Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Systematic Review Article

A Systematic Review of Functionalized Polymeric Nanoparticles to Improve Intestinal Permeability of Drugs and Biological Products

Author(s): Myla Lôbo de Souza, Victor de Albuquerque Wanderley Sales, Larissa Pereira Alves, Widson Michael dos Santos, Leslie Raphael de Moura Ferraz, Gustavo Siqueira de Andrade Lima, Larissa Morgana dos Santos Mendes, Larissa Araújo Rolim and Pedro José Rolim Neto*

Volume 28, Issue 5, 2022

Published on: 04 August, 2021

Page: [410 - 426] Pages: 17

DOI: 10.2174/1381612827666210804104205

Price: $65

Abstract

Background: The oral route is the most frequently used and the most convenient route of drug administration since it has several advantages, such as ease of use, patient compliance, and better costeffectiveness. However, physicochemical and biopharmaceutical limitations of various active pharmaceutical ingredients (API) hinder suitability for this route, including degradation in the gastrointestinal tract, low intestinal permeability, and low bioavailability. To overcome these problems, while maintaining therapeutic efficacy, polymeric nanoparticles have attracted considerable attention for their ability to increase drug solubility, promote the controlled release, and improve stability. In addition, the functionalization of nanocarriers can increase uptake and accumulation at the target site of action, and intestinal absorption, making it possible to obtain more viable, safe and efficient treatments for oral administration.

Objective: This systematic review aimed to seek recent advances in the literature on the use of polymeric nanoparticles functionalization to increase intestinal permeability of APIs that are intended for oral administration.

Methods: Two bibliographic databases were consulted (PubMed and ScienceDirect). The selected publications and the writing of this systematic review were based on the guidelines mentioned in the PRISMA statement.

Results: Out of a total of 3036 studies, 22 studies were included in this article based on our eligibility criteria. The results were consistent for the application of nanoparticle functionalization to increase intestinal permeability.

Conclusion: The functionalized polymeric nanoparticles can be considered as carrier systems that improve the intestinal permeability and bioavailability of APIs, with the potential to result, in the future, in the development of oral medicines.

Keywords: Drug delivery systems, nanocarrier, functionalization, oral use, bioavailability, intestinal absorption, permeability.

« Previous
[1]
Zhang CH, Xu GL, Liu YH, et al. Anti-diabetic activities of Gegen Qinlian Decoction in high-fat diet combined with streptozotocin-induced diabetic rats and in 3T3-L1 adipocytes. Phytomedicine 2013; 20(3-4): 221-9.
[http://dx.doi.org/10.1016/j.phymed.2012.11.002] [PMID: 23219338]
[2]
Sun M, Hu H, Sun L, Fan Z. The application of biomacromolecules to improve oral absorption by enhanced intestinal permeability: A mini-review. Chin Chem Lett 2020; 31: 1729-36.
[http://dx.doi.org/10.1016/j.cclet.2020.02.035]
[3]
Homayun B, Lin X, Choi HJ. Challenges and recent progress in oral drug delivery systems for biopharmaceuticals. Pharmaceutics 2019; 11(3), E129.
[http://dx.doi.org/10.3390/pharmaceutics11030129] [PMID: 30893852]
[4]
Babadi D, Dadashzadeh S, Osouli M, Daryabari MS, Haeri A. Nanoformulation strategies for improving intestinal permeability of drugs: A more precise look at permeability assessment methods and pharmacokinetic properties changes. J Control Release 2020; 321: 669-709.
[http://dx.doi.org/10.1016/j.jconrel.2020.02.041] [PMID: 32112856]
[5]
Alqahtani MS, Kazi M, Alsenaidy MA, Ahmad MZ. Advances in oral drug delivery. Front Pharmacol 2021; 12, 618411.
[http://dx.doi.org/10.3389/fphar.2021.618411] [PMID: 33679401]
[6]
Dahlgren D, Lennernäs H. Intestinal permeability and drug absorption: predictive experimental, computational and in vivo approaches. Pharmaceutics 2019; 11(8), E411.
[http://dx.doi.org/10.3390/pharmaceutics11080411] [PMID: 31412551]
[7]
Traverso G, Langer R. Perspective: Special delivery for the gut. Nature 2015; 519(7544): S19.
[http://dx.doi.org/10.1038/519S19a] [PMID: 25806494]
[8]
Bertoni S, Passerini N, Albertini B. Nanomaterials for oral drug administration. In: Martin J, Santos H, Eds Nanotechnology for oral drug delivery. Netherlands: Elsevier 2020; pp. 27-76.
[http://dx.doi.org/10.1016/B978-0-12-818038-9.00004-1]
[9]
Reinholz J, Landfester K, Mailänder V. The challenges of oral drug delivery via nanocarriers. Drug Deliv 2018; 25(1): 1694-705.
[http://dx.doi.org/10.1080/10717544.2018.1501119] [PMID: 30394120]
[10]
Lundquist P, Artursson P. Oral absorption of peptides and nanoparticles across the human intestine: Opportunities, limitations and studies in human tissues. Adv Drug Deliv Rev 2016; 106(Pt B): 256-76.
[http://dx.doi.org/10.1016/j.addr.2016.07.007] [PMID: 27496705]
[11]
Shahbazi M-A, Santos HA. Improving oral absorption via drug-loaded nanocarriers: absorption mechanisms, intestinal models and rational fabrication. Curr Drug Metab 2013; 14(1): 28-56.
[http://dx.doi.org/10.2174/138920013804545133] [PMID: 22497568]
[12]
Liu C, Kou Y, Zhang X, Cheng H, Chen X, Mao S. Strategies and industrial perspectives to improve oral absorption of biological macromolecules. Expert Opin Drug Deliv 2018; 15(3): 223-33.
[http://dx.doi.org/10.1080/17425247.2017.1395853] [PMID: 29111841]
[13]
Vllasaliu D, Thanou M, Stolnik S, Fowler R. Recent advances in oral delivery of biologics: nanomedicine and physical modes of delivery. Expert Opin Drug Deliv 2018; 15(8): 759-70.
[http://dx.doi.org/10.1080/17425247.2018.1504017] [PMID: 30033780]
[14]
Zielińska A, Carreiró F, Oliveira AM, et al. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology. Molecules 2020; 25(16), E3731.
[http://dx.doi.org/10.3390/molecules25163731] [PMID: 32824172]
[15]
de Castro KC, Costa JM, Campos MGN. Drug-loaded polymeric nanoparticles: a review. Int J Polym Mater Polym Biomater 2020; 1: 1.
[http://dx.doi.org/10.1080/00914037.2020.1798436]
[16]
Madkour LH. Nanoparticle and polymeric nanoparticle-based targeted drug delivery systems. In: Madkour L Nucleic Acids as Gene Anticancer Drug Delivery Therapy. Netherlands: Elsevier 2019; pp. 191-240.
[http://dx.doi.org/10.1016/B978-0-12-819777-6.00013-5]
[17]
Parhi R. Drug delivery applications of chitin and chitosan: a review. Environ Chem Lett 2020; 18: 577-94.
[http://dx.doi.org/10.1007/s10311-020-00963-5]
[18]
Li N, Zhao L, Qi L, Li Z, Luan Y. Polymer assembly: Promising carriers as co-delivery systems for cancer therapy. Prog Polym Sci 2016; 58: 1-26.
[http://dx.doi.org/10.1016/j.progpolymsci.2015.10.009]
[19]
Amgoth C, Phan C, Banavoth M, Rompivalasa S, Tang G. Polymer properties: Functionalization and surface modified nanoparticles Role of novel drug delivery vehicles in nano-biomedicine. UK: IntechOpen 2020.
[http://dx.doi.org/10.5772/intechopen.84424]
[20]
George A, Shah PA, Shrivastav PS. Natural biodegradable polymers based nano-formulations for drug delivery: A review. Int J Pharm 2019; 561: 244-64.
[http://dx.doi.org/10.1016/j.ijpharm.2019.03.011] [PMID: 30851391]
[21]
Jana P, Shyam M, Singh S, Jayaprakash V, Dev A. Biodegradable polymers in drug delivery and oral vaccination. Eur Polym J 2021; 142, 110155.
[http://dx.doi.org/10.1016/j.eurpolymj.2020.110155]
[22]
Saha D, Kumar S, Ray D, Mata J, Aswal VK. Structure and stability of biodegradable polymer nanoparticles in electrolyte solution. Mater Lett X 2021; 10, 100066.
[http://dx.doi.org/10.1016/j.mlblux.2021.100066]
[23]
Guo S, Liang Y, Liu L, et al. Research on the fate of polymeric nanoparticles in the process of the intestinal absorption based on model nanoparticles with various characteristics: size, surface charge and pro-hydrophobics. J Nanobiotechnology 2021; 19(1): 32.
[http://dx.doi.org/10.1186/s12951-021-00770-2] [PMID: 33499885]
[24]
Ensign LM, Cone R, Hanes J. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev 2012; 64(6): 557-70.
[http://dx.doi.org/10.1016/j.addr.2011.12.009] [PMID: 22212900]
[25]
Begines B, Ortiz T, Pérez-Aranda M, et al. Polymeric nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials (Basel) 2020; 10(7): 1-41.
[http://dx.doi.org/10.3390/nano10071403] [PMID: 32707641]
[26]
Hu X, Yang G, Chen S, Luo S, Zhang J. Biomimetic and bioinspired strategies for oral drug delivery. Biomater Sci 2020; 8(4): 1020-44.
[http://dx.doi.org/10.1039/C9BM01378D] [PMID: 31621709]
[27]
Gong R, Chen G. Preparation and application of functionalized nano drug carriers. Saudi Pharm J 2016; 24(3): 254-7.
[http://dx.doi.org/10.1016/j.jsps.2016.04.010] [PMID: 27275111]
[28]
Friedman AD, Claypool SE, Liu R. The smart targeting of nanoparticles. Curr Pharm Des 2013; 19(35): 6315-29.
[http://dx.doi.org/10.2174/13816128113199990375] [PMID: 23470005]
[29]
Sanità G, Carrese B, Lamberti A. Nanoparticle surface functionalization: How to improve biocompatibility and cellular internalization. Front Mol Biosci 2020; 7, 587012.
[http://dx.doi.org/10.3389/fmolb.2020.587012] [PMID: 33324678]
[30]
Lu H, Yang G, Ran F, et al. Polymer-functionalized mesoporous carbon nanoparticles on overcoming multiple barriers and improving oral bioavailability of Probucol. Carbohydr Polym 2020; 229, 115508.
[http://dx.doi.org/10.1016/j.carbpol.2019.115508] [PMID: 31826471]
[31]
Pinelli F, Sacchetti A, Perale G, Rossi F. Is nanoparticle functionalization a versatile approach to meet the challenges of drug and gene delivery? Ther Deliv 2020; 11(7): 401-4.
[http://dx.doi.org/10.4155/tde-2020-0030] [PMID: 32372721]
[32]
Lombardo D, Kiselev MA, Caccamo MT. .Smart nanoparticles for drug delivery application: Development of versatile nanocarrier platforms in biotechnology and nanomedicine. J Nanomater 2019 2019.
[http://dx.doi.org/10.1155/2019/3702518]
[33]
Subbiah R, Veerapandian M, Yun KS. Nanoparticles: functionalization and multifunctional applications in biomedical sciences. Curr Med Chem 2010; 17(36): 4559-77.
[http://dx.doi.org/10.2174/092986710794183024] [PMID: 21062250]
[34]
Tran PHL, Tran TTD. Mucoadhesive formulation designs for oral controlled drug release at the colon. Curr Pharm Des 2021; 27(4): 540-7.
[http://dx.doi.org/10.2174/1381612826666200917143816] [PMID: 32940169]
[35]
Liu Y, Jiang Z, Hou X, et al. Functional lipid polymeric nanoparticles for oral drug delivery: Rapid mucus penetration and improved cell entry and cellular transport. Nanomedicine 2019; 21, 102075.
[http://dx.doi.org/10.1016/j.nano.2019.102075] [PMID: 31377378]
[36]
Xu Y, Shrestha N, Préat V, Beloqui A. Overcoming the intestinal barrier: A look into targeting approaches for improved oral drug delivery systems. J Control Release 2020; 322: 486-508.
[http://dx.doi.org/10.1016/j.jconrel.2020.04.006] [PMID: 32276004]
[37]
Ahmed A, Sarwar S, Hu Y, et al. Surface-modified polymeric nanoparticles for drug delivery to cancer cells. Expert Opin Drug Deliv 2021; 18(1): 1-24.
[http://dx.doi.org/10.1080/17425247.2020.1822321] [PMID: 32905714]
[38]
Yun Y, Cho YW, Park K. Nanoparticles for oral delivery: targeted nanoparticles with peptidic ligands for oral protein delivery. Adv Drug Deliv Rev 2013; 65(6): 822-32.
[http://dx.doi.org/10.1016/j.addr.2012.10.007] [PMID: 23123292]
[39]
Roger E, Kalscheuer S, Kirtane A, et al. Folic acid functionalized nanoparticles for enhanced oral drug delivery. Mol Pharm 2012; 9(7): 2103-10.
[http://dx.doi.org/10.1021/mp2005388] [PMID: 22670575]
[40]
Zhang X, Wu W. Ligand-mediated active targeting for enhanced oral absorption. Drug Discov Today 2014; 19(7): 898-904.
[http://dx.doi.org/10.1016/j.drudis.2014.03.001] [PMID: 24631680]
[41]
Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009; 6(7), e1000097.
[http://dx.doi.org/10.1371/journal.pmed.1000097] [PMID: 19621072]
[42]
Schneider K, Schwarz M, Burkholder I, et al. “ToxRTool”, a new tool to assess the reliability of toxicological data. Toxicol Lett 2009; 189(2): 138-44.
[http://dx.doi.org/10.1016/j.toxlet.2009.05.013] [PMID: 19477248]
[43]
Marín-Ocampo L, Veloza LA, Abonia R, Sepúlveda-Arias JC. Anti-inflammatory activity of triazine derivatives: A systematic review. Eur J Med Chem 2019; 162: 435-47.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.027] [PMID: 30469039]
[44]
de Albuquerque Wanderley Sales V, Timóteo TRR, da Silva NM, et al. A systematic review of the anti-inflammatory effects of gallium compounds. Curr Med Chem 2020; 28(10): 2062-76.
[http://dx.doi.org/10.2174/0929867327666200525160556] [PMID: 32484099]
[45]
Li H, Lu W, Wang A, Jiang H, Lyu J. Changing epidemiology of chronic kidney disease as a result of type 2 diabetes mellitus from 1990 to 2017: Estimates from Global Burden of Disease 2017. J Diabetes Investig 2021; 12(3): 346-56.
[http://dx.doi.org/10.1111/jdi.13355] [PMID: 32654341]
[46]
Smokovski I. Burden of diabetes prevalence. In: Smokovski I, EdManaging diabetes in low income countries. 1st ed. Cham: Springer International Publishing 2021; pp. 1-12.
[http://dx.doi.org/10.1007/978-3-030-51469-3]
[47]
de Martel C, Georges D, Bray F, Ferlay J, Clifford GM. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob Health 2020; 8(2): e180-90.
[http://dx.doi.org/10.1016/S2214-109X(19)30488-7] [PMID: 31862245]
[48]
Driscoll T, Rushton L, Hutchings SJ, et al. Global and regional burden of disease and injury in 2016 arising from occupational exposures: A systematic analysis for the Global Burden of Disease Study 2016. Occup Environ Med 2020; 77: 151-9.
[http://dx.doi.org/10.1136/oemed-2019-106012] [PMID: 32054819]
[49]
Zhang T, Tang JZ, Fei X, et al. Can nanoparticles and nano‒protein interactions bring a bright future for insulin delivery? Acta Pharm Sin B 2021; 11(3): 651-67.
[http://dx.doi.org/10.1016/j.apsb.2020.08.016] [PMID: 33777673]
[50]
Saeedi P, Petersohn I, Salpea P, et al. .Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the international diabetes federation diabetes atlas. Diabetes Res Clin Pract. 9th. 2019; 157: 107843.
[http://dx.doi.org/10.1016/j.diabres.2019.107843]
[51]
Bekele BB, Manzar MD, Alqahtani M, Pandi-Perumal SR. Diabetes mellitus, metabolic syndrome, and physical activity among Ethiopians: A systematic review. Diabetes Metab Syndr 2021; 15(1): 257-65.
[http://dx.doi.org/10.1016/j.dsx.2020.12.031] [PMID: 33484984]
[52]
Liu CL, Lin MY, Hwang SJ, Liu CK, Lee HL, Wu MT. Association of hyperglycemia episodes on long-term mortality in type 2 diabetes mellitus with vascular dementia: A population-based cohort study. J Diabetes Complications 2019; 33(2): 123-7.
[http://dx.doi.org/10.1016/j.jdiacomp.2018.10.014] [PMID: 30420126]
[53]
Verhulst MJL, Loos BG, Gerdes VEA, Teeuw WJ. Evaluating all potential oral complications of diabetes mellitus. Front Endocrinol (Lausanne) 2019; 10: 56.
[http://dx.doi.org/10.3389/fendo.2019.00056] [PMID: 30962800]
[54]
Oguntibeju OO. Type 2 diabetes mellitus, oxidative stress and inflammation: examining the links. Int J Physiol Pathophysiol Pharmacol 2019; 11(3): 45-63.
[PMID: 31333808]
[55]
Wang Y, Wang C, Li K, et al. Recent advances of nanomedicine-based strategies in diabetes and complications management: Diagnostics, monitoring, and therapeutics. J Control Release 2021; 330: 618-40.
[http://dx.doi.org/10.1016/j.jconrel.2021.01.002] [PMID: 33417985]
[56]
Jiménez PG, Martín-Carmona J, Hernández EL. Diabetes mellitusMed - programa form Médica Contin Acreditado 2020; 13: 883-90.
[http://dx.doi.org/10.1016/j.med.2020.09.010]
[57]
Wang Z, Wang J, Kahkoska AR, Buse JB, Gu Z. Developing insulin delivery devices with glucose responsiveness. Trends Pharmacol Sci 2021; 42(1): 31-44.
[http://dx.doi.org/10.1016/j.tips.2020.11.002] [PMID: 33250274]
[58]
Malhaire H, Gimel J-C, Roger E, Benoît JP, Lagarce F. How to design the surface of peptide-loaded nanoparticles for efficient oral bioavailability? Adv Drug Deliv Rev 2016; 106(Pt B): 320-6.
[http://dx.doi.org/10.1016/j.addr.2016.03.011] [PMID: 27058155]
[59]
Meneguin AB, Silvestre ALP, Sposito L, et al. The role of polysaccharides from natural resources to design oral insulin micro- and nanoparticles intended for the treatment of Diabetes mellitus: A review. Carbohydr Polym 2021; 256, 117504.
[http://dx.doi.org/10.1016/j.carbpol.2020.117504] [PMID: 33483027]
[60]
Sudhakar S, Chandran SV, Selvamurugan N, Nazeer RA. Biodistribution and pharmacokinetics of thiolated chitosan nanoparticles for oral delivery of insulin in vivo. Int J Biol Macromol 2020; 150: 281-8.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.079] [PMID: 32057846]
[61]
Amiel SA, Choudhary P, Jacob P, et al. Hypoglycaemia awareness restoration programme for people with type 1 diabetes and problematic hypoglycaemia persisting despite optimised self-care (HARPdoc): protocol for a group randomised controlled trial of a novel intervention addressing cognitions. BMJ Open 2019; 9(6), e030356.
[http://dx.doi.org/10.1136/bmjopen-2019-030356] [PMID: 31209097]
[62]
Torre C, Guerreiro JP, Romano S, et al. Real-world prevalence of mild to moderate hypoglycemic episodes in type 2 diabetes in Portugal: Results from the HIPOS-PHARMA study. Prim Care Diabetes 2018; 12(6): 537-46.
[http://dx.doi.org/10.1016/j.pcd.2018.06.001] [PMID: 30017600]
[63]
Wong CY, Al-Salami H, Dass CR. Potential of insulin nanoparticle formulations for oral delivery and diabetes treatment. J Control Release 2017; 264: 247-75.
[http://dx.doi.org/10.1016/j.jconrel.2017.09.003] [PMID: 28887133]
[64]
Sonia TA, Sharma CP. An overview of natural polymers for oral insulin delivery. Drug Discov Today 2012; 17(13-14): 784-92.
[http://dx.doi.org/10.1016/j.drudis.2012.03.019] [PMID: 22521664]
[65]
Joshi G, Patel M, Chaudhary D, Sawant K. Preparation and surface modification of polymeric nanoparticles for drug delivery: State of the art. Recent Pat Drug Deliv Formul 2020; 14(3): 201-13.
[http://dx.doi.org/10.2174/1872211314666200904105036] [PMID: 32885767]
[66]
Zhu S, Chen S, Gao Y, et al. Enhanced oral bioavailability of insulin using PLGA nanoparticles co-modified with cell-penetrating peptides and Engrailed secretion peptide (Sec). Drug Deliv 2016; 23(6): 1980-91.
[http://dx.doi.org/10.3109/10717544.2015.1043472] [PMID: 26181841]
[67]
Sheng J, He H, Han L, et al. Enhancing insulin oral absorption by using mucoadhesive nanoparticles loaded with LMWP-linked insulin conjugates. J Control Release 2016; 233: 181-90.
[http://dx.doi.org/10.1016/j.jconrel.2016.05.015] [PMID: 27178809]
[68]
El Leithy ES, Abdel-Bar HM, Ali RAM. Folate-chitosan nanoparticles triggered insulin cellular uptake and improved in vivo hypoglycemic activity. Int J Pharm 2019; 571, 118708.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118708] [PMID: 31593805]
[69]
Azevedo C, Nilsen J, Grevys A, Nunes R, Andersen JT, Sarmento B. Engineered albumin-functionalized nanoparticles for improved FcRn binding enhance oral delivery of insulin. J Control Release 2020; 327: 161-73.
[http://dx.doi.org/10.1016/j.jconrel.2020.08.005] [PMID: 32771477]
[70]
Lopes M, Aniceto D, Abrantes M, et al. In vivo biodistribution of antihyperglycemic biopolymer-based nanoparticles for the treatment of type 1 and type 2 diabetes. Eur J Pharm Biopharm 2017; 113: 88-96.
[http://dx.doi.org/10.1016/j.ejpb.2016.11.037] [PMID: 28007370]
[71]
Tian H, He Z, Sun C, et al. Uniform core-shell nanoparticles with thiolated hyaluronic acid coating to enhance oral delivery of insulin. Adv Healthc Mater 2018; 7(17), e1800285.
[http://dx.doi.org/10.1002/adhm.201800285] [PMID: 29984479]
[72]
Uhl P, Grundmann C, Sauter M, Storck P, Tursch A. Ö S. Coating of PLA-nanoparticles with cyclic, arginine-rich cell penetrating peptides enables oral delivery of liraglutide. Nanomedicine nanotechnology. Biol Med 2019; 24, 102132.
[http://dx.doi.org/10.1016/j.nano.2019.102132]
[73]
Zhang L, Shi Y, Song Y, et al. The use of low molecular weight protamine to enhance oral absorption of exenatide. Int J Pharm 2018; 547(1-2): 265-73.
[http://dx.doi.org/10.1016/j.ijpharm.2018.05.055] [PMID: 29800739]
[74]
Guo F, Zhang M, Gao Y, et al. Modified nanoparticles with cell-penetrating peptide and amphipathic chitosan derivative for enhanced oral colon absorption of insulin: preparation and evaluation. Drug Deliv 2016; 23(6): 2003-14.
[http://dx.doi.org/10.3109/10717544.2015.1048489] [PMID: 26181840]
[75]
Ren T, Wang Q, Xu Y, et al. Enhanced oral absorption and anticancer efficacy of cabazitaxel by overcoming intestinal mucus and epithelium barriers using surface polyethylene oxide (PEO) decorated positively charged polymer-lipid hybrid nanoparticles. J Control Release 2018; 269: 423-38.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.015] [PMID: 29133120]
[76]
Tariq M, Alam MA, Singh AT, Panda AK, Talegaonkar S. Surface decorated nanoparticles as surrogate carriers for improved transport and absorption of epirubicin across the gastrointestinal tract: Pharmacokinetic and pharmacodynamic investigations. Int J Pharm 2016; 501(1-2): 18-31.
[http://dx.doi.org/10.1016/j.ijpharm.2016.01.054] [PMID: 26812610]
[77]
Qin JJ, Wang W, Sarkar S, Zhang R. Oral delivery of anti-MDM2 inhibitor SP141-loaded FcRn-targeted nanoparticles to treat breast cancer and metastasis. J Control Release 2016; 237: 101-14.
[http://dx.doi.org/10.1016/j.jconrel.2016.07.008] [PMID: 27394681]
[78]
Wang J, Wang F, Li X, Zhou Y, Wang H, Zhang Y. Uniform carboxymethyl chitosan-enveloped Pluronic F68/poly(lactic-co-glycolic acid) nano-vehicles for facilitated oral delivery of gefitinib, a poorly soluble antitumor compound. Colloids Surf B Biointerfaces 2019; 177: 425-32.
[http://dx.doi.org/10.1016/j.colsurfb.2019.02.028] [PMID: 30798063]
[79]
Wang J, Li L, Wu L, et al. Development of novel self-assembled ES-PLGA hybrid nanoparticles for improving oral absorption of doxorubicin hydrochloride by P-gp inhibition: in vitro and in vivo evaluation. Eur J Pharm Sci 2017; 99: 185-92.
[http://dx.doi.org/10.1016/j.ejps.2016.12.014] [PMID: 27989702]
[80]
Wang Q, Li C, Ren T, et al. Poly(vinyl methyl ether/maleic anhydride)-Doped PEG-PLA Nanoparticles for Oral Paclitaxel Delivery To Improve Bioadhesive Efficiency. Mol Pharm 2017; 14(10): 3598-608.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00612] [PMID: 28892400]
[81]
Du X, Yin S, Xu L, et al. Polylysine and cysteine functionalized chitosan nanoparticle as an efficient platform for oral delivery of paclitaxel. Carbohydr Polym 2020; 229, 115484.
[http://dx.doi.org/10.1016/j.carbpol.2019.115484] [PMID: 31826482]
[82]
Ahmad N, Ahmad R, Alam MA, et al. Daunorubicin oral bioavailability enhancement by surface coated natural biodegradable macromolecule chitosan based polymeric nanoparticles. Int J Biol Macromol 2019; 128: 825-38.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.01.142] [PMID: 30690115]
[83]
Li Y, Yang B, Zhang X. Oral delivery of imatinib through galactosylated polymeric nanoparticles to explore the contribution of a saccharide ligand to absorption. Int J Pharm 2019; 568, 118508.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118508] [PMID: 31299337]
[84]
Kurd M, Sadegh Malvajerd S, Rezaee S, Hamidi M, Derakhshandeh K. Oral delivery of indinavir using mPEG-PCL nanoparticles: preparation, optimization, cellular uptake, transport and pharmacokinetic evaluation. Artif Cells Nanomed Biotechnol 2019; 47(1): 2123-33.
[http://dx.doi.org/10.1080/21691401.2019.1616553] [PMID: 31155961]
[85]
Gourdon B, Chemin C, Moreau A, et al. Functionalized PLA-PEG nanoparticles targeting intestinal transporter PepT1 for oral delivery of acyclovir. Int J Pharm 2017; 529(1-2): 357-70.
[http://dx.doi.org/10.1016/j.ijpharm.2017.07.024] [PMID: 28705621]
[86]
Xu B, Zhang W, Chen Y, Xu Y, Wang B, Zong L. Eudragit® L100-coated mannosylated chitosan nanoparticles for oral protein vaccine delivery. Int J Biol Macromol 2018; 113: 534-42.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.02.016] [PMID: 29408613]
[87]
Du L, Yu Z, Pang F, et al. Targeted delivery of GP5 antigen of PRRSV to M cells enhances the antigen-specific systemic and mucosal immune responses. Front Cell Infect Microbiol 2018; 8: 7.
[http://dx.doi.org/10.3389/fcimb.2018.00007] [PMID: 29423381]
[88]
Kang Z, Ding G, Meng Z, Meng Q. The rational design of cell-penetrating peptides for application in delivery systems. Peptides 2019; 121, 170149.
[http://dx.doi.org/10.1016/j.peptides.2019.170149] [PMID: 31491454]
[89]
Xu J, Khan AR, Fu M, Wang R, Ji J, Zhai G. Cell-penetrating peptide: a means of breaking through the physiological barriers of different tissues and organs. J Control Release 2019; 309: 106-24.
[http://dx.doi.org/10.1016/j.jconrel.2019.07.020] [PMID: 31323244]
[90]
Shrestha N, Araújo F, Shahbazi M-A, et al. Oral hypoglycaemic effect of GLP-1 and DPP4 inhibitor based nanocomposites in a diabetic animal model. J Control Release 2016; 232: 113-9.
[http://dx.doi.org/10.1016/j.jconrel.2016.04.024] [PMID: 27091697]
[91]
Werner U. Effects of the GLP-1 receptor agonist lixisenatide on postprandial glucose and gastric emptying-preclinical evidence. J Diabetes Complications 2014; 28(1): 110-4.
[http://dx.doi.org/10.1016/j.jdiacomp.2013.06.003] [PMID: 23992745]
[92]
Di Dalmazi G, Coluzzi S, Baldassarre MPA, et al. Exenatide once weekly: Effectiveness, tolerability, and discontinuation predictors in a real-world setting. Clin Ther 2020; 42(9): 1738-1749.e1.
[http://dx.doi.org/10.1016/j.clinthera.2020.07.002] [PMID: 32753164]
[93]
Sauvanet J-P. Exénatide à libération prolongée (Bydureon®) : données de sécurité d’utilisation du programme clinique duration. Médecine Des Mal Métaboliques 2010; 4: 492.
[94]
Wang C, Li B, Wang B, Xie N. Degradation and antioxidant activities of peptides and zinc-peptide complexes during in vitro gastrointestinal digestion. Food Chem 2015; 173: 733-40.
[http://dx.doi.org/10.1016/j.foodchem.2014.10.066] [PMID: 25466083]
[95]
Chukwuma CI, Mashele SS, Eze KC, et al. A comprehensive review on zinc(II) complexes as anti-diabetic agents: The advances, scientific gaps and prospects. Pharmacol Res 2020; 155, 104744.
[http://dx.doi.org/10.1016/j.phrs.2020.104744] [PMID: 32156651]
[96]
Thwala LN, Beloqui A, Csaba NS, et al. The interaction of protamine nanocapsules with the intestinal epithelium: A mechanistic approach. J Control Release 2016; 243: 109-20.
[http://dx.doi.org/10.1016/j.jconrel.2016.10.002] [PMID: 27720993]
[97]
Cuggino JC, Blanco ERO, Gugliotta LM, Alvarez Igarzabal CI, Calderón M. Crossing biological barriers with nanogels to improve drug delivery performance. J Control Release 2019; 307: 221-46.
[http://dx.doi.org/10.1016/j.jconrel.2019.06.005] [PMID: 31175895]
[98]
Strasfeld L, Chou S. Antiviral drug resistance: mechanisms and clinical implications. Infect Dis Clin North Am 2010; 24(2): 413-37.
[http://dx.doi.org/10.1016/j.idc.2010.01.001] [PMID: 20466277]
[99]
Delshadi R, Bahrami A, McClements DJ, Moore MD, Williams L. Development of nanoparticle-delivery systems for antiviral agents: A review. J Control Release 2021; 331: 30-44.
[http://dx.doi.org/10.1016/j.jconrel.2021.01.017] [PMID: 33450319]
[100]
Li Y, Xiao Y, Chen Y, Huang K. Nano-based approaches in the development of antiviral agents and vaccines. Life Sci 2021; 265, 118761.
[http://dx.doi.org/10.1016/j.lfs.2020.118761] [PMID: 33189824]
[101]
Luo GG, Gao SJ. Global health concerns stirred by emerging viral infections. J Med Virol 2020; 92(4): 399-400.
[http://dx.doi.org/10.1002/jmv.25683] [PMID: 31967329]
[102]
Lembo D, Donalisio M, Civra A, Argenziano M, Cavalli R. Nanomedicine formulations for the delivery of antiviral drugs: a promising solution for the treatment of viral infections. Expert Opin Drug Deliv 2018; 15(1): 93-114.
[http://dx.doi.org/10.1080/17425247.2017.1360863] [PMID: 28749739]
[103]
Cojocaru FD, Botezat D, Gardikiotis I, et al. Nanomaterials designed for antiviral drug delivery transport across biological barriers. Pharmaceutics 2020; 12(2), E171.
[http://dx.doi.org/10.3390/pharmaceutics12020171] [PMID: 32085535]
[104]
Sharma P, Chawla A, Arora S, Pawar P. Novel drug delivery approaches on antiviral and antiretroviral agents. J Adv Pharm Technol Res 2012; 3(3): 147-59.
[http://dx.doi.org/10.4103/2231-4040.101007] [PMID: 23057001]
[105]
Holmstock N, De Bruyn T, Bevernage J, et al. Exploring food effects on indinavir absorption with human intestinal fluids in the mouse intestine. Eur J Pharm Sci 2013; 49(1): 27-32.
[http://dx.doi.org/10.1016/j.ejps.2013.01.012] [PMID: 23402972]
[106]
Gourdon B, Chemin C, Moreau A, et al. Influence of PLA-PEG nanoparticles manufacturing process on intestinal transporter PepT1 targeting and oxytocin transport. Eur J Pharm Biopharm 2018; 129: 122-33.
[http://dx.doi.org/10.1016/j.ejpb.2018.05.022] [PMID: 29803721]
[107]
Foley DW, Pathak RB, Phillips TR, et al. Thiodipeptides targeting the intestinal oligopeptide transporter as a general approach to improving oral drug delivery. Eur J Med Chem 2018; 156: 180-9.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.064] [PMID: 30006163]
[108]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[109]
Liu W, Hu B, Dehghan M, et al. Fruit, vegetable, and legume intake and the risk of all-cause, cardiovascular, and cancer mortality: A prospective study. Clin Nutr 2021; 40(6): 4316-23.
[http://dx.doi.org/10.1016/j.clnu.2021.01.016] [PMID: 33581953]
[110]
Ghosh B, Biswas S. Polymeric micelles in cancer therapy: State of the art. J Control Release 2021; 332: 127-47.
[http://dx.doi.org/10.1016/j.jconrel.2021.02.016] [PMID: 33609621]
[111]
Yang K, Zhang S, He J, Nie Z. Polymers and inorganic nanoparticles: A winning combination towards assembled nanostructures for cancer imaging and therapy. Nano Today 2021; 36, 101046.
[http://dx.doi.org/10.1016/j.nantod.2020.101046]
[112]
Horo H, Bhattacharyya S, Mandal B, Kundu LM. Synthesis of functionalized silk-coated chitosan-gold nanoparticles and microparticles for target-directed delivery of antitumor agents. Carbohydr Polym 2021; 258, 117659.
[http://dx.doi.org/10.1016/j.carbpol.2021.117659] [PMID: 33593545]
[113]
Sharma H, Mondal S. Functionalized graphene oxide for chemotherapeutic drug delivery and cancer treatment: A promising material in nanomedicine. Int J Mol Sci 2020; 21(17): 1-42.
[http://dx.doi.org/10.3390/ijms21176280] [PMID: 32872646]
[114]
Varshosaz J, Taymouri S, Hamishehkar H. Fabrication of polymeric nanoparticles of poly(ethylene-co-vinyl acetate) coated with chitosan for pulmonary delivery of carvedilol. J Appl Polym Sci 2014; 131: 1-8.
[http://dx.doi.org/10.1002/app.39694]
[115]
Barve A, Jain A, Liu H, Zhao Z, Cheng K. Enzyme-responsive polymeric micelles of cabazitaxel for prostate cancer targeted therapy. Acta Biomater 2020; 113: 501-11.
[http://dx.doi.org/10.1016/j.actbio.2020.06.019] [PMID: 32562805]
[116]
Li B, Li Q, Mo J, Dai H. Drug-loaded polymeric nanoparticles for cancer stem cell targeting. Front Pharmacol 2017; 8: 51.
[http://dx.doi.org/10.3389/fphar.2017.00051] [PMID: 28261093]
[117]
Iyer R, Croucher JL, Chorny M, et al. Nanoparticle delivery of an SN38 conjugate is more effective than irinotecan in a mouse model of neuroblastoma. Cancer Lett 2015; 360(2): 205-12.
[http://dx.doi.org/10.1016/j.canlet.2015.02.011] [PMID: 25684664]
[118]
Shuai Q, Zhao G, Lian X, et al. Self-assembling poly(ethylene glycol)-block-polylactide-cabazitaxel conjugate nanoparticles for anticancer therapy with high efficacy and low in vivo toxicity. Int J Pharm 2020; 574, 118879.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118879] [PMID: 31770581]
[119]
Chen Y, Deng Y, Zhu C, Xiang C. Anti prostate cancer therapy: Aptamer-functionalized, curcumin and cabazitaxel co-delivered, tumor targeted lipid-polymer hybrid nanoparticles. Biomed Pharmacother 2020; 127, 110181.
[http://dx.doi.org/10.1016/j.biopha.2020.110181] [PMID: 32416561]
[120]
SNIPSTAD SOFIE, MORCH Y, SULHEIM E, ASLUND A, DAVIES APCDL, BERG RHAS. Sonopermeation enhances uptake and therapeutic effect of free. 2021; 1-15..
[http://dx.doi.org/10.1016/j.ultrasmedbio.2020.12.026]
[121]
Fusser M, Øverbye A, Pandya AD, et al. Cabazitaxel-loaded Poly(2-ethylbutyl cyanoacrylate) nanoparticles improve treatment efficacy in a patient derived breast cancer xenograft. J Control Release 2019; 293: 183-92.
[http://dx.doi.org/10.1016/j.jconrel.2018.11.029] [PMID: 30529259]
[122]
He Z, Wan X, Schulz A, et al. A high capacity polymeric micelle of paclitaxel: Implication of high dose drug therapy to safety and in vivo anti-cancer activity. Biomaterials 2016; 101: 296-309.
[http://dx.doi.org/10.1016/j.biomaterials.2016.06.002] [PMID: 27315213]
[123]
Fukase M, Ohta T, Watanabe N, et al. Squamous cell carcinoma arising from a mature cystic teratoma of the ovary: Successful treatment with carboplatin, paclitaxel, and bevacizumab. Gynecol Oncol Rep 2020; 34, 100632.
[http://dx.doi.org/10.1016/j.gore.2020.100632] [PMID: 32964091]
[124]
Parody-Rúa E, Guevara-Cuellar CA. Cost-effectiveness of the addition of Bevacizumab to first-line chemotherapy with carboplatin and paclitaxel in patients with non-small cell lung cancer. Value Health Reg Issues 2020; 23: 93-8.
[http://dx.doi.org/10.1016/j.vhri.2020.04.005] [PMID: 33171359]
[125]
Shanmugam T, Joshi N, Ahamad N, Deshmukh A, Banerjee R. Enhanced absorption, and efficacy of oral self-assembled paclitaxel nanocochleates in multi-drug resistant colon cancer. Int J Pharm 2020; 586, 119482.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119482] [PMID: 32492505]
[126]
Jang Y, Chung HJ, Hong JW, Yun CW, Chung H. Absorption mechanism of DHP107, an oral paclitaxel formulation that forms a hydrated lipidic sponge phase. Acta Pharmacol Sin 2017; 38(1): 133-45.
[http://dx.doi.org/10.1038/aps.2016.105] [PMID: 27867185]
[127]
Zabaleta V, Ponchel G, Salman H, Agüeros M, Vauthier C, Irache JM. Oral administration of paclitaxel with pegylated poly(anhydride) nanoparticles: permeability and pharmacokinetic study. Eur J Pharm Biopharm 2012; 81(3): 514-23.
[http://dx.doi.org/10.1016/j.ejpb.2012.04.001] [PMID: 22516136]
[128]
Peng J, Chen J, Xie F, et al. Herceptin-conjugated paclitaxel loaded PCL-PEG worm-like nanocrystal micelles for the combinatorial treatment of HER2-positive breast cancer. Biomaterials 2019; 222, 119420.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119420] [PMID: 31445322]
[129]
Wang X, Chen Y, Dahmani FZ, Yin L, Zhou J, Yao J. Amphiphilic carboxymethyl chitosan-quercetin conjugate with P-gp inhibitory properties for oral delivery of paclitaxel. Biomaterials 2014; 35(26): 7654-65.
[http://dx.doi.org/10.1016/j.biomaterials.2014.05.053] [PMID: 24927684]
[130]
Xue P, Liu D, Wang J, et al. Redox-sensitive citronellol-cabazitaxel conjugate: Maintained in vitro cytotoxicity and self-assembled as multifunctional nanomedicine. Bioconjugate Chemistry 2016; 27(5): 1360-72.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00155.]]
[131]
Kommineni N, Saka R, Bulbake U, Khan W. Cabazitaxel and thymoquinone co-loaded lipospheres as a synergistic combination for breast cancer. Chem Phys Lipids 2019; 224, 104707.
[http://dx.doi.org/10.1016/j.chemphyslip.2018.11.009] [PMID: 30521787]
[132]
Yang Z, Chi D, Wang Q, Guo X, Lv Q, Wang Y. Improved antitumor activity and tolerability of cabazitaxel derived remote-loading liposomes. Int J Pharm 2020; 589, 119814.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119814] [PMID: 32877728]
[133]
Ghoochani A, Majernik GH, Sehm T, et al. Cabazitaxel operates anti-metastatic and cytotoxic via apoptosis induction and stalls brain tumor angiogenesis 2016; 7: 7-9.
[http://dx.doi.org/10.18632/oncotarget.9439]
[134]
Zeng YY, Zeng YJ, Zhang NN, Li CX, Xie T, Zeng ZW. The preparation, determination of a flexible complex liposome co-loaded with cabazitaxel and β-elemene, and animal pharmacodynamics on paclitaxel-resistant lung adenocarcinoma. Molecules 2019; 24(9): 1697.
[http://dx.doi.org/10.3390/molecules24091697] [PMID: 31052317]
[135]
Nikolskaya ED, Faustova MR, Mollaev MD, et al. Development of a polymer system for the delivery of daunorubicin to tumor cells to overcome drug resistance. Russ Chem Bull 2018; 67: 747-56.
[http://dx.doi.org/10.1007/s11172-018-2132-5]
[136]
Matyszewska D. Comparison of the interactions of daunorubicin in a free form and attached to single-walled carbon nanotubes with model lipid membranes. Beilstein J Nanotechnol 2016; 7: 524-32.
[http://dx.doi.org/10.3762/bjnano.7.46] [PMID: 27335743]
[137]
Ribeiro IS, Pontes FJG, Carneiro MJM, et al. Poly(ε-caprolactone) grafted cashew gum nanoparticles as an epirubicin delivery system. Int J Biol Macromol 2021; 179: 314-23.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.03.011] [PMID: 33675833]
[138]
Perveen K, Masood F, Hameed A. Preparation, characterization and evaluation of antibacterial properties of epirubicin loaded PHB and PHBV nanoparticles. Int J Biol Macromol 2020; 144: 259-66.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.12.049] [PMID: 31821825]
[139]
Fathian kolahkaj F, Derakhshandeh K, Khaleseh F, Azandaryani AH, Mansouri K, Khazaei M. Active targeting carrier for breast cancer treatment: Monoclonal antibody conjugated epirubicin loaded nanoparticle. J Drug Deliv Sci Technol 2019; 53, 101136.
[http://dx.doi.org/10.1016/j.jddst.2019.101136]
[140]
Siu FYK, Ye S, Lin H, Li S. Galactosylated PLGA nanoparticles for the oral delivery of resveratrol: enhanced bioavailability and in vitro anti-inflammatory activity. Int J Nanomedicine 2018; 13: 4133-44.
[http://dx.doi.org/10.2147/IJN.S164235] [PMID: 30038494]
[141]
Lin Q, Liu G, Zhao Z, Wei D, Pang J, Jiang Y. Design of gefitinib-loaded poly (l-lactic acid) microspheres via a supercritical anti-solvent process for dry powder inhalation. Int J Pharm 2017; 532(1): 573-80.
[http://dx.doi.org/10.1016/j.ijpharm.2017.09.051] [PMID: 28935254]
[142]
Wang W, Hu B, Qin JJ, et al. A novel inhibitor of MDM2 oncogene blocks metastasis of hepatocellular carcinoma and overcomes chemoresistance. Genes Dis 2019; 6(4): 419-30.
[http://dx.doi.org/10.1016/j.gendis.2019.06.001] [PMID: 31832522]
[143]
Wang W, Qin JJ, Voruganti S, et al. The pyrido[b]indole MDM2 inhibitor SP-141 exerts potent therapeutic effects in breast cancer models. Nat Commun 2014; 5: 5086.
[http://dx.doi.org/10.1038/ncomms6086]]
[144]
Kang SH, Hong SJ, Lee YK, Cho S. Oral vaccine delivery for intestinal immunity-biological basis, barriers, delivery system, and M cell targeting. Polymers (Basel) 2018; 10(9), E948.
[http://dx.doi.org/10.3390/polym10090948] [PMID: 30960873]
[145]
Lavelle EC, O’Hagan DT. Delivery systems and adjuvants for oral vaccines. Expert Opin Drug Deliv 2006; 3(6): 747-62.
[http://dx.doi.org/10.1517/17425247.3.6.747] [PMID: 17076597]
[146]
Shi N, Li N, Duan X, Niu H. Interaction between the gut microbiome and mucosal immune system. Mil Med Res 2017; 4: 14.
[http://dx.doi.org/10.1186/s40779-017-0122-9] [PMID: 28465831]
[147]
Mabbott NA, Kobayashi A, Sehgal A, Bradford BM, Pattison M, Donaldson DS. Aging and the mucosal immune system in the intestine. Biogerontology 2015; 16(2): 133-45.
[http://dx.doi.org/10.1007/s10522-014-9498-z] [PMID: 24705962]
[148]
Ahluwalia B, Magnusson MK, Öhman L. Mucosal immune system of the gastrointestinal tract: maintaining balance between the good and the bad. Scand J Gastroenterol 2017; 52(11): 1185-93.
[http://dx.doi.org/10.1080/00365521.2017.1349173] [PMID: 28697651]
[149]
Lycke NY, Bemark M. The regulation of gut mucosal IgA B-cell responses: recent developments. Mucosal Immunol 2017; 10(6): 1361-74.
[http://dx.doi.org/10.1038/mi.2017.62] [PMID: 28745325]
[150]
Pasetti MF, Simon JK, Sztein MB, Levine MM. Immunology of gut mucosal vaccines. Immunol Rev 2011; 239(1): 125-48.
[http://dx.doi.org/10.1111/j.1600-065X.2010.00970.x] [PMID: 21198669]
[151]
Adomako M, St-Hilaire S, Zheng Y, et al. Oral DNA vaccination of rainbow trout, Oncorhynchus mykiss (Walbaum), against infectious haematopoietic necrosis virus using PLGA [Poly(D,L-Lactic-Co-Glycolic Acid)] nanoparticles. J Fish Dis 2012; 35(3): 203-14.
[http://dx.doi.org/10.1111/j.1365-2761.2011.01338.x] [PMID: 22324344]
[152]
Jiang T, Singh B, Li HS, et al. Targeted oral delivery of BmpB vaccine using porous PLGA microparticles coated with M cell homing peptide-coupled chitosan. Biomaterials 2014; 35(7): 2365-73.
[http://dx.doi.org/10.1016/j.biomaterials.2013.11.073] [PMID: 24342722]
[153]
Ma T, Wang L, Yang T, Ma G, Wang S. M-cell targeted polymeric lipid nanoparticles containing a Toll-like receptor agonist to boost oral immunity. Int J Pharm 2014; 473(1-2): 296-303.
[http://dx.doi.org/10.1016/j.ijpharm.2014.06.052] [PMID: 24984067]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy