Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Research Article

Novel Chalcone BDD-39 Mitigated Diabetic Nephropathy through the Activation of Nrf2/ARE Signaling

Author(s): Temitope Adelusi, Xizhi Li, Liu Xu, Lei Du, Meng Hao, Xueyan Zhou, Apu Chowdhry, Ying Sun, Xiaoke Gu, Qian Lu and Xiaoxing Yin*

Volume 15, Issue 4, 2022

Published on: 12 January, 2022

Article ID: e150921196530 Pages: 18

DOI: 10.2174/1874467214666210915145104

Price: $65

Abstract

Background: In this study, we investigated the Nrf2/ARE signaling pathway activating capacity of Biphenyl Diester Derivative-39 (BDD-39) in diabetic nephropathy in order to elucidate the mechanism surrounding its antidiabetic potential.

Objectives: Protein expressions of Nrf2, HO-1, NQO-1 and biomarkers of kidney fibrosis were executed after which mRNA levels of Nrf2, HO-1 and NQO-1 were estimated after creating the models following BBD-39 treatment.

Methods: Type 2 diabetes model was established in mice with high-fat diet feeding combined with streptozocin intraperitoneal administration. The diabetic mice were then treated with BDD-39 (15, 45mg· kg-1· d-1, ig) or a positive control drug resveratrol (45mg· kg-1·d-1, ig) for 8 weeks. Staining techniques were used to investigate collagen deposition in the glomerulus of the renal cortex and also to investigate the expression and localization of Nrf2 and extracellular matrix (ECM) proteins (collagen IV and laminin) in vitro and in vivo. Furthermore, we studied the mechanism of action of BDD-39 using RNA-mediated Nrf2 silencing technique in mouse SV40 glomerular mesangial cells (SV40 GM cells).

Results: We found that BDD-39 activates Nrf2/ARE signaling pathway, promotes Nrf2 nuclear translocation (Nrf2nuc/Nrf2cyt) and modulate prominent biomarkers of kidney fibrosis at the protein level. However, BDD-39 could not activate Nrf2/ARE signaling in RNA-mediated Nrf2-silenced HG-cultured SV40 GM cells.

Conclusion: Taken together, this study demonstrates for the first time that BDD-39 ameliorates experimental DN through attenuation of renal fibrosis progression and modulation of Nrf2/ARE signaling pathway.

Keywords: BDD-39, diabetic nephropathy, renal fibrosis, Nrf2/ARE signaling pathway, extracellular matrix, SV40 glomerular mesangial cells.

Graphical Abstract

[1]
Bonventre, J.V. Can we target tubular damage to prevent renal function decline in diabetes? Semin. Nephrol., 2012, 32(5), 452-462.
[http://dx.doi.org/10.1016/j.semnephrol.2012.07.008] [PMID: 23062986]
[2]
Hao, H.H.; Shao, Z.M.; Tang, D.Q.; Lu, Q.; Chen, X.; Yin, X.X.; Wu, J.; Chen, H. Preventive effects of rutin on the development of experimental diabetic nephropathy in rats. Life Sci., 2012, 91(19-20), 959-967.
[http://dx.doi.org/10.1016/j.lfs.2012.09.003] [PMID: 23000098]
[3]
Jankun, J. Challenging delivery of VLHL NS plasminogen activator inhibitor-1 by osmotic pumps in diabetic mouse: A case report. Exp. Ther. Med., 2012, 4(4), 661-664.
[http://dx.doi.org/10.3892/etm.2012.639] [PMID: 23170122]
[4]
Ohashi, N.; Urushihara, M.; Satou, R.; Kobori, H. Glomerular angiotensinogen is induced in mesangial cells in diabetic rats via reactive oxygen species-ERK/JNK pathways. Hypertens. Res., 2010, 33(11), 1174-1181.
[http://dx.doi.org/10.1038/hr.2010.143] [PMID: 20686488]
[5]
Zhang, T.; Wu, W.; Li, D.; Xu, T.; Zhu, H.; Pan, D.; Zhu, S.; Liu, Y. Anti-oxidant and anti-apoptotic effects of luteolin on mice peritoneal macrophages stimulated by angiotensin II. Int. Immunopharmacol., 2014, 20(2), 346-351.
[http://dx.doi.org/10.1016/j.intimp.2014.03.018] [PMID: 24726243]
[6]
Alter, M.L.; Ott, I.M.; von Websky, K.; Tsuprykov, O.; Sharkovska, Y.; Krause-Relle, K.; Raila, J.; Henze, A.; Klein, T.; Hocher, B. DPP-4 inhibition on top of angiotensin receptor blockade offers a new therapeutic approach for diabetic nephropathy. Kidney Blood Press. Res., 2012, 36(1), 119-130.
[http://dx.doi.org/10.1159/000341487] [PMID: 23171828]
[7]
Jomova, K.; Jenisova, Z.; Feszterova, M.; Baros, S.; Liska, J.; Hudecova, D.; Rhodes, C.J.; Valko, M. Arsenic: Toxicity, oxidative stress and human disease. J. Appl. Toxicol., 2011, 31(2), 95-107.
[http://dx.doi.org/10.1002/jat.1649] [PMID: 21321970]
[8]
Ma, Q. Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol, 2013, 53, 401-426.
[http://dx.doi.org/10.1146/annurev-pharmtox-011112-140320]
[9]
Chen, YJ; Kong, L; Tang, ZZ; Zhang, YM; Liu, Y; Wang, TY Hesperetin ameliorates diabetic nephropathy in rats by activating Nrf2/ARE/glyoxalase 1 pathway. Biomed. Pharmacot., 2019, 111, 1166-1175.
[10]
Hayes, J.D.; Dinkova-Kostova, A.T. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem. Sci., 2014, 39(4), 199-218.
[http://dx.doi.org/10.1016/j.tibs.2014.02.002] [PMID: 24647116]
[11]
Yao, H.; Zhang, W.; Wu, H.; Yang, M.; Wei, P.; Ma, H. Sikokianin A from Wikstroemia indica protects PC12 cells against OGD/R-induced injury via inhibiting oxidative stress and activating Nrf2. Nat. Prod. Res., 2019, 33(23), 3450-3453.
[PMID: 29806503]
[12]
Hur, W.; Gray, N.S. Small molecule modulators of antioxidant response pathway. Curr. Opin. Chem. Biol., 2011, 15(1), 162-173.
[http://dx.doi.org/10.1016/j.cbpa.2010.12.009] [PMID: 21195017]
[13]
Liu, YW; Liu, XL; Kong, L; Zhang, MY; Chen, YJ; Zhu, X Neuroprotection of quercetin on central neurons against chronic high glucose through enhancement of Nrf2/ARE/glyoxalase-1 pathway mediated by phosphorylation regulation. Biomed. pharmacother., 2019, 109, 2145-2154.
[14]
Sykiotis, G.P.; Bohmann, D. Stress-activated cap’n’collar transcription factors in aging and human disease. Sci. Signal., 2010, 3(112), re3.
[http://dx.doi.org/10.1126/scisignal.3112re3] [PMID: 20215646]
[15]
Miyata, T.; de Strihou, Cv. Diabetic nephropathy: A disorder of oxygen metabolism? Nat. Rev. Nephrol., 2010, 6(2), 83-95.
[http://dx.doi.org/10.1038/nrneph.2009.211] [PMID: 20010896]
[16]
Liu, YW; Liu, XL; Kong, L; Zhang, MY; Chen, YJ; Zhu, X Neuroprotection of quercetin on central neurons against chronic high glucose through enhancement of N rf2/ARE/glyoxalase-1 pathway mediated by phosphorylation regulation. Biomed. pharmacother., 2019, 109, 2145-2154.
[17]
Jain, A.K.; Bloom, D.A.; Jaiswal, A.K. Nuclear import and export signals in control of Nrf2. J. Biol. Chem., 2017, 292(5), 2052.
[http://dx.doi.org/10.1074/jbc.A117.502083] [PMID: 28159765]
[18]
Dinkova-Kostova, AT; Abramov, AY The emerging role of Nrf2 in mitochondrial function. Free Radic Biol Med, 2015, 88(Pt B), 179-188.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.04.036]
[19]
Canning, P; Sorrell, FJ; Bullock, AN Structural basis of Keap1 interactions with Nrf2. Free Radic Biol Med, 2015, 88(Pt B), 101-107.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.05.034]
[20]
Nguyen, T.; Nioi, P.; Pickett, C.B. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J. Biol. Chem., 2009, 284(20), 13291-13295.
[http://dx.doi.org/10.1074/jbc.R900010200] [PMID: 19182219]
[21]
Verma, A.K.; Pratap, R. The biological potential of flavones. Nat. Prod. Rep., 2010, 27(11), 1571-1593.
[http://dx.doi.org/10.1039/c004698c] [PMID: 20877900]
[22]
Poonam, S.; Mavurapu, S.; Prem Verma, C.; Jaya, T.; Atma Dwivedi, P.; Rohit, S. Chalcone-based aryloxypropanolamine as a potential antidiabetic and antidyslipidaemic agent. Curr. Sci., 2017, 112(8), 1675-1689.
[http://dx.doi.org/10.18520/cs/v112/i08/1675-1689]
[23]
Zhu, P.; Huang, W.; Li, J.; Ma, X.; Hu, M.; Wang, Y.; Xu, Q.; Wang, X. Design, synthesis chalcone derivatives as AdipoR agonist for type 2 diabetes. Chem. Biol. Drug Des., 2018, 92(2), 1525-1536.
[http://dx.doi.org/10.1111/cbdd.13319] [PMID: 29704399]
[24]
Satyanarayana, M.; Tiwari, P.; Tripathi, B.K.; Srivastava, A.K.; Pratap, R. Synthesis and antihyperglycemic activity of chalcone based aryloxypropanolamines. Bioorg. Med. Chem., 2004, 12(5), 883-889.
[http://dx.doi.org/10.1016/j.bmc.2003.12.026] [PMID: 14980600]
[25]
de Freitas Silva, M; Pruccoli, L. The keap1/nrf2-are pathway as a pharmacological target for chalcones. Molecules, 2018, 23(7), 1803.
[26]
Jalonen, U.; Paukkeri, E.L.; Moilanen, E. Compounds that increase or mimic cyclic adenosine monophosphate enhance tristetraprolin degradation in lipopolysaccharide-treated murine j774 macrophages. J. Pharmacol. Exp. Ther., 2008, 326(2), 514-522.
[http://dx.doi.org/10.1124/jpet.107.133702] [PMID: 18469159]
[27]
Sun, H.; Liu, G.T. Chemopreventive effect of dimethyl dicarboxylate biphenyl on malignant transformation of WB-F344 rat liver epithelial cells. Acta Pharmacol. Sin., 2005, 26(11), 1339-1344.
[http://dx.doi.org/10.1111/j.1745-7254.2005.00208.x] [PMID: 16225756]
[28]
Kim, E.N.; Lim, J.H.; Kim, M.Y.; Ban, T.H.; Jang, I.A.; Yoon, H.E.; Park, C.W.; Chang, Y.S.; Choi, B.S. Resveratrol, an Nrf2 activator, ameliorates aging-related progressive renal injury. Aging (Albany NY), 2018, 10(1), 83-99.
[http://dx.doi.org/10.18632/aging.101361] [PMID: 29326403]
[29]
Ungvari, Z.; Bagi, Z.; Feher, A.; Recchia, F.A.; Sonntag, W.E.; Pearson, K.; de Cabo, R.; Csiszar, A. Resveratrol confers endothelial protection via activation of the antioxidant transcription factor Nrf2. Am. J. Physiol. Heart Circ. Physiol., 2010, 299(1), H18-H24.
[http://dx.doi.org/10.1152/ajpheart.00260.2010] [PMID: 20418481]
[30]
Liang, J.; Tian, S.; Han, J.; Xiong, P. Resveratrol as a therapeutic agent for renal fibrosis induced by unilateral ureteral obstruction. Ren. Fail., 2014, 36(2), 285-291.
[http://dx.doi.org/10.3109/0886022X.2013.844644] [PMID: 24152192]
[31]
Saldanha, JF; Leal Vde, O; Stenvinkel, P; Carraro-Eduardo, JC; Mafra, D Resveratrol: Why is it a promising therapy for chronic kidney disease patients? Oxi. Med. Cell Longevity, 2013, 2013, 963217.
[http://dx.doi.org/10.1155/2013/963217]
[32]
Silan, C.; Uzun, O.; Comunoğlu, N.U.; Gokçen, S.; Bedirhan, S.; Cengiz, M. Gentamicin-induced nephrotoxicity in rats ameliorated and healing effects of resveratrol. Biol. Pharm. Bull., 2007, 30(1), 79-83.
[http://dx.doi.org/10.1248/bpb.30.79] [PMID: 17202664]
[33]
de Jesus Soares, T.; Volpini, R.A.; Francescato, H.D.; Costa, R.S.; da Silva, C.G.; Coimbra, T.M. Effects of resveratrol on glycerol-induced renal injury. Life Sci., 2007, 81(8), 647-656.
[http://dx.doi.org/10.1016/j.lfs.2007.06.032] [PMID: 17698148]
[34]
Chander, V.; Chopra, K. Protective effect of resveratrol, a polyphenolic phytoalexin on glycerol-induced acute renal failure in rat kidney. Ren. Fail., 2006, 28(2), 161-169.
[http://dx.doi.org/10.1080/08860220500531112] [PMID: 16538975]
[35]
Chander, V.; Tirkey, N.; Chopra, K. Resveratrol, a polyphenolic phytoalexin protects against cyclosporine-induced nephrotoxicity through nitric oxide dependent mechanism. Toxicology, 2005, 210(1), 55-64.
[http://dx.doi.org/10.1016/j.tox.2005.01.011] [PMID: 15804458]
[36]
Morales, A.I.; Buitrago, J.M.; Santiago, J.M.; Fernández-Tagarro, M.; López-Novoa, J.M.; Pérez-Barriocanal, F. Protective effect of trans-resveratrol on gentamicin-induced nephrotoxicity. Antioxid. Redox Signal., 2002, 4(6), 893-898.
[http://dx.doi.org/10.1089/152308602762197434] [PMID: 12573138]
[37]
Lu, Q; Zuo, WZ; Ji, XJ; Zhou, YX; Liu, YQ; Yao, XQ Ethanolic Ginkgo biloba leaf extract prevents renal fibrosis through Akt/mTOR signaling in diabetic nephropathy. Phytomed. Internat. J. phytother. phytopharmaco., 2015, 22(12), 1071-1078.
[38]
Wang, J.; Ye, S. Up-regulation of hypoxia inducible Factor-1α in patients with diabetic nephropathy. Niger. J. Clin. Pract., 2019, 22(6), 750-753.
[http://dx.doi.org/10.4103/njcp.njcp_495_18] [PMID: 31187757]
[39]
Idowu, A.A.; Ajose, A.O.; Adedeji, A.T.; Adegoke, A.O.; Jimoh, K.A. Microalbuminuria, other markers of nephropathy and biochemical derangementsin type 2 diabetes mellitus: Relationships and determinants. Ghana Med. J., 2017, 51(2), 56-63.
[PMID: 28955101]
[40]
Mason, R.M.; Wahab, N.A. Extracellular matrix metabolism in diabetic nephropathy. J. Am. Soc. Nephrol., 2003, 14(5), 1358-1373.
[http://dx.doi.org/10.1097/01.ASN.0000065640.77499.D7] [PMID: 12707406]
[41]
Ziyadeh, F.N. The extracellular matrix in diabetic nephropathy. Am. J. Kidney Dis., 1993, 22(5), 736-744.
[http://dx.doi.org/10.1016/S0272-6386(12)80440-9] [PMID: 8238022]
[42]
Thallas-Bonke, V.; Lindschau, C.; Rizkalla, B.; Bach, L.A.; Boner, G.; Meier, M.; Haller, H.; Cooper, M.E.; Forbes, J.M. Attenuation of extracellular matrix accumulation in diabetic nephropathy by the advanced glycation end product cross-link breaker ALT-711 via a protein kinase C-alpha-dependent pathway. Diabetes, 2004, 53(11), 2921-2930.
[http://dx.doi.org/10.2337/diabetes.53.11.2921] [PMID: 15504973]
[43]
Ma, Y; Chen, F; Yang, S; Chen, B; Shi, J Protocatechuic acid ameliorates high glucose-induced extracellular matrix accumulation in diabetic nephropathy. Biomed. pharmacother., 2018, 98, 18-22.
[44]
Yokoyama, H.; Deckert, T. Central role of TGF-beta in the pathogenesis of diabetic nephropathy and macrovascular complications: A hypothesis. Diabet. Med., 1996, 13(4), 313-320.
[http://dx.doi.org/10.1002/(SICI)1096-9136(199604)13:4<313::AID-DIA56>3.0.CO;2-7] [PMID: 9162605]
[45]
Metwally, S.S.; Mosaad, Y.M.; Nassr, A.A.; Zaki, O.M. Transforming growth factor-beta 1 in diabetic nephropathy. Egypt. J. Immunol., 2005, 12(1), 103-112.
[PMID: 16734145]
[46]
Wang, D.; Zhang, G.; Chen, X.; Wei, T.; Liu, C.; Chen, C.; Gong, Y.; Wei, Q. Sitagliptin ameliorates diabetic nephropathy by blocking TGF-β1/Smad signaling pathway. Int. J. Mol. Med., 2018, 41(5), 2784-2792.
[http://dx.doi.org/10.3892/ijmm.2018.3504] [PMID: 29484381]
[47]
Tayebjee, M.H.; Lim, H.S.; MacFadyen, R.J.; Lip, G.Y. Matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 and -2 in type 2 diabetes: Effect of 1 year’s cardiovascular risk reduction therapy. Diabetes Care, 2004, 27(8), 2049-2051.
[http://dx.doi.org/10.2337/diacare.27.8.2049] [PMID: 15277439]
[48]
Xu, X.; Xiao, L.; Xiao, P.; Yang, S.; Chen, G.; Liu, F.; Kanwar, Y.S.; Sun, L. A glimpse of matrix metalloproteinases in diabetic nephropathy. Curr. Med. Chem., 2014, 21(28), 3244-3260.
[http://dx.doi.org/10.2174/0929867321666140716092052] [PMID: 25039784]
[49]
Kashihara, N.; Haruna, Y.; Kondeti, V.K.; Kanwar, Y.S. Oxidative stress in diabetic nephropathy. Curr. Med. Chem., 2010, 17(34), 4256-4269.
[http://dx.doi.org/10.2174/092986710793348581] [PMID: 20939814]
[50]
Ozmen, B.; Ozmen, D.; Erkin, E.; Güner, I.; Habif, S.; Bayindir, O. Lens superoxide dismutase and catalase activities in diabetic cataract. Clin. Biochem., 2002, 35(1), 69-72.
[http://dx.doi.org/10.1016/S0009-9120(01)00284-3] [PMID: 11937081]
[51]
Tapia, E; Soto, V; Ortiz-Vega, KM; Zarco-Marquez, G; Molina-Jijon, E; Cristobal-Garcia, M Curcumin induces Nrf2 nuclear translocation and prevents glomerular hypertension, hyperfiltration, oxidant stress, and the decrease in antioxidant enzymes in 5/6 nephrectomized rats. Oxidat. Medic. Cellu. Longev., 2012, 2012, 269039.
[52]
Xing, H.Y.; Cai, Y.Q.; Wang, X.F.; Wang, L.L.; Li, P.; Wang, G.Y.; Chen, J.H. The cytoprotective effect of hyperoside against oxidative stress is mediated by the Nrf2-ARE signaling pathway through GSK-3β inactivation. PLoS One, 2015, 10(12), e0145183.
[http://dx.doi.org/10.1371/journal.pone.0145183] [PMID: 26674355]
[53]
Zhang, Q; Deng, Q; Zhang, J; Ke, J; Zhu, Y; Wen, RW Activation of the nrf2-are pathway ameliorates hyperglycemia-mediated mitochondrial dysfunction in podocytes partly through sirt1. Cell. Physiol. Biochem., 2018, 48(1), 1-15.
[54]
Cui, W; Bai, Y; Miao, X; Luo, P; Chen, Q; Tan, Y Prevention of diabetic nephropathy by sulforaphane: Possible role of Nrf2 upregulation and activation. Oxidat. Medi. Cellu. Longe., 2012, 2012, 821936.
[http://dx.doi.org/10.1155/2012/821936]
[55]
Huang, K.; Gao, X.; Wei, W. The crosstalk between Sirt1 and Keap1/Nrf2/ARE anti-oxidative pathway forms a positive feedback loop to inhibit FN and TGF-β1 expressions in rat glomerular mesangial cells. Exp. Cell Res., 2017, 361(1), 63-72.
[http://dx.doi.org/10.1016/j.yexcr.2017.09.042] [PMID: 28986066]
[56]
Adelusi, T.I.; Du, L.; Hao, M.; Zhou, X.; Xuan, Q.; Apu, C.; Sun, Y.; Lu, Q.; Yin, X. Keap1/Nrf2/ARE signaling unfolds therapeutic targets for redox imbalanced-mediated diseases and diabetic nephropathy. Biomed. Pharmacother., 2020, 123, 109732.
[http://dx.doi.org/10.1016/j.biopha.2019.109732] [PMID: 31945695]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy