu Thiruvengadam*, Muhammad Imran, Ahmed Olatunde, Mohammad Ali Shariati, Saud Bawazeer, Saima Naz, Samira Shirooie, Ana Sanches-Silva, Umar Farooq and Galiya Kazhybayeva

Volume 22, Issue 11, 2022

Published on: 08 December, 2021

Page: [957 - 972] Pages: 16

DOI: 10.2174/1568026621666211105094939

Price: $65

Abstract

The current review discuss the chemistry, nutritional composition, toxicity, and biological functions of garlic and its bioactive compounds against various types of cancers via different anticancer mechanisms. Several scientific documents were found in reliable literature and searched in databases viz Science Direct, PubMed, Web of Science, Scopus, and Research Gate were carried out using keywords such as “garlic”, “garlic bioactive compounds”, “anticancer mechanisms of garlic”, “nutritional composition of garlic”, and others. Garlic contains several phytoconstituents with activities against cancer, and compounds such as diallyl trisulfide (DATS), allicin, and diallyl disulfide (DADS), diallyl sulfide (DAS), and allyl mercaptan (AM). The influence of numerous garlic- derived products, phytochemicals, and nanoformulations on the liver, oral, prostate, breast, gastric, colorectal, skin, and pancreatic cancers has been studied. Based on our search, the bioactive molecules in garlic were found to inhibit the various phases of cancer. Moreover, the compounds in this plant also abrogate the peroxidation of lipids, activity of nitric oxide synthase, epidermal growth factor (EGF) receptor, nuclear factor-kappa B (NF-κB), protein kinase C, and regulate cell cycle and survival signaling cascades. Hence, garlic and its bioactive molecules exhibit the aforementioned mechanistic actions, and thus, they could be used to inhibit the induction, development, and progression of cancer. The review describes the nutritional composition of garlic, its bioactive molecules, and nanoformulations against various types of cancers, as well as the potential for developing these agents as antitumor drugs.

Keywords: Garlic, Diallyl disulfide, Allicin, Cancer, Antineoplastic action, Toxicity.

« Previous
[1]
Tripathi, K.A. A review -garlic, the spice of life-[Part -I]. Asian J. Res. Chem., 2009, 2, 974-4169.
[2]
Gebreyohannes, G.; Gebreyohannes, M. Medicinal values of garlic, A review. Int. J. Med. Sci., 2013, 5, 401-408.
[3]
Timbo, B.B.; Ross, M.P.; McCarthy, P.V.; Lin, C.T. Dietary supplements in a national survey: prevalence of use and reports of adverse events. J. Am. Diet. Assoc., 2006, 106(12), 1966-1974.
[http://dx.doi.org/10.1016/j.jada.2006.09.002] [PMID: 17126626]
[4]
Bayan, L.; Koulivand, P.H.; Gorji, A. Garlic: a review of potential therapeutic effects. Avicenna J. Phytomed., 2014, 4(1), 1-14.
[PMID: 25050296]
[5]
Colín-González, A.L.; Santana, R.A.; Silva-Islas, C.A.; Chánez-Cárdenas, M.E.; Santamaría, A.; Maldonado, P.D. The antioxidant mechanisms underlying the aged garlic extract- and S-allylcysteine-induced protection. Oxid. Med. Cell. Longev., 2012, 2012, 907162.
[http://dx.doi.org/10.1155/2012/907162] [PMID: 22685624]
[6]
Aviello, G.; Abenavoli, L.; Borrelli, F.; Capasso, R.; Izzo, A.A.; Lembo, F.; Romano, B.; Capasso, F. Garlic: empiricism or science? Nat. Prod. Commun., 2009, 4(12), 1785-1796.
[http://dx.doi.org/10.1177/1934578X0900401231] [PMID: 20120123]
[7]
Londhe, V.; Gavasane, P.; Nipate, A.T.; Bandawane, S.S.; Chaudhari, D.D. Role of garlic (Allium sativum) in various diseases, an overview. J. Pharm. Res. Opin, 2011, 1, 129-134.
[8]
Rose, P.; Whiteman, M.; Moore, P.K.; Zhu, Y.Z. Bioactive S-alk(en)yl cysteine sulfoxide metabolites in the genus Allium: the chemistry of potential therapeutic agents. Nat. Prod. Rep., 2005, 22(3), 351-368.
[http://dx.doi.org/10.1039/b417639c] [PMID: 16010345]
[9]
Lanzotti, V. The analysis of onion and garlic. J. Chromatogr. A, 2006, 1112(1-2), 3-22.
[http://dx.doi.org/10.1016/j.chroma.2005.12.016] [PMID: 16388813]
[10]
Gorinstein, S.; Jastrzebski, Z.; Leontowicz, H. Comparative control of the bioactivity of some frequently consumed vegetables subjected to different processing conditions. Food Control, 2009, 20, 407-413.
[http://dx.doi.org/10.1016/j.foodcont.2008.07.008]
[11]
De Martino, A.; Filomeni, G.; Aquilano, K.; Ciriolo, M.R.; Rotilio, G. Effects of water garlic extracts on cell cycle and viability of HepG2 hepatoma cells. J. Nutr. Biochem., 2006, 17(11), 742-749.
[http://dx.doi.org/10.1016/j.jnutbio.2005.12.005] [PMID: 16520031]
[12]
Rosen, R.T.; Hiserodt, R.D.; Fukuda, E.K.; Ruiz, R.J.; Zhou, Z.; Lech, J.; Rosen, S.L.; Hartman, T.G. The determination of metabolites of garlic preparations in breath and human plasma. Biofactors, 2000, 13(1-4), 241-249.
[http://dx.doi.org/10.1002/biof.5520130137] [PMID: 11237188]
[13]
Germain, E.; Auger, J.; Ginies, C.; Siess, M.H.; Teyssier, C. In vivo metabolism of diallyl disulphide in the rat: identification of two new metabolites. Xenobiotica, 2002, 32(12), 1127-1138.
[http://dx.doi.org/10.1080/0049825021000017902] [PMID: 12593760]
[14]
Davenport, D.M.; Wargovich, M.J. Modulation of cytochrome P450 enzymes by organosulfur compounds from garlic. Food Chem. Toxicol., 2005, 43(12), 1753-1762.
[http://dx.doi.org/10.1016/j.fct.2005.05.018] [PMID: 16000231]
[15]
Nencini, C.; Franchi, G.G.; Cavallo, F.; Micheli, L. Protective effect of Allium neapolitanum Cyr. versus Allium sativum L. on acute ethanol-induced oxidative stress in rat liver. J. Med. Food, 2010, 13(2), 329-335.
[http://dx.doi.org/10.1089/jmf.2008.0180] [PMID: 20192846]
[16]
Agarwal, M.K.; Iqbal, M.; Athar, M. Garlic oil ameliorates ferric nitrilotriacetate (Fe-NTA)-induced damage and tumor promotion: implications for cancer prevention. Food Chem. Toxicol., 2007, 45(9), 1634-1640.
[http://dx.doi.org/10.1016/j.fct.2007.02.029] [PMID: 17512651]
[17]
Kim, S.H.; Bommareddy, A.; Singh, S.V. Garlic constituent diallyl trisulfide suppresses x-linked inhibitor of apoptosis protein in prostate cancer cells in culture and in vivo. Cancer Prev. Res. (Phila.), 2011, 4(6), 897-906.
[http://dx.doi.org/10.1158/1940-6207.CAPR-10-0323] [PMID: 21411500]
[18]
Miroddi, M.; Calapai, F.; Calapai, G. Potential beneficial effects of garlic in oncohematology. Mini Rev. Med. Chem., 2011, 11(6), 461-472.
[http://dx.doi.org/10.2174/138955711795843293] [PMID: 21561411]
[19]
Velliyagounder, K.; Ganeshnarayan, K.; Velusamy, S.K.; Fine, D.H. In vitro efficacy of diallyl sulfides against the periodontopathogen Aggregatibacter actinomycetemcomitans. Antimicrob. Agents Chemother., 2012, 56(5), 2397-2407.
[http://dx.doi.org/10.1128/AAC.00020-12] [PMID: 22330917]
[20]
Choi, Y.H.; Park, H.S. Apoptosis induction of U937 human leukemia cells by diallyl trisulfide induces through generation of reactive oxygen species. J. Biomed. Sci., 2012, 19, 50.
[http://dx.doi.org/10.1186/1423-0127-19-50] [PMID: 22578287]
[21]
Wang, H.C.; Pao, J.; Lin, S.Y.; Sheen, L.Y. Molecular mechanisms of garlic-derived allyl sulfides in the inhibition of skin cancer progression. Ann. N. Y. Acad. Sci., 2012, 1271, 44-52.
[http://dx.doi.org/10.1111/j.1749-6632.2012.06743.x] [PMID: 23050963]
[22]
Chu, Y.L.; Ho, C.T.; Chung, J.G.; Rajasekaran, R.; Sheen, L.Y. Allicin induces p53-mediated autophagy in Hep G2 human liver cancer cells. J. Agric. Food Chem., 2012, 60(34), 8363-8371.
[http://dx.doi.org/10.1021/jf301298y] [PMID: 22860996]
[23]
Shi, Z.; Li, C.Y.; Zhao, S.; Yu, Y.; An, N.; Liu, Y.X.; Wu, C.F.; Yue, B.S.; Bao, J.K. A systems biology analysis of autophagy in cancer therapy. Cancer Lett., 2013, 337(2), 149-160.
[http://dx.doi.org/10.1016/j.canlet.2013.06.004] [PMID: 23791881]
[24]
Capasso, A. Antioxidant action and therapeutic efficacy of Allium sativum L. Molecules, 2013, 18(1), 690-700.
[http://dx.doi.org/10.3390/molecules18010690] [PMID: 23292331]
[25]
Sela, U.; Ganor, S.; Hecht, I.; Brill, A.; Miron, T.; Rabinkov, A.; Wilchek, M.; Mirelman, D.; Lider, O.; Hershkoviz, R. Allicin inhibits SDF-1alpha-induced T cell interactions with fibronectin and endothelial cells by down-regulating cytoskeleton rearrangement, Pyk-2 phosphorylation and VLA-4 expression. Immunology, 2004, 111(4), 391-399.
[http://dx.doi.org/10.1111/j.0019-2805.2004.01841.x] [PMID: 15056375]
[26]
Das, I.; Acharya, A.; Saha, T. Protective effect of garlic in skin cancer. Human Health Handbooks, 2012, 1, 300-317.
[http://dx.doi.org/10.3920/978-90-8686-729-5_18]
[27]
Hong, Y.S.; Ham, Y.A.; Choi, J.H.; Kim, J. Effects of allyl sulfur compounds and garlic extract on the expression of Bcl-2, Bax, and p53 in non small cell lung cancer cell lines. Exp. Mol. Med., 2000, 32(3), 127-134.
[http://dx.doi.org/10.1038/emm.2000.22] [PMID: 11048643]
[28]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[29]
Muninathan, N.; Ursula, S.; Prashanth, T.; Uma, M.; Kumar, A. Effect of paclitaxel along with diallyl sulfide on immunocompetent cells, immune complexes and immunoglobulins changes in 7,12 Di Methyl Benz[A] anthracene-induced skin cancer in Wistar rats. Int. J. Med. Res. Health Sci., 2014, 3, 155-160.
[30]
Shrotriya, S.; Kundu, J.K.; Na, H.K.; Surh, Y.J. Diallyl trisulfide inhibits phorbol ester-induced tumor promotion, activation of AP-1, and expression of COX-2 in mouse skin by blocking JNK and Akt signaling. Cancer Res., 2010, 70(5), 1932-1940.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-3501] [PMID: 20179211]
[31]
Cherng, J.M.; Tsai, K.D.; Perng, D.S.; Wang, J.S.; Wei, C.C.; Lin, J.C. Diallyl sulfide protects against ultraviolet B-induced skin cancers in SKH-1 hairless mouse: analysis of early molecular events in carcinogenesis. Photodermatol. Photoimmunol. Photomed., 2011, 27(3), 138-146.
[http://dx.doi.org/10.1111/j.1600-0781.2011.00582.x] [PMID: 21535167]
[32]
Arora, A.; Shukla, Y. Induction of apoptosis by diallyl sulfide in DMBA-induced mouse skin tumors. Nutr. Cancer, 2002, 44(1), 89-94.
[http://dx.doi.org/10.1207/S15327914NC441_12] [PMID: 12672645]
[33]
Mariani, S.; Lionetto, L.; Cavallari, M.; Tubaro, A.; Rasio, D.; De Nunzio, C.; Hong, G.M.; Borro, M.; Simmaco, M. Low prostate concentration of lycopene is associated with development of prostate cancer in patients with high-grade prostatic intraepithelial neoplasia. Int. J. Mol. Sci., 2014, 15(1), 1433-1440.
[http://dx.doi.org/10.3390/ijms15011433] [PMID: 24451130]
[34]
Ozten-Kandaş, N.; Bosland, M.C. Chemoprevention of prostate cancer: Natural compounds, antiandrogens, and antioxidants - In vivo evidence. J. Carcinog., 2011, 10, 27.
[http://dx.doi.org/10.4103/1477-3163.90438] [PMID: 22190869]
[35]
Herman-Antosiewicz, A.; Kim, Y.A.; Kim, S.H.; Xiao, D.; Singh, S.V. Diallyl trisulfide-induced G2/M phase cell cycle arrest in DU145 cells is associated with delayed nuclear translocation of cyclin-dependent kinase 1. Pharm. Res., 2010, 27(6), 1072-1079.
[http://dx.doi.org/10.1007/s11095-010-0060-7] [PMID: 20143254]
[36]
Arunkumar, R.; Sharmila, G.; Elumalai, P.; Senthilkumar, K.; Banudevi, S.; Gunadharini, D.N.; Benson, C.S.; Daisy, P.; Arunakaran, J. Effect of diallyl disulfide on insulin-like growth factor signaling molecules involved in cell survival and proliferation of human prostate cancer cells in vitro and in silico approach through docking analysis. Phytomedicine, 2012, 19(10), 912-923.
[http://dx.doi.org/10.1016/j.phymed.2012.04.009] [PMID: 22739413]
[37]
Kim, H.J.; Han, M.H.; Kim, G.Y.; Choi, Y.W.; Choi, Y.H. Hexane extracts of garlic cloves induce apoptosis through the generation of reactive oxygen species in Hep3B human hepatocarcinoma cells. Oncol. Rep., 2012, 28(5), 1757-1763.
[http://dx.doi.org/10.3892/or.2012.1985] [PMID: 22923154]
[38]
Antosiewicz, J.; Herman-Antosiewicz, A.; Marynowski, S.W.; Singh, S.V. c-Jun NH(2)-terminal kinase signaling axis regulates diallyl trisulfide-induced generation of reactive oxygen species and cell cycle arrest in human prostate cancer cells. Cancer Res., 2006, 66(10), 5379-5386.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-0356] [PMID: 16707465]
[39]
Chu, Q.; Ling, M.T.; Feng, H.; Cheung, H.W.; Tsao, S.W.; Wang, X.; Wong, Y.C. A novel anticancer effect of garlic derivatives: inhibition of cancer cell invasion through restoration of E-cadherin expression. Carcinogenesis, 2006, 27(11), 2180-2189.
[http://dx.doi.org/10.1093/carcin/bgl054] [PMID: 16675472]
[40]
Xiao, D.; Singh, S.V. Diallyl trisulfide, a constituent of processed garlic, inactivates Akt to trigger mitochondrial translocation of BAD and caspase-mediated apoptosis in human prostate cancer cells. Carcinogenesis, 2006, 27(3), 533-540.
[http://dx.doi.org/10.1093/carcin/bgi228] [PMID: 16169930]
[41]
Devrim, E.; Durak, I. Is garlic a promising food for benign prostatic hyperplasia and prostate cancer? Mol. Nutr. Food Res., 2007, 51(11), 1319-1323.
[http://dx.doi.org/10.1002/mnfr.200600302] [PMID: 17918170]
[42]
Nandakumar, A.; Ramnath, T.; Chaturvedi, M. The magnitude of cancer breast in India: a summary. Indian J. Surg. Oncol., 2010, 1(1), 8-9.
[http://dx.doi.org/10.1007/s13193-010-0004-z] [PMID: 22930611]
[43]
Yeap, S.K.; Yusof, H.M.; Mohamad, N.E. In vivo immunomodulation and lipid peroxidation activities contributed to chemoprevention effects of fermented mung bean against breast cancer. Evid. Based Comp. Alter Med., 2013, 2013, 708464.
[44]
Chakrabarty, J.; Vidyasagar, M.S.; Fernandes, D.; Nagalakshmi, V.; Joisa, G.; Mayya, S.S. Effectiveness of pranayama on the levels of serum protein thiols and glutathione in breast cancer patients undergoing radiation therapy, a randomized controlled trial. Ind. J. Physiolpharma, 2013, 57, 225.
[45]
Xu, Y.S.; Feng, J.G.; Zhang, D.; Zhang, B.; Luo, M.; Su, D.; Lin, N.M. S-allylcysteine, a garlic derivative, suppresses proliferation and induces apoptosis in human ovarian cancer cells in vitro. Acta Pharmacol. Sin., 2014, 35(2), 267-274.
[http://dx.doi.org/10.1038/aps.2013.176] [PMID: 24362328]
[46]
Nkrumah-Elie, Y.M.; Reuben, J.S.; Hudson, A.; Taka, E.; Badisa, R.; Ardley, T.; Israel, B.; Sadrud-Din, S.Y.; Oriaku, E.; Darling-Reed, S.F.; Selina, F.; Darling, R. Diallyl trisulfide as an inhibitor of benzo(a)pyrene-induced precancerous carcinogenesis in MCF-10A cells. Food Chem. Toxicol., 2012, 50(7), 2524-2530.
[http://dx.doi.org/10.1016/j.fct.2012.04.010] [PMID: 22525868]
[47]
Tsubura, A.; Lai, Y.C.; Kuwata, M.; Uehara, N.; Yoshizawa, K. Anticancer effects of garlic and garlic-derived compounds for breast cancer control. Anticancer Agents Med. Chem., 2011, 11(3), 249-253.
[http://dx.doi.org/10.2174/187152011795347441] [PMID: 21269259]
[48]
Tepe, B.; Tuncer, E.; Saraydın, S.U.; Özer, H.; Şen, M.; Karadayi, K.; Inan, D.S.; Karadayi, S.; Polat, Z.; Akpulat, A.; Duman, M.; Koksal, B.; Turan, M. Antitumoral effects of Allium sivasicum on breast cancer in vitro and in vivo. Mol. Biol. Rep., 2013, 40(1), 597-604.
[http://dx.doi.org/10.1007/s11033-012-2098-6] [PMID: 23065225]
[49]
Giacinti, C.; Giordano, A. RB and cell cycle progression. Oncogene, 2006, 25(38), 5220-5227.
[http://dx.doi.org/10.1038/sj.onc.1209615] [PMID: 16936740]
[50]
Mazumder, S.; DuPree, E.L.; Almasan, A. A dual role of cyclin E in cell proliferation and apoptosis may provide a target for cancer therapy. Curr. Cancer Drug Targets, 2004, 4(1), 65-75.
[http://dx.doi.org/10.2174/1568009043481669] [PMID: 14965268]
[51]
Vermeulen, K.; Van Bockstaele, D.R.; Berneman, Z.N. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif., 2003, 36(3), 131-149.
[http://dx.doi.org/10.1046/j.1365-2184.2003.00266.x] [PMID: 12814430]
[52]
Gasco, M.; Shami, S.; Crook, T. The p53 pathway in breast cancer. Breast Cancer Res., 2002, 4(2), 70-76.
[http://dx.doi.org/10.1186/bcr426] [PMID: 11879567]
[53]
Zhang, C.L.; Zeng, T.; Zhao, X.L.; Yu, L.H.; Zhu, Z.P.; Xie, K.Q. Protective effects of garlic oil on hepatocarcinoma induced by N-nitrosodiethylamine in rats. Int. J. Biol. Sci., 2012, 8(3), 363-374.
[http://dx.doi.org/10.7150/ijbs.3796] [PMID: 22393308]
[54]
Naheed, A.; Amina, D.; Jaberi, A.; Najla, A.; Fatma, M.; Bastai, A.; Salim, M.A. Comparative effect of garlic [Allium sativum]: onion [Allium cepa]: and black seed [Nigella sativa] on gastric acid secretion and gastric ulcer. Res. Rep. Med. Chem., 2011, 1, 3-9.
[55]
Park, H.S.; Kim, G.Y.; Choi, I.W.; Kim, N.D.; Hwang, H.J.; Choi, Y.W.; Choi, Y.H. Inhibition of matrix metalloproteinase activities and tightening of tight junctions by diallyl disulfide in AGS human gastric carcinoma cells. J. Food Sci., 2011, 76(4), T105-T111.
[http://dx.doi.org/10.1111/j.1750-3841.2011.02114.x] [PMID: 22417372]
[56]
Zheng, G.H.; Li, H.Q. Effects of garlic oil combined with resveratrol on inducting of apoptosis and expression of Fas, bcl-2 and bax in human gastric cancer cell line. Chin. J. Prev. Med, 2008, 42(1), 39-42.
[PMID: 18512326]
[57]
Zhou, Y.; Zhuang, W.; Hu, W.; Liu, G.J.; Wu, T.X.; Wu, X.T. Consumption of large amounts of Allium vegetables reduces risk for gastric cancer in a meta-analysis. Gastroenterology, 2011, 141(1), 80-89.
[http://dx.doi.org/10.1053/j.gastro.2011.03.057] [PMID: 21473867]
[58]
Lee, E.N.; Choi, Y.W.; Kim, H.K.; Park, J.K.; Kim, H.J.; Kim, M.J.; Lee, H.W.; Kim, K.H.; Bae, S.S.; Kim, B.S.; Yoon, S. Chloroform extract of aged black garlic attenuates TNF-α-induced ROS generation, VCAM-1 expression, NF-κB activation and adhesiveness for monocytes in human umbilical vein endothelial cells. Phytother. Res., 2011, 25(1), 92-100.
[http://dx.doi.org/10.1002/ptr.3230] [PMID: 20623600]
[59]
Li, H.; Li, H.Q.; Wang, Y.; Xu, H.X.; Fan, W.T.; Wang, M.L.; Sun, P.H.; Xie, X.Y. An intervention study to prevent gastric cancer by micro-selenium and large dose of allitridum. Chin. Med. J. (Engl.), 2004, 117(8), 1155-1160.
[PMID: 15361287]
[60]
de Giorgio, A.; Stebbing, J. Garlic: a stake through the heart of cancer? Lancet Oncol., 2016, 17(7), 879-880.
[http://dx.doi.org/10.1016/S1470-2045(16)30235-2] [PMID: 27396636]
[61]
Gail, M.H.; You, W.C. A factorial trial including garlic supplements assesses effect in reducing precancerous gastric lesions. J. Nutr., 2006, 136(3)(Suppl.), 813S-815S.
[http://dx.doi.org/10.1093/jn/136.3.813S] [PMID: 16484571]
[62]
Kim, H.; Keum, N.; Giovannucci, E.L.; Fuchs, C.S.; Bao, Y. Garlic intake and gastric cancer risk: results from two large prospective US cohort studies. Int. J. Cancer, 2018, 143(5), 1047-1053.
[http://dx.doi.org/10.1002/ijc.31396] [PMID: 29569711]
[63]
Christudoss, P.; Selvakumar, R.; Pulimood, A.B.; Fleming, J.J.; Mathew, G. Protective role of aspirin, vitamin C and zinc in the DMH induced colon carcinoma model. Asian Pac. J. Cancer Prev., 2013, 14, 4627-4634.
[http://dx.doi.org/10.7314/APJCP.2013.14.8.4627] [PMID: 24083715]
[64]
Elwood, P.C.; Gallagher, A.M.; Duthie, G.G.; Mur, L.A.; Morgan, G. Aspirin, salicylates, and cancer. Lancet, 2009, 373(9671), 1301-1309.
[http://dx.doi.org/10.1016/S0140-6736(09)60243-9] [PMID: 19328542]
[65]
Lai, K.C.; Hsu, S.C.; Kuo, C.L.; Yang, J.S.; Ma, C.Y.; Lu, H.F.; Tang, N.Y.; Hsia, T.C.; Ho, H.C.; Chung, J.G. Diallyl sulfide, diallyl disulfide, and diallyl trisulfide inhibit migration and invasion in human colon cancer colo 205 cells through the inhibition of matrix metalloproteinase-2, -7, and -9 expressions. Environ. Toxicol., 2013, 28(9), 479-488.
[http://dx.doi.org/10.1002/tox.20737] [PMID: 21695758]
[66]
Huang, Y.S.; Xie, N.; Su, Q.; Su, J.; Huang, C.; Liao, Q.J. Diallyl disulfide inhibits the proliferation of HT-29 human colon cancer cells by inducing differentially expressed genes. Mol. Med. Rep., 2011, 4(3), 553-559.
[PMID: 21468607]
[67]
Higgs, M.R.; Chouteau, P.; Lerat, H. ‘Liver let die’: oxidative DNA damage and hepatotropic viruses. J. Gen. Virol., 2014, 95(Pt 5), 991-1004.
[http://dx.doi.org/10.1099/vir.0.059485-0] [PMID: 24496828]
[68]
Bat-Chen, W.; Golan, T.; Peri, I.; Ludmer, Z.; Schwartz, B. Allicin purified from fresh garlic cloves induces apoptosis in colon cancer cells via Nrf2. Nutr. Cancer, 2010, 62(7), 947-957.
[http://dx.doi.org/10.1080/01635581.2010.509837] [PMID: 20924970]
[69]
Alpers, D.H. Garlic and its potential for prevention of colorectal cancer and other conditions. Curr. Opin. Gastroenterol., 2009, 25(2), 116-121.
[http://dx.doi.org/10.1097/MOG.0b013e32831ef221] [PMID: 19528879]
[70]
Tanaka, S.; Haruma, K.; Yoshihara, M.; Kajiyama, G.; Kira, K.; Amagase, H.; Chayama, K. Aged garlic extract has potential suppressive effect on colorectal adenomas in humans. J. Nutr., 2006, 136(3)(Suppl.), 821S-826S.
[http://dx.doi.org/10.1093/jn/136.3.821S] [PMID: 16484573]
[71]
Ding, Y.; Yao, H.; Yao, Y.; Fai, L.Y.; Zhang, Z. Protection of dietary polyphenols against oral cancer. Nutrients, 2013, 5(6), 2173-2191.
[http://dx.doi.org/10.3390/nu5062173] [PMID: 23771133]
[72]
Choudhari, S.K.; Chaudhary, M.; Gadbail, A.R.; Sharma, A.; Tekade, S. Oxidative and antioxidative mechanisms in oral cancer and precancer: a review. Oral Oncol., 2014, 50(1), 10-18.
[http://dx.doi.org/10.1016/j.oraloncology.2013.09.011] [PMID: 24126222]
[73]
Laskar, A.A.; Danishuddin., ; Khan, S.H.; Subbarao, N.; Younus, H. Enhancement in the catalytic activity of human salivary aldehyde dehydrogenase by alliin from garlic: implications in aldehyde toxicity and oral health. Curr. Pharm. Biotechnol., 2019, 20(6), 506-516.
[http://dx.doi.org/10.2174/1389201020666190416140817] [PMID: 31038061]
[74]
Pai, M.H.; Kuo, Y.H.; Chiang, E.P.I.; Tang, F.Y. S-Allylcysteine inhibits tumour progression and the epithelial-mesenchymal transition in a mouse xenograft model of oral cancer. Br. J. Nutr., 2012, 108(1), 28-38.
[http://dx.doi.org/10.1017/S0007114511005307] [PMID: 22011514]
[75]
Tang, F.Y.; Chiang, E.P.; Chung, J.G.; Lee, H.Z.; Hsu, C.Y. S-allylcysteine modulates the expression of E-cadherin and inhibits the malignant progression of human oral cancer. J. Nutr. Biochem., 2009, 20(12), 1013-1020.
[http://dx.doi.org/10.1016/j.jnutbio.2008.09.007] [PMID: 19157822]
[76]
Ng, K.T.; Guo, D.Y.; Cheng, Q.; Geng, W.; Ling, C.C.; Li, C.X.; Liu, X.B.; Ma, Y.Y.; Lo, C.M.; Poon, R.T.; Fan, S.T.; Man, K. A garlic derivative, S-allylcysteine (SAC), suppresses proliferation and metastasis of hepatocellular carcinoma. PLoS One, 2012, 7(2), e31655.
[http://dx.doi.org/10.1371/journal.pone.0031655] [PMID: 22389672]
[77]
Kay, H.Y.; Won Yang, J.; Kim, T.H.; Lee, D.Y.; Kang, B.; Ryu, J.H.; Jeon, R.; Kim, S.G. Ajoene, a stable garlic by-product, has an antioxidant effect through Nrf2-mediated glutamate-cysteine ligase induction in HepG2 cells and primary hepatocytes. J. Nutr., 2010, 140(7), 1211-1219.
[http://dx.doi.org/10.3945/jn.110.121277] [PMID: 20463144]
[78]
Zou, X.; Liang, J.; Sun, J.; Hu, X.; Lei, L.; Wu, D.; Liu, L. Allicin sensitizes hepatocellular cancer cells to anti-tumor activity of 5-fluorouracil through ROS-mediated mitochondrial pathway. J. Pharmacol. Sci., 2016, 131(4), 233-240.
[http://dx.doi.org/10.1016/j.jphs.2016.04.017] [PMID: 27177453]
[79]
Green, M.; Thomas, R.; Gued, L.; Sadrud-Din, S. Inhibition of DES-induced DNA adducts by diallyl sulfide: implications in liver cancer prevention. Oncol. Rep., 2003, 10(3), 767-771.
[PMID: 12684656]
[80]
Wu, C.C.; Chung, J.G.; Tsai, S.J.; Yang, J.H.; Sheen, L.Y. Differential effects of allyl sulfides from garlic essential oil on cell cycle regulation in human liver tumor cells. Food Chem. Toxicol., 2004, 42(12), 1937-1947.
[http://dx.doi.org/10.1016/j.fct.2004.07.008] [PMID: 15500931]
[81]
Iciek, M.; Kwiecień, I.; Chwatko, G.; Sokołowska-Jeżewicz, M.; Kowalczyk-Pachel, D.; Rokita, H. The effects of garlic-derived sulfur compounds on cell proliferation, caspase 3 activity, thiol levels and anaerobic sulfur metabolism in human hepatoblastoma HepG2 cells. Cell Biochem. Funct., 2012, 30(3), 198-204.
[http://dx.doi.org/10.1002/cbf.1835] [PMID: 22095390]
[82]
Tong, D.; Qu, H.; Meng, X.; Jiang, Y.; Liu, D.; Ye, S.; Chen, H.; Jin, Y.; Fu, S.; Geng, J. S-allylmercaptocysteine promotes MAPK inhibitor-induced apoptosis by activating the TGF-β signaling pathway in cancer cells. Oncol. Rep., 2014, 32(3), 1124-1132.
[http://dx.doi.org/10.3892/or.2014.3295] [PMID: 24970681]
[83]
Sundaresan, S.; Subramanian, P. Prevention of N-nitrosodiethylamine-induced hepatocarcinogenesis by S-allylcysteine. Mol. Cell. Biochem., 2008, 310(1-2), 209-214.
[http://dx.doi.org/10.1007/s11010-007-9682-4] [PMID: 18185914]
[84]
Lan, X.; Sun, H.; Liu, J.; Lin, Y.; Zhu, Z.; Han, X.; Sun, X.; Li, X.; Zhang, H.; Tang, Z. Effects of garlic oil on pancreatic cancer cells. Asian Pac. J. Cancer Prev., 2013, 14(10), 5905-5910.
[http://dx.doi.org/10.7314/APJCP.2013.14.10.5905] [PMID: 24289598]
[85]
Butt, M.S.; Sultan, M.T.; Butt, M.S.; Iqbal, J. Garlic: nature’s protection against physiological threats. Crit. Rev. Food Sci. Nutr., 2009, 49(6), 538-551.
[http://dx.doi.org/10.1080/10408390802145344] [PMID: 19484634]
[86]
Chhabria, S.V.; Akbarsha, M.A.; Li, A.P.; Kharkar, P.S.; Desai, K.B. In situ allicin generation using targeted alliinase delivery for inhibition of MIA PaCa-2 cells via epigenetic changes, oxidative stress and Cyclin-Dependent Kinase Inhibitor (CDKI) expression. Apoptosis, 2015, 20(10), 1388-1409.
[http://dx.doi.org/10.1007/s10495-015-1159-4] [PMID: 26286853]
[87]
Ma, H.B.; Huang, S.; Yin, X.R.; Zhang, Y.; Di, Z.L. Apoptotic pathway induced by diallyl trisulfide in pancreatic cancer cells. World J. Gastroenterol., 2014, 20(1), 193-203.
[http://dx.doi.org/10.3748/wjg.v20.i1.193] [PMID: 24415872]
[88]
Wang, W.; Cheng, J.; Zhu, Y. The JNK signaling pathway is a novel molecular target for S-propargyl- L-cysteine, a naturally-occurring garlic derivatives: link to its anticancer activity in pancreatic cancer in vitro and in vivo. Curr. Cancer Drug Targets, 2015, 15(7), 613-623.
[http://dx.doi.org/10.2174/1568009615666150602143943] [PMID: 26033085]
[89]
Assayed, M.E.; Khalaf, A.A.; Salem, H.A. Protective effects of garlic extract and vitamin C against in vivo cypermethrin-induced cytogenetic damage in rat bone-marrow. Mutat. Res., 2010, 702(1), 1-7.
[http://dx.doi.org/10.1016/j.mrgentox.2010.02.020] [PMID: 20673810]
[90]
Kumar, V.; Bhatt, P.C.; Rahman, M.; Kaithwas, G.; Choudhry, H.; Al-Abbasi, F.A.; Anwar, F.; Verma, A. Fabrication, optimization, and characterization of umbelliferone β-D-galactopyranoside-loaded PLGA nanoparticles in treatment of hepatocellular carcinoma: in vitro and in vivo studies. Int. J. Nanomedicine, 2017, 12, 6747-6758.
[http://dx.doi.org/10.2147/IJN.S136629] [PMID: 28932118]
[91]
Akhter, S.; Ahmad, Z.; Singh, A.; Ahmad, I.; Rahman, M.; Anwar, M.; Jain, G.K.; Ahmad, F.J.; Khar, R.K. Cancer targeted metallic nanoparticle: targeting overview, recent advancement and toxicity concern. Curr. Pharm. Des., 2011, 17(18), 1834-1850.
[http://dx.doi.org/10.2174/138161211796391001] [PMID: 21568874]
[92]
Rahman, M.; Beg, S.; Ahmed, A.; Swain, S. Emergence of functionalized nanomedicines in cancer chemotherapy: recent advancements, current challenges and toxicity considerations. Recent Pat. Nanomed., 2013, 3(2), 128-139.
[http://dx.doi.org/10.2174/18779123113036660002]
[93]
Ansari, M.A.; Thiruvengadam, M.; Farooqui, Z.; Rajakumar, G.; Sajid Jamal, Q.M.; Alzohairy, M.A.; Almatroudi, A.; Alomary, M.N.; Chung, I.M.; Al-Suhaimi, E.A. Nanotechnology, in silico and endocrine-based strategy for delivering paclitaxel and miRNA: prospects for the therapeutic management of breast cancer. Semin. Cancer Biol., 2021, 69, 109-128.
[http://dx.doi.org/10.1016/j.semcancer.2019.12.022] [PMID: 31891780]
[94]
Pandey, P.; Rahman, M.; Bhatt, P.C.; Beg, S.; Paul, B.; Hafeez, A.; Al-Abbasi, F.A.; Nadeem, M.S.; Baothman, O.; Anwar, F.; Kumar, V. Implication of nano-antioxidant therapy for treatment of hepatocellular carcinoma using PLGA nanoparticles of rutin. Nanomedicine (Lond.), 2018, 13(8), 849-870.
[http://dx.doi.org/10.2217/nnm-2017-0306] [PMID: 29565220]
[95]
Ahmad, M.Z.; Akhter, S.; Ahmad, I.; Rahman, M.; Anwar, M.; Jain, G.K.; Ahmad, F.J.; Khar, R.K. Development of polysaccharide based colon targeted drug delivery system: design and evaluation of Assam Bora rice starch based matrix tablet. Curr. Drug Deliv., 2011, 8(5), 575-581.
[http://dx.doi.org/10.2174/156720111796642327] [PMID: 21696349]
[96]
Rahman, M.; Ahmad, M.Z.; Ahmad, J.; Firdous, J.; Ahmad, F.J.; Mushtaq, G.; Kamal, M.A.; Akhter, S. Role of graphene nano-composites in cancer therapy: Theranostic applications, metabolic fate and toxicity issues. Curr. Drug Metab., 2015, 16(5), 397-409.
[http://dx.doi.org/10.2174/1389200215666141125120633] [PMID: 25429670]
[97]
Beg, S.; Rahman, M.; Jain, A.; Saini, S.; Midoux, P.; Pichon, C.; Ahmad, F.J.; Akhter, S. Nanoporous metal organic frameworks as hybrid polymer-metal composites for drug delivery and biomedical applications. Drug Discov. Today, 2017, 22(4), 625-637.
[http://dx.doi.org/10.1016/j.drudis.2016.10.001] [PMID: 27742533]
[98]
Rahman, M.; Ahmad, M.Z.; Kazmi, I.; Akhter, S.; Afzal, M.; Gupta, G.; Sinha, V.R. Emergence of nanomedicine as cancer targeted magic bullets: recent development and need to address the toxicity apprehension. Curr. Drug Discov. Technol., 2012, 9(4), 319-329.
[http://dx.doi.org/10.2174/157016312803305898] [PMID: 22725687]
[99]
Kydd, J.; Jadia, R.; Velpurisiva, P.; Gad, A.; Paliwal, S.; Rai, P. Targeting strategies for the combination treatment of cancer using drug delivery systems. Pharmaceutics, 2017, 9(4), 46.
[http://dx.doi.org/10.3390/pharmaceutics9040046] [PMID: 29036899]
[100]
Rahman, M.; Beg, S.; Verma, A.; Kazmi, I.; Patel, D.K.; Anwar, F.; Al Abbasi, F.A.; Kumar, V. Therapeutic applications of liposomal based drug delivery and drug targeting for immune linked inflammatory maladies: a contemporary view point. Curr. Drug Targets, 2017, 18(13), 1558-1571.
[http://dx.doi.org/10.2174/1389450118666170414113926] [PMID: 28413980]
[101]
Ahmad, J.; Amin, S.; Rahman, M.; Rub, R.A.; Singhal, M.; Ahmad, M.Z.; Rahman, Z.; Addo, R.T.; Ahmad, F.J.; Mushtaq, G.; Kamal, M.A.; Akhter, S. Solid matrix based lipidic nanoparticles in oral cancer chemotherapy: applications and pharmacokinetics. Curr. Drug Metab., 2015, 16(8), 633-644.
[http://dx.doi.org/10.2174/1389200216666150812122128] [PMID: 26264206]
[102]
Vijayakumar, S.; Malaikozhundan, B.; Saravanakumar, K.; Durán-Lara, E.F.; Wang, M-H.; Vaseeharan, B. Garlic clove extract assisted silver nanoparticle - Antibacterial, antibiofilm, antihelminthic, anti-inflammatory, anticancer and ecotoxicity assessment. J. Photochem. Photobiol. B, 2019, 198, 111558.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.111558] [PMID: 31357173]
[103]
Ahamed, M.; Javed Akhtar, M.; Majeed Khan, M.A.; Alhadlaq, H.A. Facile green synthesis of ZnO-RGO nanocomposites with enhanced anticancer efficacy. Methods, 2021.
[104]
Talluri, S.V.; Kuppusamy, G.; Karri, V.V.; Yamjala, K.; Wadhwani, A.; Madhunapantula, S.V.; Pindiprolu, S.S. Application of quality-by-design approach to optimize diallyl disulfide-loaded solid lipid nanoparticles. Artif. Cells Nanomed. Biotechnol., 2017, 45(3), 474-488.
[http://dx.doi.org/10.3109/21691401.2016.1173046] [PMID: 27112220]
[105]
Pandian, A.M.; Karthikeyan, C.; Rajasimman, M.; Dinesh, M.G. Synthesis of silver nanoparticle and its application. Ecotoxicol. Environ. Saf., 2015, 121, 211-217.
[http://dx.doi.org/10.1016/j.ecoenv.2015.03.039] [PMID: 25866204]
[106]
Arumai Selvan, D.; Mahendiran, D.; Senthil Kumar, R.; Kalilur Rahiman, A. Garlic, green tea and turmeric extracts-mediated green synthesis of silver nanoparticles: phytochemical, antioxidant and in vitro cytotoxicity studies. J. Photochem. Photobiol. B, 2018, 180, 243-252.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.02.014] [PMID: 29476965]
[107]
Hathout, R.M.; Metwally, A.A.; El-Ahmady, S.H.; Metwally, E.S.; Ghonim, N.A.; Bayoumy, S.A.; Erfan, T.; Ashraf, R.; Fadel, M.; El-Kholy, A.I.; Hardy, J.G. Dual stimuli-responsive polypyrrole nanoparticles for anticancer therapy. J. Drug Deliv. Sci. Technol., 2018, 47, 176-180.
[http://dx.doi.org/10.1016/j.jddst.2018.07.002]
[108]
Jalilian, F.; Chahardoli, A.; Sadrjavadi, K.; Fattahi, A.; Shokoohinia, Y. Green synthesized silver nanoparticle from Allium ampeloprasum aqueous extract: characterization, antioxidant activities, antibacterial and cytotoxicity effects. Adv. Powder Technol., 2020, 31, 1323-1332.
[http://dx.doi.org/10.1016/j.apt.2020.01.011]
[109]
Ai Thach, N.; Thu, H.P.; Thuy, N.M. In-vitro evaluation of cytotoxicity, antimicrobial, and enzyme inhibition activity of black garlic and its nanoparticles. Int. J. Eng. Sci. Res. Technol., 2019, 8, 59-63.
[110]
Tripathi, A.K.; Bhoyar, P.K.; Baheti, J.R.; Biyani, D.M.; Khalique, M.; Kothmire, M.S. Herbal antidiabetics, A review. Int. J. Res. Pharm. Sci., 2011, 2(1), 30-37.
[111]
Al-Qattan, K.K.; Thomson, M.; Al-Mutawa’a, S.; Al-Hajeri, D.; Drobiova, H.; Ali, M. Nitric oxide mediates the blood-pressure lowering effect of garlic in the rat two-kidney, one-clip model of hypertension. J. Nutr., 2006, 136(3)(Suppl.), 774S-776S.
[http://dx.doi.org/10.1093/jn/136.3.774S] [PMID: 16484561]
[112]
Ishikawa, H.; Saeki, T.; Otani, T.; Suzuki, T.; Shimozuma, K.; Nishino, H.; Fukuda, S.; Morimoto, K. Aged garlic extract prevents a decline of NK cell number and activity in patients with advanced cancer. J. Nutr., 2006, 136(3)(Suppl.), 816S-820S.
[http://dx.doi.org/10.1093/jn/136.3.816S] [PMID: 16484572]
[113]
Walter, R.B.; Brasky, T.M.; Milano, F.; White, E. Vitamin, mineral, and specialty supplements and risk of hematologic malignancies in the prospective VITamins And Lifestyle (VITAL) study. Cancer Epidemiol. Biomarkers Prev., 2011, 20(10), 2298-2308.
[http://dx.doi.org/10.1158/1055-9965.EPI-11-0494] [PMID: 21803844]
[114]
Chiu, T.H.; Lan, K.Y.; Yang, M.D.; Lin, J.J.; Hsia, T.C.; Wu, C.T.; Yang, J.S.; Chueh, F.S.; Chung, J.G. Diallyl sulfide promotes cell-cycle arrest through the p53 expression and triggers induction of apoptosis via caspase- and mitochondria-dependent signaling pathways in human cervical cancer Ca Ski cells. Nutr. Cancer, 2013, 65(3), 505-514.
[http://dx.doi.org/10.1080/01635581.2012.725503] [PMID: 23530650]
[115]
Shin, H.A.; Cha, Y.Y.; Park, M.S.; Kim, J.M.; Lim, Y.C. Diallyl sulfide induces growth inhibition and apoptosis of anaplastic thyroid cancer cells by mitochondrial signaling pathway. Oral Oncol., 2010, 46(4), e15-e18.
[http://dx.doi.org/10.1016/j.oraloncology.2009.10.012] [PMID: 20219414]
[116]
Sriram, N.; Kalayarasan, S.; Ashokkumar, P.; Sureshkumar, A.; Sudhandiran, G. Diallyl sulfide induces apoptosis in Colo 320 DM human colon cancer cells: involvement of caspase-3, NF-kappaB, and ERK-2. Mol. Cell. Biochem., 2008, 311(1-2), 157-165.
[http://dx.doi.org/10.1007/s11010-008-9706-8] [PMID: 18256791]
[117]
Bo, S.; Hui, H.; Li, W.; Hui, L.; Hong, X.; Lin, D.; Dai, W.X.; Wu, Y.H.; Ai, X.H.; Hao, J.; Qi, S. Chk1, but not Chk2, is responsible for G2/M phase arrest induced by diallyl disulfide in human gastric cancer BGC823 cells. Food Chem. Toxicol., 2014, 68, 61-70.
[http://dx.doi.org/10.1016/j.fct.2014.03.007] [PMID: 24650757]
[118]
Tang, H.; Kong, Y.; Guo, J.; Tang, Y.; Xie, X.; Yang, L.; Su, Q.; Xie, X. Diallyl disulfide suppresses proliferation and induces apoptosis in human gastric cancer through Wnt-1 signaling pathway by up-regulation of miR-200b and miR-22. Cancer Lett., 2013, 340(1), 72-81.
[http://dx.doi.org/10.1016/j.canlet.2013.06.027] [PMID: 23851184]
[119]
Dasgupta, P.; Bandyopadhyay, S.S. Role of di-allyl disulfide, a garlic component in NF-κB mediated transient G2-M phase arrest and apoptosis in human leukemic cell-lines. Nutr. Cancer, 2013, 65(4), 611-622.
[http://dx.doi.org/10.1080/01635581.2013.776090] [PMID: 23659453]
[120]
Altonsy, M.O.; Habib, T.N.; Andrews, S.C. Diallyl disulfide-induced apoptosis in a breast-cancer cell line (MCF-7) may be caused by inhibition of histone deacetylation. Nutr. Cancer, 2012, 64(8), 1251-1260.
[http://dx.doi.org/10.1080/01635581.2012.721156] [PMID: 23163853]
[121]
Yi, L.; Ji, X.X.; Tan, H.; Feng, M.Y.; Tang, Y.; Wen, L.; Su, Q. Involvement of Mcl1 in diallyl disulfide-induced G2/M cell cycle arrest in HL-60 cells. Oncol. Rep., 2012, 27(6), 1911-1917.
[PMID: 22378300]
[122]
Pratheeshkumar, P.; Thejass, P.; Kutan, G. Diallyl disulfide induces caspase-dependent apoptosis via mitochondria-mediated intrinsic pathway in B16F-10 melanoma cells by up-regulating p53, caspase-3 and down-regulating pro-inflammatory cytokines and nuclear factor-κβ-mediated Bcl-2 activation. J. Environ. Pathol. Toxicol. Oncol., 2010, 29(2), 113-125.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.v29.i2.50] [PMID: 20932246]
[123]
Wan, H.F.; Yu, L.H.; Wu, J.L.; Tu, S.; Zhu, W.F.; Zhang, X.L.; Wan, F.S. Effect of diallyl trisulfide on human ovarian cancer SKOV- 3/DDP cell apoptosis. Asian Pac. J. Cancer Prev., 2013, 14(12), 7197-7201.
[http://dx.doi.org/10.7314/APJCP.2013.14.12.7197] [PMID: 24460275]
[124]
Shin, D.Y.; Kim, G.Y.; Hwang, H.J.; Kim, W.J.; Choi, Y.H. Diallyl trisulfide-induced apoptosis of bladder cancer cells is caspase-dependent and regulated by PI3K/Akt and JNK pathways. Environ. Toxicol. Pharmacol., 2014, 37(1), 74-83.
[http://dx.doi.org/10.1016/j.etap.2013.11.002] [PMID: 24309133]
[125]
Shin, D.Y.; Cha, H.J.; Kim, G.Y.; Kim, W.J.; Choi, Y.H. Inhibiting invasion into human bladder carcinoma 5637 cells with diallyl trisulfide by inhibiting matrix metalloproteinase activities and tightening tight junctions. Int. J. Mol. Sci., 2013, 14(10), 19911-19922.
[http://dx.doi.org/10.3390/ijms141019911] [PMID: 24084732]
[126]
Borkowska, A.; Knap, N.; Antosiewicz, J. Diallyl trisulfide is more cytotoxic to prostate cancer cells PC-3 than to noncancerous epithelial cell line PNT1A: a possible role of p66Shc signaling axis. Nutr. Cancer, 2013, 65(5), 711-717.
[http://dx.doi.org/10.1080/01635581.2013.789115] [PMID: 23859039]
[127]
Chandra-Kuntal, K.; Lee, J.; Singh, S.V. Critical role for reactive oxygen species in apoptosis induction and cell migration inhibition by diallyl trisulfide, a cancer chemopreventive component of garlic. Breast Cancer Res. Treat., 2013, 138(1), 69-79.
[http://dx.doi.org/10.1007/s10549-013-2440-2] [PMID: 23412769]
[128]
Xiao, D.; Zeng, Y.; Hahm, E.R.; Kim, Y.A.; Ramalingam, S.; Singh, S.V. Diallyl trisulfide selectively causes Bax- and Bak-mediated apoptosis in human lung cancer cells. Environ. Mol. Mutagen., 2009, 50(3), 201-212.
[http://dx.doi.org/10.1002/em.20431] [PMID: 18800351]
[129]
Kim, S.H.; Bommareddy, A.; Singh, S.V. Garlic constituent diallyl trisulfide suppresses x-linked inhibitor of apoptosis protein in prostate cancer cells in culture and in vivo. Cancer Prevent. Res., 2011, 4, 897-906.
[http://dx.doi.org/10.1158/1940-6207.CAPR-10-0323]
[130]
Chandra-Kuntal, K.; Singh, S.V. Diallyl trisulfide inhibits activation of signal transducer and activator of transcription 3 in prostate cancer cells in culture and in vivo. Cancer Prevent. Res., 2010, 3, 1473-1483.
[http://dx.doi.org/10.1158/1940-6207.CAPR-10-0123]
[131]
Xiao, D.; Zeng, Y.; Singh, S.V. Diallyl trisulfide-induced apoptosis in human cancer cells is linked to checkpoint kinase 1-mediated mitotic arrest. Mol. Carcinog., 2009, 48(11), 1018-1029.
[http://dx.doi.org/10.1002/mc.20553] [PMID: 19459175]
[132]
Ye, Y.; Yang, H.Y.; Wu, J.; Li, M.; Min, J.M.; Cui, J.R. Z-ajoene causes cell cycle arrest at G2/M and decrease of telomerase activity in HL-60 cells. Zhonghua Zhong Liu Za Zhi, 2005, 27(9), 516-520.
[PMID: 16438845]
[133]
Taylor, P.; Noriega, R.; Farah, C.; Abad, M.J.; Arsenak, M.; Apitz, R. Ajoene inhibits both primary tumor growth and metastasis of B16/BL6 melanoma cells in C57BL/6 mice. Cancer Lett., 2006, 239(2), 298-304.
[http://dx.doi.org/10.1016/j.canlet.2005.08.022] [PMID: 16221526]
[134]
Xu, B.; Monsarrat, B.; Gairin, J.E.; Girbal-Neuhauser, E. Effect of ajoene, a natural antitumor small molecule, on human 20S proteasome activity in vitro and in human leukemic HL60 cells. Fundam. Clin. Pharmacol., 2004, 18(2), 171-180.
[http://dx.doi.org/10.1111/j.1472-8206.2004.00219.x] [PMID: 15066131]
[135]
Ledezma, E.; Apitz-Castro, R.; Cardier, J. Apoptotic and anti-adhesion effect of ajoene, a garlic derived compound, on the murine melanoma B16F10 cells: possible role of caspase-3 and the alpha(4)beta(1) integrin. Cancer Lett., 2004, 206(1), 35-41.
[http://dx.doi.org/10.1016/j.canlet.2003.10.031] [PMID: 15019157]
[136]
Yan, J.Y.; Tian, F.M.; Hu, W.N.; Zhang, J.H.; Cai, H.F.; Li, N. Apoptosis of human gastric cancer cells line SGC 7901 induced by garlic-derived compound S-allylmercaptocysteine (SAMC). Eur. Rev. Med. Pharmacol. Sci., 2013, 17(6), 745-751.
[PMID: 23609357]
[137]
Liang, D.; Qin, Y.; Zhao, W.; Zhai, X.; Guo, Z.; Wang, R.; Tong, L.; Lin, L.; Chen, H.; Wong, Y.C.; Zhong, Z. S-allylmercaptocysteine effectively inhibits the proliferation of colorectal cancer cells under in vitro and in vivo conditions. Cancer Lett., 2011, 310(1), 69-76.
[http://dx.doi.org/10.1016/j.canlet.2011.06.019] [PMID: 21794975]
[138]
Howard, E.W.; Ling, M.T.; Chua, C.W.; Cheung, H.W.; Wang, X.; Wong, Y.C. Garlic-derived S-allylmercaptocysteine is a novel in vivo antimetastatic agent for androgen-independent prostate cancer. Clin. Cancer Res., 2007, 13(6), 1847-1856.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-2074] [PMID: 17363541]
[139]
Xiao, D.; Pinto, J.T.; Soh, J.W.; Deguchi, A.; Gundersen, G.G.; Palazzo, A.F.; Yoon, J.T.; Shirin, H.; Weinstein, I.B. Induction of apoptosis by the garlic-derived compound S-allylmercaptocysteine (SAMC) is associated with microtubule depolymerization and c-Jun NH(2)-terminal kinase 1 activation. Cancer Res., 2003, 63(20), 6825-6837.
[PMID: 14583480]
[140]
Lea, M.A.; Rasheed, M.; Randolph, V.M.; Khan, F.; Shareef, A.; desBordes, C. Induction of histone acetylation and inhibition of growth of mouse erythroleukemia cells by S-allylmercaptocysteine. Nutr. Cancer, 2002, 43(1), 90-102.
[http://dx.doi.org/10.1207/S15327914NC431_11] [PMID: 12467140]
[141]
Sigounas, G.; Hooker, J.; Anagnostou, A.; Steiner, M. S-allylmercaptocysteine inhibits cell proliferation and reduces the viability of erythroleukemia, breast, and prostate cancer cell lines. Nutr. Cancer, 1997, 27(2), 186-191.
[http://dx.doi.org/10.1080/01635589709514523] [PMID: 9121948]
[142]
Ventura, J.J.; Cogswell, P.; Flavell, R.A.; Baldwin, A.S., Jr; Davis, R.J. JNK potentiates TNF-stimulated necrosis by increasing the production of cytotoxic reactive oxygen species. Genes Dev., 2004, 18(23), 2905-2915.
[http://dx.doi.org/10.1101/gad.1223004] [PMID: 15545623]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy