Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Research Article

Immunopharmacological Properties of VitD3: 1, 25VitD3 Modulates Regulatory T Cells and Th17 Cells and the Cytokine Balance in PBMCs from Women with Unexplained Recurrent Spontaneous Abortion (URSA)

Author(s): Jiefan Gao, Li Wang, Lei Bu, Yangyang Song, Xiao Huang and Jing Zhao*

Volume 15, Issue 5, 2022

Published on: 17 January, 2022

Article ID: e151021197236 Pages: 15

DOI: 10.2174/1874467214666211015084803

Price: $65

Abstract

Background: VitD3 may contribute to a successful pregnancy through modulation of immune responses. Therefore, VitD3 deficiency may have a role in the immunopathogenesis of unexplained recurrent spontaneous abortion (URSA). However, the mechanisms of immunomodulatory actions of VitD3 in decreasing the risk of recurrent spontaneous abortion have not been understood well.

Objective: The purpose of this research was to investigate the influence of 1,25VitD3 on regulatory T cells /Th17 axis, the gene expressions and concentrations of related cytokines including, TGF-β, IL-10, IL-6, IL-23, and IL-17A in peripheral blood mononuclear cells (PBMCs) of healthy women as a control group and women with URSA.

Methods: Isolation of PBMCs was performed from peripheral blood of the subjects of the studied groups (20 women with URSA as a case group, and 20 control women). The effects of 1,25VitD3 (50 nM, for 24 hours) on the studied parameters were evaluated and were compared to the positive and negative controls in vitro. Flow cytometry analysis was used to determine the percentages of regulatory T cells and Th17 cells. For gene expression measurement and cytokines assay, Realtime PCR and ELISA were carried out.

Results: The proportion of regulatory T cells was markedly lower, while the proportion of Th17 cells in women with URSA was considerably higher than in the control group (P=0.01, P=0.01). The ratio of the frequency of Tregs to the baseline (1,25VitD3/Untreated) increased, while the ratio of the frequency of Th17 cells to the baseline decreased in women with URSA relative to the controls (P= 0.01, P=0.04). 1,25VitD3 increased IL-10 expressions at both the protein and mRNA levels in PBMCs in women with URSA relative to the control group (P=0.0001, P=0.04). TGF-β levels in the cultured supernatants decreased significantly in the case group in the presence of 1,25Vit- D3 relative to the controls (P=0.03). 1,25VitD3 treatment also significantly decreased gene expressions of IL-6, IL-17A, and IL-23 in PBMCs of women with URSA (P=0.01, P=0.001, P=0.0005), as well as the levels of those cytokines in cell culture supernatants (P=0.03, P=0.02, P=0.01, respectively) in women with URSA relative to the controls.

Conclusion: According to the findings of this research, modulation of immune responses by 1,25VitD3 is accomplished by strengthening Tregs function and inhibiting inflammatory responses of Th17 cells, which may have a positive impact on pregnancy outcome. Thus, as an immunomodulating agent, VitD3 may be effective in reducing the risk of URSA.

Keywords: URSA, VitD3, Tregs, Th17, cytokines, immunomodulatory actions.

Graphical Abstract

[1]
Dimitriadis, E.; Menkhorst, E.; Saito, S.; Kutteh, W.H.; Brosens, J.J. Recurrent pregnancy loss. Nat. Rev. Dis. Primers, 2020, 6(1), 1-19.
[http://dx.doi.org/10.1038/s41572-020-00228-z] [PMID: 33303732]
[2]
Guerin, L.R.; Prins, J.R.; Robertson, S.A. Regulatory T-cells and immune tolerance in pregnancy: A new target for infertility treatment? Hum. Reprod. Update, 2009, 15(5), 517-535.
[http://dx.doi.org/10.1093/humupd/dmp004] [PMID: 19279047]
[3]
Abdollahi, E.; Rezaee, S.A.; Saghafi, N.; Rastin, M.; Clifton, V.; Sahebkar, A.; Rafatpanah, H. Evaluation of the effects of 1,25 vitamin D3 on regulatory T cells and T helper 17 cells in vitamin d-deficient women with unexplained recurrent pregnancy loss. Curr. Mol. Pharmacol., 2020, 13(4), 306-317.
[http://dx.doi.org/10.2174/1874467213666200303130153] [PMID: 32124705]
[4]
Rai, R.; Regan, L. Recurrent miscarriage. Lancet, 2006, 368(9535), 601-611.
[http://dx.doi.org/10.1016/S0140-6736(06)69204-0] [PMID: 16905025]
[5]
Heuser, C; Dalton, J; Macpherson, C; Branch, DW; Porter, TF; Silver, RM Idiopathic recurrent pregnancy loss recurs at similar gestational ages. Am. J. Obstetr. Gynecol., 2010, 203(4), 343.
[http://dx.doi.org/10.1016/j.ajog.2010.05.010]
[6]
Aluvihare, V.R.; Kallikourdis, M.; Betz, A.G. Regulatory T cells mediate maternal tolerance to the fetus. Nat. Immunol., 2004, 5(3), 266-271.
[http://dx.doi.org/10.1038/ni1037] [PMID: 14758358]
[7]
Mohammadi, S.; Abdollahi, E.; Nezamnia, M.; Esmaeili, S-A.; Tavasolian, F.; Sathyapalan, T.; Sahebkar, A. Adoptive transfer of Tregs: A novel strategy for cell-based immunotherapy in spontaneous abortion: Lessons from experimental models. Int. Immunopharmacol., 2021, 90, 107195.
[http://dx.doi.org/10.1016/j.intimp.2020.107195] [PMID: 33278746]
[8]
Roncarolo, M-G.; Battaglia, M. Regulatory T-cell immunotherapy for tolerance to self antigens and alloantigens in humans. Nat. Rev. Immunol., 2007, 7(8), 585-598.
[http://dx.doi.org/10.1038/nri2138] [PMID: 17653126]
[9]
Deshmukh, H.; Way, S.S. Immunological basis for recurrent fetal loss and pregnancy complications. Annu. Rev. Pathol., 2019, 14, 185-210.
[http://dx.doi.org/10.1146/annurev-pathmechdis-012418-012743] [PMID: 30183507]
[10]
Chen, J.; Zhao, L.; Wang, D.; Xu, Y.; Gao, H.; Tan, W.; Wang, C. Contribution of regulatory T cells to immune tolerance and association of microRNA-210 and Foxp3 in preeclampsia. Mol. Med. Rep., 2019, 19(2), 1150-1158.
[PMID: 30569125]
[11]
Huang, N.; Chi, H.; Qiao, J. Role of regulatory T cells in regulating fetal-maternal immune tolerance in healthy pregnancies and reproductive diseases. Front. Immunol., 2020, 11, 1023.
[http://dx.doi.org/10.3389/fimmu.2020.01023] [PMID: 32676072]
[12]
Tincati, C.; d’Arminio Monforte, A.; Marchetti, G. Immunological mechanisms of interleukin-2 (IL-2) treatment in HIV/AIDS disease. Curr. Mol. Pharmacol., 2009, 2(1), 40-45.
[http://dx.doi.org/10.2174/1874467210902010040] [PMID: 20021444]
[13]
Karakuş, M.M.; Çalışkan, U.K. Phytotherapeutic and natural compound applications for age-related, inflammatory and serious eye ailments. Curr. Mol. Pharmacol., 2020.
[http://dx.doi.org/10.2174/1874467213666201221163210] [PMID: 33349225]
[14]
Yesilada, E; Akkol, EK; Aydin, A; Hamitoğlu, M A realistic approach for anti-inflammatory, antinociceptive and antimutagenic activities, and risk assessment of the aqueous extract of platanus orientalis l. leaves. Curr. Mol. Pharmacol., 2021.
[http://dx.doi.org/10.2174/1874467214999210111220358] [PMID: 33430755]
[15]
Pizzola, C.; Rizvi, S.M.; Joshi, M. A new era of immunotherapy in prostate cancer. Curr. Mol. Pharmacol., 2016, 9(3), 217-225.
[http://dx.doi.org/10.2174/1874467208666150716120551] [PMID: 26177645]
[16]
Veldhoen, M.; Hocking, R.J.; Atkins, C.J.; Locksley, R.M.; Stockinger, B. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity, 2006, 24(2), 179-189.
[http://dx.doi.org/10.1016/j.immuni.2006.01.001] [PMID: 16473830]
[17]
Konkel, J.E.; Zhang, D.; Zanvit, P.; Chia, C.; Zangarle-Murray, T.; Jin, W.; Wang, S.; Chen, W. Transforming growth factor-β signaling in regulatory T cells controls T helper-17 cells and tissue-specific immune responses. Immunity, 2017, 46(4), 660-674.
[http://dx.doi.org/10.1016/j.immuni.2017.03.015] [PMID: 28423340]
[18]
Fujimoto, Y.; Kuramoto, N.; Yoneyama, M.; Azuma, Y-T. Interleukin-19 as an immunoregulatory cytokine. Curr. Mol. Pharmacol., 2020.
[http://dx.doi.org/10.2174/1874467213666200424151528] [PMID: 32329704]
[19]
Saito, S.; Nakashima, A.; Shima, T.; Ito, M. Th1/Th2/Th17 and regulatory T-cell paradigm in pregnancy. Am. J. Reprod. Immunol., 2010, 63(6), 601-610.
[http://dx.doi.org/10.1111/j.1600-0897.2010.00852.x] [PMID: 20455873]
[20]
Liu, Y.S.; Wu, L.; Tong, X.H.; Wu, L.M.; He, G.P.; Zhou, G.X.; Luo, L.H.; Luan, H.B. Study on the relationship between Th17 cells and unexplained recurrent spontaneous abortion. Am. J. Reprod. Immunol., 2011, 65(5), 503-511.
[http://dx.doi.org/10.1111/j.1600-0897.2010.00921.x] [PMID: 21029245]
[21]
Hosseini, S.; Shokri, F.; Ansari Pour, S.; Jeddi-Tehrani, M.; Nikoo, S.; Yousefi, M.; Zarnani, A.H. A shift in the balance of T17 and Treg cells in menstrual blood of women with unexplained recurrent spontaneous abortion. J. Reprod. Immunol., 2016, 116, 13-22.
[http://dx.doi.org/10.1016/j.jri.2016.03.001] [PMID: 27128988]
[22]
Aluvihare, V.R.; Betz, A.G. The role of regulatory T cells in materno-fetal tolerance. Immunology of Pregnancy; Springer, 2006, pp. 171-178.
[23]
Bettelli, E.; Carrier, Y.; Gao, W.; Korn, T.; Strom, T.B.; Oukka, M.; Weiner, H.L.; Kuchroo, V.K. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature, 2006, 441(7090), 235-238.
[http://dx.doi.org/10.1038/nature04753] [PMID: 16648838]
[24]
Yang, H.; Qiu, L.; Chen, G.; Ye, Z.; Lü, C.; Lin, Q. Proportional change of CD4+CD25+ regulatory T cells in decidua and peripheral blood in unexplained recurrent spontaneous abortion patients. Fertil. Steril., 2008, 89(3), 656-661.
[http://dx.doi.org/10.1016/j.fertnstert.2007.03.037] [PMID: 17543960]
[25]
Somerset, D.A.; Zheng, Y.; Kilby, M.D.; Sansom, D.M.; Drayson, M.T. Normal human pregnancy is associated with an elevation in the immune suppressive CD25+ CD4+ regulatory T-cell subset. Immunology, 2004, 112(1), 38-43.
[http://dx.doi.org/10.1111/j.1365-2567.2004.01869.x] [PMID: 15096182]
[26]
Wang, W-J.; Hao, C-F.; Yi-Lin, ; Yin, G.J.; Bao, S.H.; Qiu, L.H.; Lin, Q.D. Increased prevalence of T helper 17 (Th17) cells in peripheral blood and decidua in unexplained recurrent spontaneous abortion patients. J. Reprod. Immunol., 2010, 84(2), 164-170.
[http://dx.doi.org/10.1016/j.jri.2009.12.003] [PMID: 20106535]
[27]
Lee, S.K.; Kim, J.Y.; Hur, S.E.; Kim, C.J.; Na, B.J.; Lee, M.; Gilman-Sachs, A.; Kwak-Kim, J. An imbalance in interleukin-17-producing T and Foxp3+ regulatory T cells in women with idiopathic recurrent pregnancy loss. Hum. Reprod., 2011, 26(11), 2964-2971.
[http://dx.doi.org/10.1093/humrep/der301] [PMID: 21926059]
[28]
Wang, W-J.; Hao, C-F.; Qu, Q-L.; Wang, X.; Qiu, L-H.; Lin, Q-D. The deregulation of regulatory T cells on interleukin-17-producing T helper cells in patients with unexplained early recurrent miscarriage. Hum. Reprod., 2010, 25(10), 2591-2596.
[http://dx.doi.org/10.1093/humrep/deq198] [PMID: 20685755]
[29]
Sasaki, Y.; Sakai, M.; Miyazaki, S.; Higuma, S.; Shiozaki, A.; Saito, S. Decidual and peripheral blood CD4+CD25+ regulatory T cells in early pregnancy subjects and spontaneous abortion cases. Mol. Hum. Reprod., 2004, 10(5), 347-353.
[http://dx.doi.org/10.1093/molehr/gah044] [PMID: 14997000]
[30]
Mei, S.; Tan, J.; Chen, H.; Chen, Y.; Zhang, J. Changes of CD4+CD25high regulatory T cells and FOXP3 expression in unexplained recurrent spontaneous abortion patients. Fertil. Steril., 2010, 94(6), 2244-2247.
[http://dx.doi.org/10.1016/j.fertnstert.2009.11.020] [PMID: 20056219]
[31]
Wu, L.; Luo, L-H.; Zhang, Y-X.; Li, Q.; Xu, B.; Zhou, G-X.; Luan, H.B.; Liu, Y.S. Alteration of Th17 and Treg cells in patients with unexplained recurrent spontaneous abortion before and after lymphocyte immunization therapy. Reprod. Biol. Endocrinol., 2014, 12(1), 74.
[http://dx.doi.org/10.1186/1477-7827-12-74] [PMID: 25086467]
[32]
Nakashima, A.; Ito, M.; Shima, T.; Bac, N.D.; Hidaka, T.; Saito, S. Accumulation of IL-17-positive cells in decidua of inevitable abortion cases. Am. J. Reprod. Immunol., 2010, 64(1), 4-11.
[http://dx.doi.org/10.1111/j.1600-0897.2010.00812.x] [PMID: 20219063]
[33]
Wang, S.; Gao, X.; Shen, G.; Wang, W.; Li, J.; Zhao, J.; Wei, Y.Q.; Edwards, C.K. Interleukin-10 deficiency impairs regulatory T cell-derived neuropilin-1 functions and promotes Th1 and Th17 immunity. Sci. Rep., 2016, 6(1), 24249.
[http://dx.doi.org/10.1038/srep24249] [PMID: 27075020]
[34]
Heyden, E.L.; Wimalawansa, S.J.; Vitamin, D. Vitamin D: Effects on human reproduction, pregnancy, and fetal well-being. J. Steroid Biochem. Mol. Biol., 2018, 180, 41-50.
[http://dx.doi.org/10.1016/j.jsbmb.2017.12.011] [PMID: 29262380]
[35]
Veldurthy, V.; Wei, R.; Oz, L.; Dhawan, P.; Jeon, Y.H.; Christakos, S. Vitamin D, calcium homeostasis and aging. Bone Res., 2016, 4(1), 16041.
[http://dx.doi.org/10.1038/boneres.2016.41] [PMID: 27790378]
[36]
Umar, M.; Sastry, K.S.; Chouchane, A.I. Role of vitamin D beyond the skeletal function: A review of the molecular and clinical studies. Int. J. Mol. Sci., 2018, 19(6), 1618.
[http://dx.doi.org/10.3390/ijms19061618] [PMID: 29849001]
[37]
Dabrowski, F.A.; Grzechocinska, B.; Wielgos, M. The role of vitamin D in reproductive health- a Trojan Horse or the Golden Fleece? Nutrients, 2015, 7(6), 4139-4153.
[http://dx.doi.org/10.3390/nu7064139] [PMID: 26035242]
[38]
Luk, J.; Torrealday, S.; Neal Perry, G.; Pal, L. Relevance of vitamin D in reproduction. Hum. Reprod., 2012, 27(10), 3015-3027.
[http://dx.doi.org/10.1093/humrep/des248] [PMID: 22824625]
[39]
Gonçalves, D.R.; Braga, A.; Braga, J.; Marinho, A. Recurrent pregnancy loss and vitamin D: A review of the literature. Am. J. Reprod. Immunol., 2018, 80(5), e13022.
[http://dx.doi.org/10.1111/aji.13022] [PMID: 30051540]
[40]
Vijayendra Chary, A.; Hemalatha, R.; Seshacharyulu, M.; Vasudeva Murali, M.; Jayaprakash, D.; Dinesh Kumar, B. Vitamin D deficiency in pregnant women impairs regulatory T cell function. J. Steroid Biochem. Mol. Biol., 2015, 147, 48-55.
[http://dx.doi.org/10.1016/j.jsbmb.2014.11.020] [PMID: 25448751]
[41]
Blomberg Jensen, M.; Gerner Lawaetz, J.; Andersson, A-M.; Petersen, J.H.; Nordkap, L.; Bang, A.K.; Ekbom, P.; Joensen, U.N.; Prætorius, L.; Lundstrøm, P.; Boujida, V.H.; Lanske, B.; Juul, A.; Jørgensen, N. Vitamin D deficiency and low ionized calcium are linked with semen quality and sex steroid levels in infertile men. Hum. Reprod., 2016, 31(8), 1875-1885.
[http://dx.doi.org/10.1093/humrep/dew152] [PMID: 27496946]
[42]
Goldfarb, NM Mosby's diagnostic & laboratory test reference. 2009.
[43]
Heaney, R.P.; Dowell, M.S.; Hale, C.A.; Bendich, A. Calcium absorption varies within the reference range for serum 25-hydroxyvitamin D. J. Am. Coll. Nutr., 2003, 22(2), 142-146.
[http://dx.doi.org/10.1080/07315724.2003.10719287] [PMID: 12672710]
[44]
Reihani, H.; Rastin, M.; Mahmoudi, M.; Ghoryani, M.; Abdollahi, N.; Tabasi, N.S.; Zamani Taghizadeh Rabe, S.; Sahebari, M. Influence of 1 alpha, 25-dihydroxyvitamin D3 on T helper 17 cells and related cytokines in systemic lupus erythematosus. Iran. J. Immunol., 2015, 12(2), 82-93.
[PMID: 26119191]
[45]
Ghoryani, M.; Sahebari, M.; Mahmoudi, M.; Abdollahi, N.; Reihani, H.; Rabe, S.Z.T. Immunomodulatory vitamin D effects on regulatory T-cells and cytokines in an in vitro study on patients with systemic lupus erythematosus. Food Agric. Immunol., 2016, 27(3), 377-387.
[http://dx.doi.org/10.1080/09540105.2015.1109612]
[46]
Wahono, C.S.; Rusmini, H.; Soelistyoningsih, D.; Hakim, R.; Handono, K.; Endharti, A.T.; Kalim, H.; Widjajanto, E. Effects of 1,25(OH)2D3 in immune response regulation of systemic lupus erithematosus (SLE) patient with hypovitamin D. Int. J. Clin. Exp. Med., 2014, 7(1), 22-31.
[PMID: 24482685]
[47]
Feng, X; Lv, C; Wang, F; Gan, K; Zhang, M; Tan, W. Modulatory effect of 1, 25-dihydroxyvitamin D3 on IL1β-induced RANKL, OPG, TNFα, and IL-6 expression in human rheumatoid synoviocyte MH7A. Clin. Dev. Immunol., 2013, 2013, 160123.
[48]
Rodríguez, A.; Rodríguez, M.; Córdoba, J.J.; Andrade, M.J. Design of primers and probes for quantitative real-time PCR methods. PCR Primer Design; Springer, 2015, pp. 31-56.
[49]
Broeders, S.; Huber, I.; Grohmann, L.; Berben, G.; Taverniers, I.; Mazzara, M. Guidelines for validation of qualitative real-time PCR methods. Trends Food Sci. Technol., 2014, 37(2), 115-126.
[http://dx.doi.org/10.1016/j.tifs.2014.03.008]
[50]
Witkin, S.S.; Linhares, I.M.; Bongiovanni, A.M.; Herway, C.; Skupski, D. Unique alterations in infection-induced immune activation during pregnancy. BJOG, 2011, 118(2), 145-153.
[http://dx.doi.org/10.1111/j.1471-0528.2010.02773.x] [PMID: 21054766]
[51]
Ghaneifar, Z.; Yousefi, Z.; Tajik, F.; Nikfar, B.; Ghalibafan, F.; Abdollahi, E.; Momtazi-Borojeni, A.A. The potential therapeutic effects of curcumin on pregnancy complications: Novel insights into reproductive medicine. IUBMB Life, 2020, 72(12), 2572-2583.
[http://dx.doi.org/10.1002/iub.2399] [PMID: 33107698]
[52]
Tsuda, S.; Nakashima, A.; Shima, T.; Saito, S. New paradigm in the role of regulatory T cells during pregnancy. Front. Immunol., 2019, 10, 573.
[http://dx.doi.org/10.3389/fimmu.2019.00573] [PMID: 30972068]
[53]
Ali, S.; Majid, S.; Ali, M.N.; Taing, S.; Rehman, M.U.; Arafah, A. Cytokine imbalance at materno-embryonic interface as a potential immune mechanism for recurrent pregnancy loss. Int. Immunopharmacol., 2021, 90, 107118.
[http://dx.doi.org/10.1016/j.intimp.2020.107118] [PMID: 33191177]
[54]
Wang, W.; Sung, N.; Gilman-Sachs, A.; Kwak-Kim, J. T helper (Th) cell profiles in pregnancy and recurrent pregnancy losses: Th1/Th2/Th9/Th17/Th22/tfh cells. Front. Immunol., 2020, 11, 2025.
[http://dx.doi.org/10.3389/fimmu.2020.02025] [PMID: 32973809]
[55]
Figueiredo, A.S.; Schumacher, A. The T helper type 17/regulatory T cell paradigm in pregnancy. Immunology, 2016, 148(1), 13-21.
[http://dx.doi.org/10.1111/imm.12595] [PMID: 26855005]
[56]
Pei, C-Z.; Kim, Y.J.; Baek, K-H. Pathogenetic factors involved in recurrent pregnancy loss from multiple aspects. Obstet. Gynecol. Sci., 2019, 62(4), 212-223.
[http://dx.doi.org/10.5468/ogs.2019.62.4.212] [PMID: 31338338]
[57]
Abdollahi, E.; Tavasolian, F.; Momtazi-Borojeni, A.A.; Samadi, M.; Rafatpanah, H. Protective role of R381Q (rs11209026) polymorphism in IL-23R gene in immune-mediated diseases: A comprehensive review. J. Immunotoxicol., 2016, 13(3), 286-300.
[http://dx.doi.org/10.3109/1547691X.2015.1115448] [PMID: 27043356]
[58]
Kanannejad, Z.; Jahromi, B.N.; Gharesi-Fard, B. T Cell Subsets Profiling in Unexplained Infertile Women with Successful and Unsuccessful in vitro Fertilization Outcome: Focus on the Effect of Seminal Plasma. Iran. J. Allergy Asthma Immunol., 2018, •••, 1-10.
[PMID: 31066252]
[59]
Abdollahi, E.; Saghafi, N.; Rezaee, S.A.R.; Rastin, M.; Jarahi, L.; Clifton, V.; Rafatpanah, H. Evaluation of 1,25(OH)2D3 effects on FOXP3, ROR-γt, GITR, and CTLA-4 gene expression in the pbmcs of vitamin d-deficient women with unexplained recurrent pregnancy loss (URPL). Iran. Biomed. J., 2020, 24(5), 295-305.
[PMID: 32429643]
[60]
Corthay, A. How do regulatory T cells work? Scand. J. Immunol., 2009, 70(4), 326-336.
[http://dx.doi.org/10.1111/j.1365-3083.2009.02308.x] [PMID: 19751267]
[61]
Vignali, D.A.; Collison, L.W.; Workman, C.J. How regulatory T cells work. Nat. Rev. Immunol., 2008, 8(7), 523-532.
[http://dx.doi.org/10.1038/nri2343] [PMID: 18566595]
[62]
Field, E.H.; Kulhankova, K.; Nasr, M.E. Natural Tregs, CD4+CD25+ inhibitory hybridomas, and their cell contact dependent suppression. Immunol. Res., 2007, 39(1-3), 62-78.
[http://dx.doi.org/10.1007/s12026-007-0064-5] [PMID: 17917056]
[63]
Zhu, L.; Chen, H.; Liu, M.; Yuan, Y.; Wang, Z.; Chen, Y.; Wei, J.; Su, F.; Zhang, J. Treg/Th17 cell imbalance and IL-6 profile in patients with unexplained recurrent spontaneous abortion. Reprod. Sci., 2017, 24(6), 882-890.
[http://dx.doi.org/10.1177/1933719116670517] [PMID: 27698192]
[64]
Saifi, B.; Rezaee, S.A.; Tajik, N.; Ahmadpour, M.E.; Ashrafi, M.; Vakili, R.; SoleimaniAsl, S.; Aflatoonian, R.; Mehdizadeh, M. Th17 cells and related cytokines in unexplained recurrent spontaneous miscarriage at the implantation window. Reprod. Biomed. Online, 2014, 29(4), 481-489.
[http://dx.doi.org/10.1016/j.rbmo.2014.06.008] [PMID: 25154016]
[65]
Rafiee, M.; Gharagozloo, M.; Ghahiri, A.; Mehrabian, F.; Maracy, M.R.; Kouhpayeh, S.; Pieper, I.L.; Rezaei, A. Altered Th17/Treg ratio in recurrent miscarriage after treatment with paternal lymphocytes and vitamin D3: A double-blind placebo-controlled study. Iran. J. Immunol., 2015, 12(4), 252-262.
[PMID: 26714417]
[66]
Martens, P-J.; Gysemans, C.; Verstuyf, A.; Mathieu, A.C. Vitamin D’s effect on immune function. Nutrients, 2020, 12(5), 1248.
[http://dx.doi.org/10.3390/nu12051248] [PMID: 32353972]
[67]
Eisman, J.A.; Martin, T.J.; MacIntyre, I.; Moseley, J.M. 1,25-dihydroxyvitamin-D-receptor in breast cancer cells. Lancet, 1979, 2(8156-8157), 1335-1336.
[http://dx.doi.org/10.1016/S0140-6736(79)92816-2] [PMID: 92676]
[68]
Makishima, M.; Lu, T.T.; Xie, W.; Whitfield, G.K.; Domoto, H.; Evans, R.M.; Haussler, M.R.; Mangelsdorf, D.J. Vitamin D receptor as an intestinal bile acid sensor. Science, 2002, 296(5571), 1313-1316.
[http://dx.doi.org/10.1126/science.1070477] [PMID: 12016314]
[69]
Chun, R.F.; Liu, P.T.; Modlin, R.L.; Adams, J.S.; Hewison, M. Impact of vitamin D on immune function: Lessons learned from genome-wide analysis. Front. Physiol., 2014, 5, 151.
[http://dx.doi.org/10.3389/fphys.2014.00151] [PMID: 24795646]
[70]
Khorasanizadeh, M.H.; Eskian, M.; Camargo, C.A.; Rezaei, N. Vitamin D and the Immune System; Nutrition and Immunity; Springer, 2019, pp. 15-51.
[71]
Mulligan, M.L.; Felton, S.K.; Riek, A.E.; Bernal-Mizrachi, C. Implications of vitamin D deficiency in pregnancy and lactation. Am. J. Obstet. Gynecol., 2010, 202(5), 429.
[http://dx.doi.org/10.1016/j.ajog.2009.09.002] [PMID: 19846050]
[72]
Ji, J.; Zhai, H.; Zhou, H.; Song, S.; Mor, G.; Liao, A. The role and mechanism of vitamin D-mediated regulation of Treg/Th17 balance in recurrent pregnancy loss. Am. J. Reprod. Immunol., 2019, 81(6), e13112.
[http://dx.doi.org/10.1111/aji.13112] [PMID: 30903715]
[73]
van der Veeken, J.; Glasner, A.; Zhong, Y.; Hu, W.; Wang, Z-M.; Bou-Puerto, R.; Charbonnier, L.M.; Chatila, T.A.; Leslie, C.S.; Rudensky, A.Y. The transcription factor foxp3 shapes regulatory T cell identity by tuning the activity of trans-acting intermediaries. Immunity, 2020, 53(5), 971-984.e5.
[http://dx.doi.org/10.1016/j.immuni.2020.10.010] [PMID: 33176163]
[74]
Ruan, Q.; Kameswaran, V.; Zhang, Y.; Zheng, S.; Sun, J.; Wang, J.; DeVirgiliis, J.; Liou, H.C.; Beg, A.A.; Chen, Y.H. The Th17 immune response is controlled by the Rel-RORγ-RORγ T transcriptional axis. J. Exp. Med., 2011, 208(11), 2321-2333.
[http://dx.doi.org/10.1084/jem.20110462] [PMID: 22006976]
[75]
Tavakoli, M.; Jeddi-Tehrani, M.; Salek-Moghaddam, A.; Rajaei, S.; Mohammadzadeh, A.; Sheikhhasani, S.; Kazemi-Sefat, G.E.; Zarnani, A.H. Effects of 1,25(OH)2 vitamin D3 on cytokine production by endometrial cells of women with recurrent spontaneous abortion. Fertil. Steril., 2011, 96(3), 751-757.
[http://dx.doi.org/10.1016/j.fertnstert.2011.06.075] [PMID: 21880282]
[76]
Leber, A.; Teles, A.; Zenclussen, A.C. Regulatory T cells and their role in pregnancy. Am. J. Reprod. Immunol., 2010, 63(6), 445-459.
[http://dx.doi.org/10.1111/j.1600-0897.2010.00821.x] [PMID: 20331584]
[77]
Denney, J.M.; Nelson, E.L.; Wadhwa, P.D.; Waters, T.P.; Mathew, L.; Chung, E.K.; Goldenberg, R.L.; Culhane, J.F. Longitudinal modulation of immune system cytokine profile during pregnancy. Cytokine, 2011, 53(2), 170-177.
[http://dx.doi.org/10.1016/j.cyto.2010.11.005] [PMID: 21123081]
[78]
Moreli, J.B.; Cirino Ruocco, A.M.; Vernini, J.M.; Rudge, M.V.C.; Calderon, I.M.P. Interleukin 10 and tumor necrosis factor-alpha in pregnancy: Aspects of interest in clinical obstetrics. ISRN Obstet. Gynecol., 2012, 2012, 230742.
[http://dx.doi.org/10.5402/2012/230742] [PMID: 22462002]
[79]
Bates, M.D.; Quenby, S.; Takakuwa, K.; Johnson, P.M.; Vince, G.S. Aberrant cytokine production by peripheral blood mononuclear cells in recurrent pregnancy loss? Hum. Reprod., 2002, 17(9), 2439-2444.
[http://dx.doi.org/10.1093/humrep/17.9.2439] [PMID: 12202438]
[80]
Hanlon, A.M.; Jang, S.; Salgame, P. Signaling from cytokine receptors that affect TH1 responses. Front. Biosci., 2002, 7, d1247-d1254.
[http://dx.doi.org/10.2741/hanlon] [PMID: 11991837]
[81]
Piccinni, M-P.; Beloni, L.; Livi, C.; Maggi, E.; Scarselli, G.; Romagnani, S. Defective production of both leukemia inhibitory factor and type 2 T-helper cytokines by decidual T cells in unexplained recurrent abortions. Nat. Med., 1998, 4(9), 1020-1024.
[http://dx.doi.org/10.1038/2006] [PMID: 9734394]
[82]
Fan, D-X.; Duan, J.; Li, M-Q.; Xu, B.; Li, D-J.; Jin, L-P. The decidual gamma-delta T cells up-regulate the biological functions of trophoblastsvia IL-10 secretion in early human pregnancy. Clin. Immunol., 2011, 141(3), 284-292.
[http://dx.doi.org/10.1016/j.clim.2011.07.008] [PMID: 21873118]
[83]
Piao, H-L.; Wang, S-C.; Tao, Y.; Zhu, R.; Sun, C.; Fu, Q.; Du, M.R.; Li, D.J. Cyclosporine A enhances Th2 bias at the maternal-fetal interface in early human pregnancy with aid of the interaction between maternal and fetal cells. PLoS One, 2012, 7(9), e45275.
[http://dx.doi.org/10.1371/journal.pone.0045275] [PMID: 23028901]
[84]
Iyer, SS; Cheng, G Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease. Crit. Rev. Immunol., 2012, 32(1), 23-63.
[http://dx.doi.org/10.1615/CritRevImmunol.v32.i1.30]
[85]
Chen, X.; Oppenheim, J.J. Th17 cells and Tregs: unlikely allies. J. Leukoc. Biol., 2014, 95(5), 723-731.
[http://dx.doi.org/10.1189/jlb.1213633] [PMID: 24563509]
[86]
Saxena, V.; Lienesch, D.W.; Zhou, M.; Bommireddy, R.; Azhar, M.; Doetschman, T.; Singh, R.R. Dual roles of immunoregulatory cytokine TGF-β in the pathogenesis of autoimmunity-mediated organ damage. J. Immunol., 2008, 180(3), 1903-1912.
[http://dx.doi.org/10.4049/jimmunol.180.3.1903] [PMID: 18209088]
[87]
Ogasawara, M.S.; Aoki, K.; Aoyama, T.; Katano, K.; Iinuma, Y.; Ozaki, Y.; Suzumori, K. Elevation of transforming growth factor-β1 is associated with recurrent miscarriage. J. Clin. Immunol., 2000, 20(6), 453-457.
[http://dx.doi.org/10.1023/A:1026459800016] [PMID: 11202235]
[88]
Worthington, J.J.; Fenton, T.M.; Czajkowska, B.I.; Klementowicz, J.E.; Travis, M.A. Regulation of TGFβ in the immune system: An emerging role for integrins and dendritic cells. Immunobiology, 2012, 217(12), 1259-1265.
[http://dx.doi.org/10.1016/j.imbio.2012.06.009] [PMID: 22902140]
[89]
Care, A.S.; Bourque, S.L.; Morton, J.S.; Hjartarson, E.P.; Robertson, S.A.; Davidge, S.T. Reduction in regulatory T cells in early pregnancy causes uterine artery dysfunction in mice. Hypertension, 2018, 72(1), 177-187.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.118.10858] [PMID: 29785960]
[90]
Kany, S.; Vollrath, J.T.; Relja, B. Cytokines in inflammatory disease. Int. J. Mol. Sci., 2019, 20(23), 6008.
[http://dx.doi.org/10.3390/ijms20236008] [PMID: 31795299]
[91]
Ticconi, C.; Pietropolli, A.; Di Simone, N.; Piccione, E.; Fazleabas, A. Endometrial immune dysfunction in recurrent pregnancy loss. Int. J. Mol. Sci., 2019, 20(21), 5332.
[http://dx.doi.org/10.3390/ijms20215332] [PMID: 31717776]
[92]
Abdollahi, E.; Tavasolian, F.; Ghasemi, N.; Mirghanizadeh, S.A.; Azizi, M.; Ghoryani, M.; Samadi, M. Association between lower frequency of R381Q variant (rs11209026) in IL-23 receptor gene and increased risk of recurrent spontaneous abortion (RSA). J. Immunotoxicol., 2015, 12(4), 317-321.
[http://dx.doi.org/10.3109/1547691X.2014.978056] [PMID: 26269135]
[93]
Cai, J.; Li, M.; Huang, Q.; Fu, X.; Wu, H. Differences in cytokine expression and STAT3 activation between healthy controls and patients of unexplained recurrent spontaneous abortion (URSA) during early pregnancy. PLoS One, 2016, 11(9), e0163252.
[http://dx.doi.org/10.1371/journal.pone.0163252] [PMID: 27657728]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy