Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Inhalable Polymeric Micro and Nano-immunoadjuvants for Developing Therapeutic Vaccines in the Treatment of Non-small Cell Lung Cancer

Author(s): Ayusha Dondulkar, Natasha Akojwar, Chanti Katta, Dharmendra K. Khatri, Neelesh K. Mehra*, Shashi B. Singh and Jitender Madan*

Volume 28, Issue 5, 2022

Published on: 30 November, 2021

Page: [395 - 409] Pages: 15

DOI: 10.2174/1381612827666211104155604

Price: $65

Abstract

Non-small cell lung cancer (NSCLC) is a leading cause of death in millions of cancer patients. Lack of diagnosis at an early stage in addition to no specific guidelines for its treatment, and a higher rate of treatment- related toxicity further deteriorate the conditions. Current therapies encompass surgery, chemotherapy, radiation therapy, and immunotherapy according to the pattern and the stage of lung cancer. Among all, with a longlasting therapeutic action, reduced side-effects, and a higher rate of survival, therapeutic cancer vaccine is a new, improved strategy for treating NSCLC. Immunoadjuvants are usually incorporated into the therapeutic vaccines to shield the antigen against environmental and physiological harsh conditions in addition to boosting the immune potential. Conventional immunoadjuvants are often associated with an inadequate cellular response, poor target specificity, and low antigen load. Recently, inhalable polymeric nano/micro immunoadjuvants have exhibited immense potential in the development of therapeutic vaccines for the treatment of NSCLC with improved mucosal immunization. The development of polymeric micro/nano immunoadjuvants brought a new era for vaccines with increased strength and efficiency. Therefore, in the present review, we explained the potential application of micro/nano immunoadjuvants for augmenting the stability and efficacy of inhalable vaccines in the treatment of NSCLC. In addition, the role of biodegradable, biocompatible, and non-toxic polymers has also been discussed with case studies.

Keywords: Non-small cell lung cancer, immunotherapy, inhalable vaccines, Micro/nano-immunoadjuvants, adenocarcinomas, deterioration.

[1]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin 2016; 66(1): 7-30.
[http://dx.doi.org/10.3322/caac.21332] [PMID: 26742998]
[2]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[3]
Alberg AJ, Brock MV, Ford JG, Samet JM, Spivack SD. Epidemiology of lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 2013; 143(5)(Suppl.): e1S-e29S.
[http://dx.doi.org/10.1378/chest.12-2345] [PMID: 23649439]
[4]
Travis WD, Brambilla E, Muller-Hermelink HK, Harris CC. World Health Organization classification of tumours. Pathology and genetics of tumours of the lung, pleura, thymus and heart. 2004; 10: 179-84.
[5]
Travis WD, Brambilla E, Burke AP, Marx A, Nicholson AG. Introduction to the 2015 World Health Organization classification of tumors of the lung, pleura, thymus, and heart. J Thorac Oncol 2015; 10(9): 1240-2.
[http://dx.doi.org/10.1097/JTO.0000000000000663] [PMID: 26291007]
[6]
Bernhardt EB, Jalal SI. Small cell lung cancer. Lung Cancer. Cham: Springer 2016; pp. 301-22.
[http://dx.doi.org/10.1007/978-3-319-40389-2_14]
[7]
Pietanza MC, Krug LM, Wu AJ, Kris MG, Rudin CM, Travis WD. Small cell and neuroendocrine tumors of the lung. In: DeVita, Hellman, and Rosenberg's Cancer: Principles & Practice of Oncology. Wolters Kluwer Health Adis (ESP) 2015; 10.
[8]
Araujo LH, Horn L, Merritt RE, Shilo K, Xu-Welliver M, Carbone DP. Cancer of the lung: Non–small cell lung cancer and small cell lung cancer. In: Abeloff's Clinical Oncology. 2020; pp. 1108-58.
[9]
Birring SS, Peake MD. Symptoms and the early diagnosis of lung cancer. Thorax 2005; 60(4): 268-9.
[http://dx.doi.org/10.1136/thx.2004.032698] [PMID: 15790977]
[10]
Spiro SG, Gould MK, Colice GL. Initial evaluation of the patient with lung cancer: symptoms, signs, laboratory tests, and paraneoplastic syndromes: ACCP evidenced-based clinical practice guidelines (2nd edition). Chest 2007; 132(3)(Suppl.): 149S-60S.
[http://dx.doi.org/10.1378/chest.07-1358] [PMID: 17873166]
[11]
Travis LB, Gospodarowicz M, Curtis RE, et al. Lung cancer following chemotherapy and radiotherapy for Hodgkin’s disease. J Natl Cancer Inst 2002; 94(3): 182-92.
[http://dx.doi.org/10.1093/jnci/94.3.182] [PMID: 11830608]
[12]
Arriagada R, Bergman B, Dunant A, Le Chevalier T, Pignon JP, Vansteenkiste J. Cisplatin-based adjuvant chemotherapy in patients with completely resected non-small-cell lung cancer. N Engl J Med 2004; 350(4): 351-60.
[http://dx.doi.org/10.1056/NEJMoa031644] [PMID: 14736927]
[13]
De Pas T, de Braud F, Mandalà M, et al. Cisplatin and vinorelbine as second-line chemotherapy in patients with advanced non-small cell lung cancer (NSCLC) resistant to taxol plus gemcitabine. Lung Cancer 2001; 31(2-3): 267-70.
[http://dx.doi.org/10.1016/S0169-5002(00)00176-8] [PMID: 11165406]
[14]
Novello S, Barlesi F, Califano R, et al. Metastatic non-small-cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2016; 27(5)(Suppl. 5): v1-v27.
[http://dx.doi.org/10.1093/annonc/mdw326] [PMID: 27664245]
[15]
Muthu V, Mylliemngap B, Prasad KT, Behera D, Singh N. Adverse effects observed in lung cancer patients undergoing first-line chemotherapy and effectiveness of supportive care drugs in a resource-limited setting. Lung India 2019; 36(1): 32-7.
[http://dx.doi.org/10.4103/lungindia.lungindia_321_17] [PMID: 30604703]
[16]
Gao WQ, Dybdal N, Shinsky N, et al. Neurotrophin-3 reverses experimental cisplatin-induced peripheral sensory neuropathy. Ann Neurol 1995; 38(1): 30-7.
[http://dx.doi.org/10.1002/ana.410380108] [PMID: 7611721]
[17]
Schmidinger M, Budinsky AC, Wenzel C, et al. Glutathione in the prevention of cisplatin induced toxicities. A prospectively randomized pilot trial in patients with head and neck cancer and non small cell lung cancer. Wien Klin Wochenschr 2000; 112(14): 617-23.
[PMID: 11008323]
[18]
Albain KS, Swann RS, Rusch VW, et al. Radiotherapy plus chemotherapy with or without surgical resection for stage III non-small-cell lung cancer: a phase III randomised controlled trial. Lancet 2009; 374(9687): 379-86.
[http://dx.doi.org/10.1016/S0140-6736(09)60737-6] [PMID: 19632716]
[19]
Grills IS, Mangona VS, Welsh R, et al. Outcomes after stereotactic lung radiotherapy or wedge resection for stage I non-small-cell lung cancer. J Clin Oncol 2010; 28(6): 928-35.
[http://dx.doi.org/10.1200/JCO.2009.25.0928] [PMID: 20065181]
[20]
Gorbet MJ, Ranjan A. Cancer immunotherapy with immunoadjuvants, nanoparticles, and checkpoint inhibitors: Recent progress and challenges in treatment and tracking response to immunotherapy. Pharmacol Ther 2020; 207: 107456.
[http://dx.doi.org/10.1016/j.pharmthera.2019.107456] [PMID: 31863820]
[21]
Kruger S, Ilmer M, Kobold S, et al. Advances in cancer immunotherapy 2019–latest trends. J Exp Clin Cancer Res 2019; 38(1): 1-1.
[http://dx.doi.org/10.1186/s13046-019-1266-0] [PMID: 30606223]
[22]
Kelly RJ, Giaccone G. Lung cancer vaccines. Cancer J 2011; 17(5): 302-8.
[http://dx.doi.org/10.1097/PPO.0b013e318233e6b4] [PMID: 21952280]
[23]
Finn OJ. Cancer vaccines: between the idea and the reality. Nat Rev Immunol 2003; 3(8): 630-41.
[http://dx.doi.org/10.1038/nri1150] [PMID: 12974478]
[24]
Giaccone G, Bazhenova LA, Nemunaitis J, et al. A phase III study of belagenpumatucel-L, an allogeneic tumour cell vaccine, as maintenance therapy for non-small cell lung cancer. Eur J Cancer 2015; 51(16): 2321-9.
[http://dx.doi.org/10.1016/j.ejca.2015.07.035] [PMID: 26283035]
[25]
Gonzalez G, Crombet T, Torres F, et al. Epidermal growth factor-based cancer vaccine for non-small-cell lung cancer therapy. Ann Oncol 2003; 14(3): 461-6.
[http://dx.doi.org/10.1093/annonc/mdg102] [PMID: 12598354]
[26]
Vansteenkiste JF, Cho BC, Vanakesa T, et al. Efficacy of the MAGE-A3 cancer immunotherapeutic as adjuvant therapy in patients with resected MAGE-A3-positive non-small-cell lung cancer (MAGRIT): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 2016; 17(6): 822-35.
[http://dx.doi.org/10.1016/S1470-2045(16)00099-1] [PMID: 27132212]
[27]
Chaft JE, Litvak A, Arcila ME, et al. Phase II study of the GI-4000 KRAS vaccine after curative therapy in patients with stage I-III lung adenocarcinoma harboring a KRAS G12C, G12D, or G12V mutation. Clin Lung Cancer 2014; 15(6): 405-10.
[http://dx.doi.org/10.1016/j.cllc.2014.06.002] [PMID: 25044103]
[28]
Hoption Cann SA, van Netten JP, van Netten C. Dr William Coley and tumour regression: a place in history or in the future. Postgrad Med J 2003; 79(938): 672-80.
[PMID: 14707241]
[29]
Hirschowitz EA, Hiestand DM, Yannelli JR. Vaccines for lung cancer. J Thorac Oncol 2006; 1(1): 93-104.
[http://dx.doi.org/10.1097/01243894-200601000-00019] [PMID: 17409835]
[30]
Palucka K, Banchereau J. Cancer immunotherapy via dendritic cells. Nat Rev Cancer 2012; 12(4): 265-77.
[http://dx.doi.org/10.1038/nrc3258] [PMID: 22437871]
[31]
Tucker ZC, Laguna BA, Moon E, Singhal S. Adjuvant immunotherapy for non-small cell lung cancer. Cancer Treat Rev 2012; 38(6): 650-61.
[http://dx.doi.org/10.1016/j.ctrv.2011.11.008] [PMID: 22226940]
[32]
Neeve SC, Robinson BW, Fear VS. The role and therapeutic implications of T cells in cancer of the lung. Clin Transl Immunology 2019; 8(8): e1076.
[http://dx.doi.org/10.1002/cti2.1076] [PMID: 31485330]
[33]
Hirschowitz EA, Yannelli JR. Immunotherapy for lung cancer. Proc Am Thorac Soc 2009; 6(2): 224-32.
[http://dx.doi.org/10.1513/pats.200806-048LC] [PMID: 19349492]
[34]
Rossi A, Maione P, Schettino C, et al. Non-small-cell lung carcinoma vaccines in clinical trials. Expert Rev Vaccines 2011; 10(6): 887-97.
[http://dx.doi.org/10.1586/erv.11.16] [PMID: 21692707]
[35]
Waldmann TA. Immunotherapy: past, present and future. Nat Med 2003; 9(3): 269-77.
[http://dx.doi.org/10.1038/nm0303-269] [PMID: 12612576]
[36]
Hellstrom I, Brown JP, Hellstrom KE, Horn D, Linsley P, Oncogen LP. Monoclonal antibodies for treatment of human non-small cell lung carcinomas. United States patent US 5,091,177, 1992.
[37]
Kobayashi S, Boggon TJ, Dayaram T, et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med 2005; 352(8): 786-92.
[http://dx.doi.org/10.1056/NEJMoa044238] [PMID: 15728811]
[38]
Pirker R, Filipits M. Monoclonal antibodies against EGFR in non-small cell lung cancer. Crit Rev Oncol Hematol 2011; 80(1): 1-9.
[http://dx.doi.org/10.1016/j.critrevonc.2010.10.008] [PMID: 21109448]
[39]
Li K, Zhang Q, Zhang Y, Yang J, Zheng J. T-cell-associated cellular immunotherapy for lung cancer. J Cancer Res Clin Oncol 2015; 141(7): 1249-58.
[http://dx.doi.org/10.1007/s00432-014-1867-0] [PMID: 25381064]
[40]
Ratto GB, Zino P, Mirabelli S, et al. A randomized trial of adoptive immunotherapy with tumor-infiltrating lymphocytes and interleukin-2 versus standard therapy in the postoperative treatment of resected nonsmall cell lung carcinoma. Cancer 1996; 78(2): 244-51.
[http://dx.doi.org/10.1002/(SICI)1097-0142(19960715)78:2<244::AID-CNCR9>3.0.CO;2-L] [PMID: 8673999]
[41]
Piccart-Gebhart MJ, Procter M, Leyland-Jones B, et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 2005; 353(16): 1659-72.
[http://dx.doi.org/10.1056/NEJMoa052306] [PMID: 16236737]
[42]
Ruhstaller TW, Amsler U, Cerny T. Rituximab: active treatment of central nervous system involvement by non-Hodgkin’s lymphoma? Ann Oncol 2000; 11(3): 374-5.
[http://dx.doi.org/10.1023/A:1008371602708] [PMID: 10811510]
[43]
Pineiro M, Carvalho AL, Pereira MM, Gonsalves AD, Arnaut LG, Formosinho SJ. Photoacoustic measurements of porphyrin triplet-state quantum yields and singlet-oxygen efficiencies. Chem A European J 1998; 4(11): 2299-307.
[http://dx.doi.org/10.1002/(SICI)1521-3765(19981102)4:11<2299::AID-CHEM2299>3.0.CO;2-H]
[44]
Copier J, Dalgleish A. Overview of tumor cell-based vaccines. Int Rev Immunol 2006; 25(5-6): 297-319.
[http://dx.doi.org/10.1080/08830180600992472] [PMID: 17169778]
[45]
Tagliamonte M, Petrizzo A, Tornesello ML, Buonaguro FM, Buonaguro L. Antigen-specific vaccines for cancer treatment. Hum Vaccin Immunother 2014; 10(11): 3332-46.
[http://dx.doi.org/10.4161/21645515.2014.973317] [PMID: 25483639]
[46]
Bradbury PA, Shepherd FA. Immunotherapy for lung cancer. J Thorac Oncol 2008; 3(6)(Suppl. 2): S164-70.
[http://dx.doi.org/10.1097/JTO.0b013e318174e9a7] [PMID: 18520304]
[47]
Rousseau RF, Hirschmann-Jax C, Takahashi S, Brenner MK. Cancer vaccines. Hematol/Oncol Clinics 2001; 15(4): 741-73.
[http://dx.doi.org/10.1016/S0889-8588(05)70245-8]
[48]
Wurz GT, Kao CJ, Wolf M, DeGregorio MW. Tecemotide: an antigen-specific cancer immunotherapy. Hum Vaccin Immunother 2014; 10(11): 3383-93.
[http://dx.doi.org/10.4161/hv.29836] [PMID: 25483673]
[49]
Xia W, Wang J, Xu Y, Jiang F, Xu L. L-BLP25 as a peptide vaccine therapy in non-small cell lung cancer: a review. J Thorac Dis 2014; 6(10): 1513-20.
[PMID: 25364531]
[50]
Peled N, Oton AB, Hirsch FR, Bunn P. MAGE A3 antigen-specific cancer immunotherapeutic. Immunotherapy 2009; 1(1): 19-25.
[http://dx.doi.org/10.2217/1750743X.1.1.19] [PMID: 25364531]
[51]
Arriola E, Ottensmeier C. TG4010: a vaccine with a therapeutic role in cancer. Immunotherapy 2016; 8(5): 511-9.
[http://dx.doi.org/10.2217/imt-2016-0015] [PMID: 27140406]
[52]
Limacher JM, Quoix E. TG4010: A therapeutic vaccine against MUC1 expressing tumors. OncoImmunology 2012; 1(5): 791-2.
[http://dx.doi.org/10.4161/onci.19863] [PMID: 22934285]
[53]
Tosch C, Bastien B, Barraud L, et al. Viral based vaccine TG4010 induces broadening of specific immune response and improves outcome in advanced NSCLC. J Immunother Cancer 2017; 5(1): 70.
[http://dx.doi.org/10.1186/s40425-017-0274-x] [PMID: 28923084]
[54]
Gonzalez G, Crombet T, Catala M, et al. A novel cancer vaccine composed of human-recombinant epidermal growth factor linked to a carrier protein: report of a pilot clinical trial. Annal Oncol 1998; 9(4): 431-5.
[http://dx.doi.org/10.1023/A:1008261031034]
[55]
Sridhar SS, Seymour L, Shepherd FA. Inhibitors of epidermal-growth-factor receptors: a review of clinical research with a focus on non-small-cell lung cancer. Lancet Oncol 2003; 4(7): 397-406.
[http://dx.doi.org/10.1016/S1470-2045(03)01137-9] [PMID: 12850190]
[56]
Gajdosik Z. Racotumomab - a novel anti-idiotype monoclonal antibody vaccine for the treatment of cancer. Drugs Today (Barc) 2014; 50(4): 301-7.
[http://dx.doi.org/10.1358/dot.2014.50.4.2116670] [PMID: 24918647]
[57]
Macias A, Alfonso S, Santiesteban E, et al. Active specific immunotherapy with racotumomab in the treatment of advanced non-small cell lung cancer (nsclc). J Thorac Oncol 2011; 6(6): S468-s468.
[58]
Gnjatic S, Nishikawa H, Jungbluth AA, et al. NY-ESO-1: review of an immunogenic tumor antigen. Adv Cancer Res 2006; 95: 1-30.
[http://dx.doi.org/10.1016/S0065-230X(06)95001-5] [PMID: 16860654]
[59]
Stanford JL, Stanford CA, O’Brien ME, Grange JM. Successful immunotherapy with Mycobacterium vaccae in the treatment of adenocarcinoma of the lung. Eur J Cancer 2008; 44(2): 224-7.
[http://dx.doi.org/10.1016/j.ejca.2007.08.021] [PMID: 17928219]
[60]
Grant SC, Kris MG, Houghton AN, Chapman PB. Long survival of patients with small cell lung cancer after adjuvant treatment with the anti-idiotypic antibody BEC2 plus Bacillus Calmette-Guerin. Clinic Cancer Res 1999; 5(6): 1319-23.
[61]
Oka Y, Tsuboi A, Taguchi T, et al. Induction of WT1 (Wilms’ tumor gene)-specific cytotoxic T lymphocytes by WT1 peptide vaccine and the resultant cancer regression. Proc Natl Acad Sci USA 2004; 101(38): 13885-90.
[http://dx.doi.org/10.1073/pnas.0405884101] [PMID: 15365188]
[62]
Krug LM, Ragupathi G, Hood C, et al. Vaccination of patients with small-cell lung cancer with synthetic fucosyl GM-1 conjugated to keyhole limpet hemocyanin. Clin Cancer Res 2004; 10(18 Pt 1): 6094-100.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-0482] [PMID: 15447995]
[63]
Chiappori AA, Soliman H, Janssen WE, Antonia SJ, Gabrilovich DI. INGN-225: a dendritic cell-based p53 vaccine (Ad.p53-DC) in small cell lung cancer: observed association between immune response and enhanced chemotherapy effect. Expert Opin Biol Ther 2010; 10(6): 983-91.
[http://dx.doi.org/10.1517/14712598.2010.484801] [PMID: 20420527]
[64]
Hörig H, Lee DS, Conkright W, et al. Phase I clinical trial of a recombinant canarypoxvirus (ALVAC) vaccine expressing human carcinoembryonic antigen and the B7.1 co-stimulatory molecule. Cancer Immunol Immunother 2000; 49(9): 504-14.
[http://dx.doi.org/10.1007/s002620000146] [PMID: 11092617]
[65]
Dessureault S, Alsarraj M, McCarthy S, et al. A GM-CSF/CD40L producing cell augments anti-tumor T cell responses. J Surg Res 2005; 125(2): 173-81.
[http://dx.doi.org/10.1016/j.jss.2004.11.036] [PMID: 15854671]
[66]
Govindan R, Morris JC, Rossi GR, Vahanian NN, Link CJ. NLG-0301: An open-label, randomized phase 2B active control study of second-line tergenpumatucel-L immunotherapy versus docetaxel in patients with progressive or relapsed non-small cell lung cancer (NSCLC).2014.
[67]
Ueda Y, Itoh T, Nukaya I, et al. Dendritic cell-based immunotherapy of cancer with carcinoembryonic antigen-derived, HLA-A24-restricted CTL epitope: Clinical outcomes of 18 patients with metastatic gastrointestinal or lung adenocarcinomas. Int J Oncol 2004; 24(4): 909-17.
[http://dx.doi.org/10.3892/ijo.24.4.909] [PMID: 15010829]
[68]
Nath S, Mukherjee P. MUC1: a multifaceted oncoprotein with a key role in cancer progression. Trends Mol Med 2014; 20(6): 332-42.
[http://dx.doi.org/10.1016/j.molmed.2014.02.007] [PMID: 24667139]
[69]
Yang C, Murray JL, Ibrahim NK. MUC1 and cancer immunotherapy. Immunology. Academic Press 2018; pp. 225-40.
[http://dx.doi.org/10.1016/B978-0-12-809819-6.00015-0]
[70]
Khodarev NN, Pitroda SP, Beckett MA, et al. MUC1-induced transcriptional programs associated with tumorigenesis predict outcome in breast and lung cancer. Cancer Res 2009; 69(7): 2833-7.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-4513] [PMID: 19318547]
[71]
Tang CK, Katsara M, Apostolopoulos V. Strategies used for MUC1 immunotherapy: human clinical studies. Expert Rev Vaccines 2008; 7(7): 963-75.
[http://dx.doi.org/10.1586/14760584.7.7.963] [PMID: 18767946]
[72]
Sangha R, Butts C. L-BLP25: a peptide vaccine strategy in non small cell lung cancer. Clin Cancer Res 2007; 13(15 Pt 2): s4652-4.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-0213] [PMID: 17671159]
[73]
Squiban P, Velu T, Mennecier B, et al. MVA-MUC1-IL2 vaccine immunotherapy for advanced non small cell lung cancer (NSCLC): Interim phase II data. J Clin Oncol 2004; 22(14): 2544.
[http://dx.doi.org/10.1200/jco.2004.22.90140.2544]
[74]
Burgess AW, Cho HS, Eigenbrot C, et al. An open-and-shut case? Recent insights into the activation of EGF/ErbB receptors. Mol Cell 2003; 12(3): 541-52.
[http://dx.doi.org/10.1016/S1097-2765(03)00350-2] [PMID: 14527402]
[75]
Mendelsohn J. Targeting the epidermal growth factor receptor for cancer therapy. J Clin Oncol 2002; 20(18)(Suppl.): 1S-13S.
[PMID: 12235219]
[76]
Ciardiello F, Tortora G. A novel approach in the treatment of cancer: targeting the epidermal growth factor receptor. Clin Cancer Res 2001; 7(10): 2958-70.
[PMID: 11595683]
[77]
Segatori VI, Cuello HA, Gulino CA, et al. Antibody-dependent cell-mediated cytotoxicity induced by active immunotherapy based on racotumomab in non-small cell lung cancer patients. Cancer Immunol Immunother 2018; 67(8): 1285-96.
[http://dx.doi.org/10.1007/s00262-018-2188-y] [PMID: 29936534]
[78]
Cheng YH, Wong EW, Cheng CY. Cancer/testis (CT) antigens, carcinogenesis and spermatogenesis. Spermatogenesis 2011; 1(3): 209-20.
[http://dx.doi.org/10.4161/spmg.1.3.17990] [PMID: 22319669]
[79]
Jeremic B, Cihoric N, Dubinsky P, Filipovic N. Adjuvant immunotherapy in resected early non-small cell lung cancer-battle lost, hopefully not the war! J Thorac Dis 2016; 8(8): 1886-90.
[http://dx.doi.org/10.21037/jtd.2016.07.11] [PMID: 27618979]
[80]
Chen X, Wang L, Liu J, et al. Expression and prognostic relevance of MAGE-A3 and MAGE-C2 in non-small cell lung cancer. Oncol Lett 2017; 13(3): 1609-18.
[http://dx.doi.org/10.3892/ol.2017.5665] [PMID: 28454298]
[81]
Dubensky TW Jr, Reed SG. Adjuvants for cancer vaccines. Semin Immunol 2010; 22(3): 155-61.
[http://dx.doi.org/10.1016/j.smim.2010.04.007] [PMID: 20488726]
[82]
Zarogoulidis P, Chatzaki E, Porpodis K, et al. Inhaled chemotherapy in lung cancer: future concept of nanomedicine. Int J Nanomedicine 2012; 7: 1551-72.
[http://dx.doi.org/10.2147/IJN.S29997] [PMID: 22619512]
[83]
Reed SG, Bertholet S, Coler RN, Friede M. New horizons in adjuvants for vaccine development. Trends Immunol 2009; 30(1): 23-32.
[http://dx.doi.org/10.1016/j.it.2008.09.006] [PMID: 19059004]
[84]
Clements CJ, Griffiths E. The global impact of vaccines containing aluminium adjuvants. Vaccine 2002; 20(Suppl. 3): S24-33.
[http://dx.doi.org/10.1016/S0264-410X(02)00168-8] [PMID: 12184361]
[85]
Kool M, Fierens K, Lambrecht BN. Alum adjuvant: some of the tricks of the oldest adjuvant. J Med Microbiol 2012; 61(Pt 7): 927-34.
[http://dx.doi.org/10.1099/jmm.0.038943-0] [PMID: 22174375]
[86]
Leroux-Roels G. Unmet needs in modern vaccinology: adjuvants to improve the immune response. Vaccine 2010; 28(Suppl. 3): C25-36.
[http://dx.doi.org/10.1016/j.vaccine.2010.07.021] [PMID: 20713254]
[87]
O’Hagan DT, Ott GS, De Gregorio E, Seubert A. The mechanism of action of MF59 - an innately attractive adjuvant formulation. Vaccine 2012; 30(29): 4341-8.
[http://dx.doi.org/10.1016/j.vaccine.2011.09.061] [PMID: 22682289]
[88]
Podda A, Del Giudice G. MF59-adjuvanted vaccines: increased immunogenicity with an optimal safety profile. Expert Rev Vaccines 2003; 2(2): 197-203.
[http://dx.doi.org/10.1586/14760584.2.2.197] [PMID: 12899571]
[89]
Baldridge JR, Crane RT. Monophosphoryl lipid A (MPL) formulations for the next generation of vaccines. Methods 1999; 19(1): 103-7.
[http://dx.doi.org/10.1006/meth.1999.0834] [PMID: 10525445]
[90]
Lacaille-Dubois MA. Updated insights into the mechanism of action and clinical profile of the immunoadjuvant QS-21: A review. Phytomedicine 2019; 60: 152905.
[http://dx.doi.org/10.1016/j.phymed.2019.152905] [PMID: 31182297]
[91]
Dredge K, Marriott JB, Todryk SM, Dalgleish AG. Adjuvants and the promotion of Th1-type cytokines in tumour immunotherapy. Cancer Immunol Immunother 2002; 51(10): 521-31.
[http://dx.doi.org/10.1007/s00262-002-0309-z] [PMID: 12384803]
[92]
Mangal S, Gao W, Li T, Zhou QT. Pulmonary delivery of nanoparticle chemotherapy for the treatment of lung cancers: challenges and opportunities. Acta Pharmacol Sin 2017; 38(6): 782-97.
[http://dx.doi.org/10.1038/aps.2017.34] [PMID: 28504252]
[93]
Ching-Yee Loo, Daniela Traini, Paul M Young. Inhalation of nanoparticle-based drug for lung cancer treatment: advantages and challenges. Asian. J Pharm Sci 2015; 6: 481-9.
[94]
Zhu M, Wang R, Nie G. Applications of nanomaterials as vaccine adjuvants. Hum Vaccin Immunother 2014; 10(9): 2761-74.
[http://dx.doi.org/10.4161/hv.29589] [PMID: 25483497]
[95]
Gregory AE, Titball R, Williamson D. Vaccine delivery using nanoparticles. Front Cell Infect Microbiol 2013; 3: 13.
[http://dx.doi.org/10.3389/fcimb.2013.00013] [PMID: 23532930]
[96]
Badiee A, Heravi Shargh V, Khamesipour A, Jaafari MR. Micro/nanoparticle adjuvants for antileishmanial vaccines: present and future trends. Vaccine 2013; 31(5): 735-49.
[http://dx.doi.org/10.1016/j.vaccine.2012.11.068] [PMID: 23219436]
[97]
Reverchon E, Adami R. Nanomaterials and supercritical fluids. J Supercrit Fluids 2006; 37(1): 1-22.
[http://dx.doi.org/10.1016/j.supflu.2005.08.003]
[98]
Vinothini K, Rajan M. Mechanism for the nano-based drug delivery system. In: Characterization and Biology of Nanomaterials for Drug Delivery. 2019; pp. 219-63.
[http://dx.doi.org/10.1016/B978-0-12-814031-4.00009-X]
[99]
Cohen-Sela E, Chorny M, Koroukhov N, Danenberg HD, Golomb G. A new double emulsion solvent diffusion technique for encapsulating hydrophilic molecules in PLGA nanoparticles. J Control Release 2009; 133(2): 90-5.
[http://dx.doi.org/10.1016/j.jconrel.2008.09.073] [PMID: 18848962]
[100]
Vauthier C. Methods for the preparation of nanoparticles by polymerization. In: Polymer Nanoparticles for Nanomedicines. 2016; pp. 123-57.
[http://dx.doi.org/10.1007/978-3-319-41421-8_5]
[101]
Sharma A, Jyoti K, Bansal V, Jain UK, Bhushan B, Madan J. Soluble telmisartan bearing poly (ethylene glycol) conjugated chitosan nanoparticles augmented drug delivery, cytotoxicity, apoptosis and cellular uptake in human cervical cancer cells. Mater Sci Eng C 2017; 72: 69-76.
[http://dx.doi.org/10.1016/j.msec.2016.11.048] [PMID: 28024639]
[102]
Byrappa K, Ohara S, Adschiri T. Nanoparticles synthesis using supercritical fluid technology - towards biomedical applications. Adv Drug Deliv Rev 2008; 60(3): 299-327.
[http://dx.doi.org/10.1016/j.addr.2007.09.001] [PMID: 18192071]
[103]
Yadav SC, Kumari A, Yadav R. Development of peptide and protein nanotherapeutics by nanoencapsulation and nanobioconjugation. Peptides 2011; 32(1): 173-87.
[http://dx.doi.org/10.1016/j.peptides.2010.10.003] [PMID: 20934475]
[104]
Singh M, Li XM, Wang H, et al. Immunogenicity and protection in small-animal models with controlled-release tetanus toxoid microparticles as a single-dose vaccine. Infect Immun 1997; 65(5): 1716-21.
[http://dx.doi.org/10.1128/iai.65.5.1716-1721.1997] [PMID: 9125552]
[105]
Christensen D. Vaccine adjuvants: Why and how. Hum Vaccin Immunother 2016; 12(10): 2709-11.
[http://dx.doi.org/10.1080/21645515.2016.1219003] [PMID: 27551808]
[106]
Kandasamy G, Annenkov V, Krishnan UM. Nanoimmunotherapy–cloaked defenders to breach the cancer fortress. Nanotechnol Rev 2018; 7(4): 317-40.
[http://dx.doi.org/10.1515/ntrev-2018-0013]
[107]
Chadwick S, Kriegel C, Amiji M. Nanotechnology solutions for mucosal immunization. Adv Drug Deliv Rev 2010; 62(4-5): 394-407.
[http://dx.doi.org/10.1016/j.addr.2009.11.012] [PMID: 19931581]
[108]
Goyal AK, Rath G, Malik B. Emerging nanotechnology approaches for pulmonary delivery of vaccines. Molecular Vaccines 2014; 579-601.
[http://dx.doi.org/10.1007/978-3-319-00978-0_11]
[109]
Dhakal S, Hiremath J, Bondra K, et al. Biodegradable nanoparticle delivery of inactivated swine influenza virus vaccine provides heterologous cell-mediated immune response in pigs. J Control Release 2017; 247: 194-205.
[http://dx.doi.org/10.1016/j.jconrel.2016.12.039] [PMID: 28057521]
[110]
Ni J, Liu Y, Hussain T, et al. Recombinant ArgF PLGA nanoparticles enhances BCG induced immune responses against Mycobacterium bovis infection. Biomed Pharmacother 2021; 137: 111341.
[http://dx.doi.org/10.1016/j.biopha.2021.111341] [PMID: 33561646]
[111]
Alfagih IM, Kaneko K, Kunda NK, et al. In vitro characterization of inhalable cationic hybrid nanoparticles as potential vaccine carriers. Pharmaceuticals (Basel) 2021; 14(2): 164.
[http://dx.doi.org/10.3390/ph14020164] [PMID: 33670611]
[112]
Shim S, Yoo HS. The application of mucoadhesive chitosan nanoparticles in nasal drug delivery. Mar Drugs 2020; 18(12): 605.
[http://dx.doi.org/10.3390/md18120605] [PMID: 33260406]
[113]
Vila A, Sánchez A, Evora C, Soriano I, Vila Jato JL, Alonso MJ. PEG-PLA nanoparticles as carriers for nasal vaccine delivery. J Aerosol Med 2004; 17(2): 174-85.
[http://dx.doi.org/10.1089/0894268041457183] [PMID: 15294069]
[114]
Ferin J. Pulmonary retention and clearance of particles. Toxicol Lett 1994; 72(1-3): 121-5.
[http://dx.doi.org/10.1016/0378-4274(94)90018-3] [PMID: 8202922]
[115]
Hoet PH, Brüske-Hohlfeld I, Salata OV. Nanoparticles–known and unknown health risks. J Nanobiotechnology 2004; 2(1): 1-5.
[http://dx.doi.org/10.1186/1477-3155-2-12] [PMID: 14715086]
[116]
Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel. Science 2006; 311(5761): 622-7.
[http://dx.doi.org/10.1126/science.1114397] [PMID: 16456071]
[117]
Li N, Sioutas C, Cho A, et al. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect 2003; 111(4): 455-60.
[http://dx.doi.org/10.1289/ehp.6000] [PMID: 12676598]
[118]
Accomasso L, Gallina C, Turinetto V, Giachino C. Stem cell tracking with nanoparticles for regenerative medicine purposes: an overview. Stem Cells Int 2016; 2016: 7920358.
[http://dx.doi.org/10.1155/2016/7920358] [PMID: 26839568]
[119]
Gill S, Löbenberg R, Ku T, Azarmi S, Roa W, Prenner EJ. Nanoparticles: characteristics, mechanisms of action, and toxicity in pulmonary drug delivery—a review. J Biomed Nanotechnol 2007; 3(2): 107-19.
[http://dx.doi.org/10.1166/jbn.2007.015]
[120]
Mohammed MA, Syeda JTM, Wasan KM, Wasan EK. An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics 2017; 9(4): 53.
[http://dx.doi.org/10.3390/pharmaceutics9040053] [PMID: 29156634]
[121]
Garg U, Chauhan S, Nagaich U, Jain N. Current advances in chitosan nanoparticles based drug delivery and targeting. Adv Pharm Bull 2019; 9(2): 195-204.
[http://dx.doi.org/10.15171/apb.2019.023] [PMID: 31380245]
[122]
Choi M, Cho M, Han BS, et al. Chitosan nanoparticles show rapid extrapulmonary tissue distribution and excretion with mild pulmonary inflammation to mice. Toxicol Lett 2010; 199(2): 144-52.
[http://dx.doi.org/10.1016/j.toxlet.2010.08.016] [PMID: 20816729]
[123]
Długońska H, Grzybowski M. Mucosal vaccination--an old but still vital strategy. Ann Parasitol 2012; 58(1): 1-8.
[PMID: 23094329]
[124]
Hellfritzsch M, Scherließ R. Mucosal vaccination via the respiratory tract. Pharmaceutics 2019; 11(8): 375.
[http://dx.doi.org/10.3390/pharmaceutics11080375] [PMID: 31374959]
[125]
Blank F, Wehrli M, Lehmann A, et al. Macrophages and dendritic cells express tight junction proteins and exchange particles in an in vitro model of the human airway wall. Immunobiology 2011; 216(1-2): 86-95.
[http://dx.doi.org/10.1016/j.imbio.2010.02.006] [PMID: 20362352]
[126]
Ramvikas M, Arumugam M, Chakrabarti SR, Jaganathan KS. Nasal vaccine delivery. In: Micro Nanotechnol Vac Develop. 2017; pp. 279-301.
[http://dx.doi.org/10.1016/B978-0-323-39981-4.00015-4]
[127]
Khafagy S, Morishita M, Onuki Y, Takayama K. Current challenges in non-invasive insulin delivery systems: a comparative review. Adv Drug Deliv Rev 2007; 59(15): 1521-46.
[http://dx.doi.org/10.1016/j.addr.2007.08.019] [PMID: 17881081]
[128]
Türker S, Onur E, Ózer Y. Nasal route and drug delivery systems. Pharm World Sci 2004; 26(3): 137-42.
[http://dx.doi.org/10.1023/B:PHAR.0000026823.82950.ff] [PMID: 15230360]
[129]
Emerich DF, Thanos CG. Nanotechnology and medicine. Expert Opin Biol Ther 2003; 3(4): 655-63.
[http://dx.doi.org/10.1517/14712598.3.4.655] [PMID: 12831370]
[130]
Mirza AZ, Siddiqui FA. Nanomedicine and drug delivery: a mini review. Int Nano Lett 2014; 4(1): 94.
[http://dx.doi.org/10.1007/s40089-014-0094-7]
[131]
Heit A, Schmitz F, Haas T, Busch DH, Wagner H. Antigen co-encapsulated with adjuvants efficiently drive protective T cell immunity. Eur J Immunol 2007; 37(8): 2063-74.
[http://dx.doi.org/10.1002/eji.200737169] [PMID: 17628858]
[132]
Schlosser E, Mueller M, Fischer S, et al. TLR ligands and antigen need to be coencapsulated into the same biodegradable microsphere for the generation of potent cytotoxic T lymphocyte responses. Vaccine 2008; 26(13): 1626-37.
[http://dx.doi.org/10.1016/j.vaccine.2008.01.030] [PMID: 18295941]
[133]
Blank F, Stumbles P, von Garnier C. Opportunities and challenges of the pulmonary route for vaccination. Expert Opin Drug Deliv 2011; 8(5): 547-63.
[http://dx.doi.org/10.1517/17425247.2011.565326] [PMID: 21438741]
[134]
Thompson PJ. Drug delivery to the small airways. Am J Respir Crit Care Med 1998; 157(5 Pt 2): S199-202.
[http://dx.doi.org/10.1164/ajrccm.157.5.rsaa-7] [PMID: 9606321]
[135]
Ahmad J, Akhter S, Rizwanullah M, et al. Nanotechnology-based inhalation treatments for lung cancer: state of the art. Nanotechnol Sci Appl 2015; 8: 55-66.
[PMID: 26640374]
[136]
Byron PR. Prediction of drug residence times in regions of the human respiratory tract following aerosol inhalation. J Pharm Sci 1986; 75(5): 433-8.
[http://dx.doi.org/10.1002/jps.2600750502] [PMID: 3735078]
[137]
Muralidharan P, Malapit M, Mallory E, Hayes D, Mansour HM. Inhalable nanoparticulate powders for respiratory delivery. In: Nanomedicine. 2015; 11: pp. (5)1189-99.
[http://dx.doi.org/10.1016/j.nano.2015.01.007]
[138]
Bachmann MF, Jennings GT. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat Rev Immunol 2010; 10(11): 787-96.
[http://dx.doi.org/10.1038/nri2868] [PMID: 20948547]
[139]
Chen J, Yang X, Huang L, Lai H, Gan C, Luo X. Development of dual-drug-loaded stealth nanocarriers for targeted and synergistic anti-lung cancer efficacy. Drug Deliv 2018; 25(1): 1932-42.
[http://dx.doi.org/10.1080/10717544.2018.1477856] [PMID: 30472899]
[140]
Pilette C, Ouadrhiri Y, Godding V, Vaerman JP, Sibille Y. Lung mucosal immunity: immunoglobulin-A revisited. Eur Respir J 2001; 18(3): 571-88.
[http://dx.doi.org/10.1183/09031936.01.00228801] [PMID: 11589357]
[141]
Jyoti K, Jain S, Katare OP, Katyal A, Chandra R, Madan J. Non-small cell lung cancer tumour antigen, MUC-1 peptide-loaded non-aggregated poly (lactide-co-glycolide) nanoparticles augmented cellular uptake in mouse professional antigen-presenting cells: optimisation and characterisation. J Microencapsul 2020; 37(1): 14-28.
[http://dx.doi.org/10.1080/02652048.2019.1692943] [PMID: 31718364]
[142]
Jyoti K, Katare OP, Kamboj A, Madan J. Protamine sulphate coated poly (lactide-co-glycolide) nanoparticles of MUC-1 peptide improved cellular uptake and cytokine release in mouse antigen presenting cells. J Microencapsul 2020; 37(8): 566-76.
[http://dx.doi.org/10.1080/02652048.2020.1823500] [PMID: 32928025]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy