Review Article

Virtual Screening and Molecular Docking

卷 29, 期 2, 2022

发表于: 27 December, 2021

页: [166 - 188] 页: 23

弟呕挨: 10.2174/0929867328666210915102920

价格: $65

摘要

胃肠道间质瘤(GIST)是不寻常的癌症,在胃肠道壁的特化细胞中发展。涉及单药,组合和快速互补抑制剂循环的各种策略现在正用于控制此类肿瘤。基于有希望的早期临床试验经验,某些新型KIT和PDGFRA酪氨酸激酶抑制剂已经显示出先进的临床发展。对酪氨酸激酶抑制剂的耐药性带来了巨大的困难,患者现在需要额外的治疗选择。本文描述并讨论了过去五年(2016-2020年)使用虚拟筛选和对接方法开发新型c-KIT激酶抑制剂的情况。计算技术可用于补充实验研究,以确定用于治疗用途的新候选分子。分子建模策略允许分析化合物有效结合c-KIT所必需的特性。通过这样的分析,可以发现和设计针对在肿瘤发展中起关键作用的癌症相关蛋白质(包括突变菌株)的新型抑制剂。对接在检测负责配体识别的关键残基方面显示出潜力,并且非常有助于了解活性位点中的相互作用,这些相互作用可用于开发新的化合物/类抗癌药物并帮助数百万癌症患者。

关键词: 新型c-Kit抑制剂,药物设计,分子对接,GIST,PDGFRA,GA。

[1]
Dancsok, A.R.; Asleh-Aburaya, K.; Nielsen, T.O. Advances in sarcoma diagnostics and treatment. Oncotarget, 2017, 8(4), 7068-7093.
[http://dx.doi.org/10.18632/oncotarget.12548] [PMID: 27732970]
[2]
Belinsky, M.G.; Cai, K.Q.; Zhou, Y.; Luo, B.; Pei, J.; Rink, L.; von Mehren, M. Succinate dehydrogenase deficiency in a PDGFRA mutated GIST. BMC Cancer, 2017, 17(1), 512.
[http://dx.doi.org/10.1186/s12885-017-3499-7] [PMID: 28768491]
[3]
Guo, Y.; Liu, J.; Wang, F.; Wang, Q.; Zheng, G.; Liu, S.; Lian, X.; Zhang, H.; Feng, F. The role of surgical resection following tyrosine kinase inhibitors treatment in patients with advanced gastrointestinal stromal tumors: a systematic review and meta-analysis. J. Cancer, 2019, 10(23), 5785-5792.
[http://dx.doi.org/10.7150/jca.30040] [PMID: 31737115]
[4]
Vitiello, G.A.; Bowler, T.G.; Liu, M.; Medina, B.D.; Zhang, J.Q.; Param, N.J.; Loo, J.K.; Goldfeder, R.L.; Chibon, F.; Rossi, F.; Zeng, S.; DeMatteo, R.P. Differential immune profiles distinguish the mutational subtypes of gastrointestinal stromal tumor. J. Clin. Invest., 2019, 129(5), 1863-1877.
[http://dx.doi.org/10.1172/JCI124108] [PMID: 30762585]
[5]
Corless, C.L. Gastrointestinal stromal tumors: what do we know now? Mod. Pathol., 2014, 27(Suppl. 1), S1-S16.
[http://dx.doi.org/10.1038/modpathol.2013.173] [PMID: 24384849]
[6]
Niinuma, T.; Suzuki, H.; Sugai, T. Molecular characterization and pathogenesis of gastrointestinal stromal tumor. Transl. Gastroenterol. Hepatol., 2018, 3, 2.
[http://dx.doi.org/10.21037/tgh.2018.01.02] [PMID: 29441367]
[7]
Poveda, A.; García Del Muro, X.; López-Guerrero, J.A.; Cubedo, R.; Martínez, V.; Romero, I.; Serrano, C.; Valverde, C.; Martín-Broto, J. GEIS guidelines for gastrointestinal sarcomas (GIST). Cancer Treat. Rev., 2017, 55, 107-119.
[http://dx.doi.org/10.1016/j.ctrv.2016.11.011] [PMID: 28351781]
[8]
Iram, H. A Review on Imatinib: A Wonder Drug in Oncology. Adv. Biomed. Pharm., 2016, 03, 227-244.
[http://dx.doi.org/10.19046/abp.v03i04.07]
[9]
Druker, B.J.; Talpaz, M.; Resta, D.J.; Peng, B.; Buchdunger, E.; Ford, J.M.; Lydon, N.B.; Kantarjian, H.; Capdeville, R.; Ohno-Jones, S.; Sawyers, C.L. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med., 2001, 344(14), 1031-1037.
[http://dx.doi.org/10.1056/NEJM200104053441401] [PMID: 11287972]
[10]
Manley, P.W.; Cowan-Jacob, S.W.; Buchdunger, E.; Fabbro, D.; Fendrich, G.; Furet, P.; Meyer, T.; Zimmermann, J. Imatinib: A selective tyrosine kinase inhibitor. Eur. J. Cancer, 2002, 38(Suppl. 5), S19-S27.
[http://dx.doi.org/10.1016/S0959-8049(02)80599-8] [PMID: 12528769]
[11]
Chaudhry, U.I.; DeMatteo, R.P. Management of resectable gastrointestinal stromal tumor. Hematol. Oncol. Clin. North Am., 2009, 23(1), 79-96. [viii.
[http://dx.doi.org/10.1016/j.hoc.2009.01.001] [PMID: 19248972]
[12]
Jabbour, E.; Parikh, S.A.; Kantarjian, H.; Cortes, J. Chronic myeloid leukemia: mechanisms of resistance and treatment. Hematol. Oncol. Clin. North Am., 2011, 25(5), 981-995. [v.
[http://dx.doi.org/10.1016/j.hoc.2011.09.004] [PMID: 22054730]
[13]
Mulet-Margalef, N.; Garcia-Del-Muro, X. Sunitinib in the treatment of gastrointestinal stromal tumor: patient selection and perspectives. OncoTargets Ther., 2016, 9, 7573-7582.
[http://dx.doi.org/10.2147/OTT.S101385] [PMID: 28008275]
[14]
Demetri, G.D.; van Oosterom, A.T.; Garrett, C.R.; Blackstein, M.E.; Shah, M.H.; Verweij, J.; McArthur, G.; Judson, I.R.; Heinrich, M.C.; Morgan, J.A.; Desai, J.; Fletcher, C.D.; George, S.; Bello, C.L.; Huang, X.; Baum, C.M.; Casali, P.G. Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: A randomised controlled trial. Lancet, 2006, 368(9544), 1329-1338.
[http://dx.doi.org/10.1016/S0140-6736(06)69446-4] [PMID: 17046465]
[15]
Mazzocca, A.; Napolitano, A.; Silletta, M.; Spalato Ceruso, M.; Santini, D.; Tonini, G.; Vincenzi, B. New frontiers in the medical management of gastrointestinal stromal tumours. Ther. Adv. Med. Oncol., 2019, 111758835919841946
[http://dx.doi.org/10.1177/1758835919841946] [PMID: 31205499]
[16]
Demetri, G.D.; Heinrich, M.C.; Fletcher, J.A.; Fletcher, C.D.; Van den Abbeele, A.D.; Corless, C.L.; Antonescu, C.R.; George, S.; Morgan, J.A.; Chen, M.H.; Bello, C.L.; Huang, X.; Cohen, D.P.; Baum, C.M.; Maki, R.G. Molecular target modulation, imaging, and clinical evaluation of gastrointestinal stromal tumor patients treated with sunitinib malate after imatinib failure. Clin. Cancer Res., 2009, 15(18), 5902-5909.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-0482] [PMID: 19737946]
[17]
Demetri, G.D.; Reichardt, P.; Kang, Y.K.; Blay, J.Y.; Rutkowski, P.; Gelderblom, H.; Hohenberger, P.; Leahy, M.; von Mehren, M.; Joensuu, H.; Badalamenti, G.; Blackstein, M.; Le Cesne, A.; Schöffski, P.; Maki, R.G.; Bauer, S.; Nguyen, B.B.; Xu, J.; Nishida, T.; Chung, J.; Kappeler, C.; Kuss, I.; Laurent, D.; Casali, P.G. Efficacy and safety of regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib and sunitinib (GRID): An international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet, 2013, 381(9863), 295-302.
[http://dx.doi.org/10.1016/S0140-6736(12)61857-1] [PMID: 23177515]
[18]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod., 2016, 79(3), 629-661.
[http://dx.doi.org/10.1021/acs.jnatprod.5b01055] [PMID: 26852623]
[19]
Montaser, R.; Luesch, H. Marine natural products: A new wave of drugs? Future Med. Chem., 2011, 3(12), 1475-1489.
[http://dx.doi.org/10.4155/fmc.11.118] [PMID: 21882941]
[20]
Saha, S.; Rajpal, D.K.; Brown, J.R. Human microbial metabolites as a source of new drugs. Drug Discov. Today, 2016, 21(4), 692-698.
[http://dx.doi.org/10.1016/j.drudis.2016.02.009] [PMID: 26916596]
[21]
Dutra, R.C.; Campos, M.M.; Santos, A.R.; Calixto, J.B. Medicinal plants in Brazil: Pharmacological studies, drug discovery, challenges and perspectives. Pharmacol. Res., 2016, 112, 4-29.
[http://dx.doi.org/10.1016/j.phrs.2016.01.021] [PMID: 26812486]
[22]
Newman, D.J.; Cragg, G.M.; Snader, K.M. Natural products as sources of new drugs over the period 1981-2002. J. Nat. Prod., 2003, 66(7), 1022-1037.
[http://dx.doi.org/10.1021/np030096l] [PMID: 12880330]
[23]
Chaudhari, P.; Bari, S. In silico exploration of c-KIT inhibitors by pharmaco-informatics methodology: pharmacophore modeling, 3D QSAR, docking studies, and virtual screening. Mol. Divers., 2016, 20(1), 41-53.
[http://dx.doi.org/10.1007/s11030-015-9635-x] [PMID: 26416560]
[24]
Chu, Y.Y.; Cheng, H.J.; Tian, Z.H.; Zhao, J.C.; Li, G.; Chu, Y.Y.; Sun, C.J.; Li, W.B. Rational drug design of indazole-based diarylurea derivatives as anticancer agents. Chem. Biol. Drug Des., 2017, 90(4), 609-617.
[http://dx.doi.org/10.1111/cbdd.12984] [PMID: 28338292]
[25]
Meng, Y.Q.; Zhao, Y.W.; Kuai, Z.Y.; Liu, L.W.; Li, W. Synthesis and antitumor activity evaluation of novel oleanolic acid derivatives. J. Asian Nat. Prod. Res., 2017, 19(10), 1000-1010.
[http://dx.doi.org/10.1080/10286020.2017.1283310] [PMID: 28140665]
[26]
Ghanbarimasir, Z.; Bekhradnia, A.; Morteza-Semnani, K.; Rafiei, A.; Razzaghi-Asl, N.; Kardan, M. Design, synthesis, biological assessment and molecular docking studies of new 2-aminoimidazole-quinoxaline hybrids as potential anticancer agents. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 194, 21-35.
[http://dx.doi.org/10.1016/j.saa.2017.12.063] [PMID: 29310028]
[27]
Sun, H.; Zhuo, L.; Dong, H.; Huang, W.; She, N. Discovery of 8-amino-substituted 2-phenyl-2,7-naphthyridinone derivatives as new c-Kit/VEGFR-2 kinase inhibitors. Molecules, 2019, 24(24), 4461.
[http://dx.doi.org/10.3390/molecules24244461] [PMID: 31817456]
[28]
Quattrini, L.; Coviello, V.; Sartini, S.; Di Desidero, T.; Orlandi, P.; Ke, Y.Y.; Liu, K.L.; Hsieh, H.P.; Bocci, G.; La Motta, C. Dual Kit/Aur inhibitors as chemosensitizing agents for the treatment of melanoma: design, synthesis, docking studies and functional investigation. Sci. Rep., 2019, 9(1), 9943.
[http://dx.doi.org/10.1038/s41598-019-46287-5] [PMID: 31289333]
[29]
Park, H.; Lee, S.; Hong, S. Discovery of dual inhibitors for wild type and D816V mutant of c-KIT kinase through virtual and biochemical screening of natural products. J. Nat. Prod., 2016, 79(2), 293-299.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00851] [PMID: 26807861]
[30]
Martorana, A.; Lauria, A. Design of antitumor drugs targeting c-kit receptor by a new mixed ligand-structure based method. J. Mol. Graph. Model., 2020, 100107666
[http://dx.doi.org/10.1016/j.jmgm.2020.107666] [PMID: 32659630]
[31]
Tao, X.; Huang, Y.; Wang, C.; Chen, F.; Yang, L.; Ling, L.; Che, Z.; Chen, X. Recent developments in molecular docking technology applied in food science: A review. J. Food Sci. Technol., 2020, 55(1), 33-45.
[http://dx.doi.org/10.1111/ijfs.14325]
[32]
Meng, X-Y.; Zhang, H-X.; Mezei, M.; Cui, M. Molecular docking: A powerful approach for structure-based drug discovery. Curr. Computeraided Drug Des., 2011, 7(2), 146-157.
[http://dx.doi.org/10.2174/157340911795677602] [PMID: 21534921]
[33]
Pagadala, N.S.; Syed, K.; Tuszynski, J. Software for molecular docking: A review. Biophys. Rev., 2017, 9(2), 91-102.
[http://dx.doi.org/10.1007/s12551-016-0247-1] [PMID: 28510083]
[34]
Meng, E.C.; Gschwend, D.A.; Blaney, J.M.; Kuntz, I.D. Orientational sampling and rigid-body minimization in molecular docking. Proteins, 1993, 17(3), 266-278.
[http://dx.doi.org/10.1002/prot.340170305] [PMID: 8272425]
[35]
Diller, D.J.; Merz, K.M., Jr High throughput docking for library design and library prioritization. Proteins, 2001, 43(2), 113-124.
[http://dx.doi.org/10.1002/1097-0134(20010501)43:2<113:AID-PROT1023>3.0.CO;2-T] [PMID: 11276081]
[36]
Jackson, R.M. Q-fit: A probabilistic method for docking molecular fragments by sampling low energy conformational space. J. Comput. Aided Mol. Des., 2002, 16(1), 43-57.
[http://dx.doi.org/10.1023/A:1016307520660] [PMID: 12197665]
[37]
Rarey, M.; Kramer, B.; Lengauer, T.; Klebe, G. A fast flexible docking method using an incremental construction algorithm. J. Mol. Biol., 1996, 261(3), 470-489.
[http://dx.doi.org/10.1006/jmbi.1996.0477] [PMID: 8780787]
[38]
Ewing, T.J.; Makino, S.; Skillman, A.G.; Kuntz, I.D. DOCK 4.0: Search strategies for automated molecular docking of 14 drug discovery and development - new advances flexible molecule databases. J. Comput. Aided Mol. Des., 2001, 15(5), 411-428.
[http://dx.doi.org/10.1023/A:1011115820450] [PMID: 11394736]
[39]
Schneidman-Duhovny, D.; Inbar, Y.; Nussinov, R.; Wolfson, H.J. PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res, 2005, 33((Web Server issue)(Suppl. 2)), W363-7.
[http://dx.doi.org/10.1093/nar/gki481] [PMID: 15980490]
[40]
Read, R.; Hart, T.N.; Cummings, M.; Ness, S. Monte Carlo algorithms for docking to proteins. Supramol. Chem., 1995, 6(1-2), 135-140.
[http://dx.doi.org/10.1080/10610279508032529]
[41]
Goodsell, D.S.; Olson, A.J. Automated docking of substrates to proteins by simulated annealing. Proteins, 1990, 8(3), 195-202.
[http://dx.doi.org/10.1002/prot.340080302] [PMID: 2281083]
[42]
Hart, T.N.; Read, R.J. A multiple-start Monte Carlo docking method. Proteins, 1992, 13(3), 206-222.
[http://dx.doi.org/10.1002/prot.340130304] [PMID: 1603810]
[43]
Trosset, J.Y.; Scheraga, H.A. PRODOCK: Software package for protein modeling and docking. J. Comput. Chem., 1999, 20(4), 412-427.
[http://dx.doi.org/10.1002/(SICI)1096-987X(199903)20:4<412:AID-JCC3>3.0.CO;2-N]
[44]
Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem., 1998, 19(14), 1639-1662.
[http://dx.doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639:AID-JCC10>3.0.CO;2-B]
[45]
Jones, G.; Willett, P.; Glen, R.C.; Leach, A.R.; Taylor, R. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol., 1997, 267(3), 727-748.
[http://dx.doi.org/10.1006/jmbi.1996.0897] [PMID: 9126849]
[46]
Österberg, F.; Morris, G.M.; Sanner, M.F.; Olson, A.J.; Goodsell, D.S. Automated docking to multiple target structures: incorporation of protein mobility and structural water heterogeneity in AutoDock. Proteins, 2002, 46(1), 34-40.
[http://dx.doi.org/10.1002/prot.10028] [PMID: 11746701]
[47]
Verdonk, M.L.; Chessari, G.; Cole, J.C.; Hartshorn, M.J.; Murray, C.W.; Nissink, J.W.M.; Taylor, R.D.; Taylor, R. Modeling water molecules in protein-ligand docking using GOLD. J. Med. Chem., 2005, 48(20), 6504-6515.
[http://dx.doi.org/10.1021/jm050543p] [PMID: 16190776]
[48]
Corbeil, C.R.; Englebienne, P.; Moitessier, N. Docking ligands into flexible and solvated macromolecules. 1. Development and validation of FITTED 1.0. J. Chem. Inf. Model., 2007, 47(2), 435-449.
[http://dx.doi.org/10.1021/ci6002637] [PMID: 17305329]
[49]
Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; Shaw, D.E.; Francis, P.; Shenkin, P.S. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem., 2004, 47(7), 1739-1749.
[http://dx.doi.org/10.1021/jm0306430] [PMID: 15027865]
[50]
Halgren, T.A.; Murphy, R.B.; Friesner, R.A.; Beard, H.S.; Frye, L.L.; Pollard, W.T.; Banks, J.L. Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem., 2004, 47(7), 1750-1759.
[http://dx.doi.org/10.1021/jm030644s] [PMID: 15027866]
[51]
Dias, R.; de Azevedo, W.F. Jr Molecular docking algorithms. Curr. Drug Targets, 2008, 9(12), 1040-1047.
[http://dx.doi.org/10.2174/138945008786949432] [PMID: 19128213]
[52]
Sethi, A.; Joshi, K.; Sasikala, K.; Alvala, M. Molecular docking in modern drug discovery: Principles and recent applications. Drug Discovery and Development-New Advances; Gaitonde, V.; Karmakar, P; Trivedi, A., Ed.; IntechOpen: London, 2019.
[53]
Zsoldos, Z.; Reid, D.; Simon, A.; Sadjad, B.S.; Johnson, A.P. eHiTS: An innovative approach to the docking and scoring function problems. Curr. Protein Pept. Sci., 2006, 7(5), 421-435.
[http://dx.doi.org/10.2174/138920306778559412] [PMID: 17073694]
[54]
Guedes, I.A.; Pereira, F.S.S.; Dardenne, L.E. Empirical scoring functions for structure-based virtual screening: applications, critical aspects, and challenges. Front. Pharmacol., 2018, 9, 1089.
[http://dx.doi.org/10.3389/fphar.2018.01089] [PMID: 30319422]
[55]
Shen, C.; Ding, J.; Wang, Z.; Cao, D.; Ding, X.; Hou, T. From machine learning to deep learning: Advances in scoring functions for protein-ligand docking. WIREs Comput. Mol. Sci., 2020, 10(1)e1429
[http://dx.doi.org/10.1002/wcms.1429]
[56]
Li, H.; Sze, K-H.; Lu, G.; Ballester, P.J. Machine-learning scoring functions for structure-based drug lead optimization. WIREs Comput. Mol. Sci., 2020, 10(1)e1465
[57]
Ye, W-L.; Shen, C.; Xiong, G-L.; Ding, J-J.; Lu, A-P.; Hou, T-J.; Cao, D-S. Improving docking-based virtual screening ability by integrating multiple energy auxiliary terms from molecular docking scoring. J. Chem. Inf. Model., 2020, 60(9), 4216-4230.
[http://dx.doi.org/10.1021/acs.jcim.9b00977] [PMID: 32352294]
[58]
Breiman, L. Random forests. Mach. Learn., 2001, 45, 5-32.
[http://dx.doi.org/10.1023/A:1010933404324]
[59]
Li, H.; Leung, K.S.; Wong, M.H.; Ballester, P.J. Improving AutoDock vina using random forest: the growing accuracy of binding affinity prediction by the effective exploitation of Larger Data Sets. Mol. Inform., 2015, 34(2-3), 115-126.
[http://dx.doi.org/10.1002/minf.201400132] [PMID: 27490034]
[60]
Li, H.; Peng, J.; Sidorov, P.; Leung, Y.; Leung, K.S.; Wong, M.H.; Lu, G.; Ballester, P.J. Classical scoring functions for docking are unable to exploit large volumes of structural and interaction data. Bioinformatics, 2019, 35(20), 3989-3995.
[61]
Vapnik, V.N. An overview of statistical learning theory. IEEE Trans. Neural Netw., 1999, 10(5), 988-999.
[PMID: 18252602]
[62]
Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature, 1986, 323, 533-536.
[http://dx.doi.org/10.1038/323533a0]
[63]
Koppisetty, C.A.K.; Frank, M.; Kemp, G.J.L.; Nyholm, P-G. Computation of binding energies including their enthalpy and entropy components for protein-ligand complexes using support vector machines. J. Chem. Inf. Model., 2013, 53(10), 2559-2570.
[http://dx.doi.org/10.1021/ci400321r] [PMID: 24050538]
[64]
Li, G-B.; Yang, L-L.; Wang, W-J.; Li, L-L.; Yang, S-Y. ID-Score: A new empirical scoring function based on a comprehensive set of descriptors related to protein-ligand interactions. J. Chem. Inf. Model., 2013, 53(3), 592-600.
[http://dx.doi.org/10.1021/ci300493w] [PMID: 23394072]
[65]
Rosenblatt, F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychol. Rev., 1958, 65(6), 386-408.
[http://dx.doi.org/10.1037/h0042519] [PMID: 13602029]
[66]
Ashtawy, H.M.; Mahapatra, N.R. BgN-Score and BsN-Score: bagging and boosting based ensemble neural networks scoring functions for accurate binding affinity prediction of protein-ligand complexes. BMC Bioinformatics, 2015, 16(Suppl. 4), S8.
[http://dx.doi.org/10.1186/1471-2105-16-S4-S8] [PMID: 25734685]
[67]
Jastrzębski, S.; Szymczak, M.; Pocha, A.; Mordalski, S.; Tabor, J.; Bojarski, A.J.; Podlewska, S. Emulating docking results using a deep neural network: a new perspective for virtual screening. J. Chem. Inf. Model., 2020, 60(9), 4246-4262.
[http://dx.doi.org/10.1021/acs.jcim.9b01202] [PMID: 32865414]
[68]
Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat., 2001, 29(5), 1189-1232.
[http://dx.doi.org/10.1214/aos/1013203451]
[69]
Vine, K.L.; Matesic, L.; Locke, J.M.; Ranson, M.; Skropeta, D. Cytotoxic and anticancer activities of isatin and its derivatives: A comprehensive review from 2000-2008. Anticancer. Agents Med. Chem., 2009, 9(4), 397-414.
[http://dx.doi.org/10.2174/1871520610909040397] [PMID: 19442041]
[70]
Prakash, C.R. Indolin-2-Ones in clinical trials as potential kinase inhibitors: A review. Pharmacol. Pharm., 2012, 3(01), 62-71.
[http://dx.doi.org/10.4236/pp.2012.31010]
[71]
Andreani, A.; Burnelli, S.; Granaiola, M.; Leoni, A.; Locatelli, A.; Morigi, R.; Rambaldi, M.; Varoli, L.; Calonghi, N.; Cappadone, C.; Farruggia, G.; Zini, M.; Stefanelli, C.; Masotti, L. Substituted E-3-(2-chloro-3-indolylmethylene) 1,3-dihydroindol-2-ones with antitumor activity. Effect on the cell cycle and apoptosis. J. Med. Chem., 2007, 50(14), 3167-3172.
[http://dx.doi.org/10.1021/jm070235m] [PMID: 17559205]
[72]
Andreani, A.; Burnelli, S.; Granaiola, M.; Leoni, A.; Locatelli, A.; Morigi, R.; Rambaldi, M.; Varoli, L.; Calonghi, N.; Cappadone, C.; Voltattorni, M.; Zini, M.; Stefanelli, C.; Masotti, L.; Shoemaker, R.H. Antitumor activity of new substituted 3-(5-imidazo[2,1-b]thiazolylmethylene)-2-indo-linones and 3-(5-imidazo[2,1-b]thiadiazolylmethylene)-2-indolinones: selectivity against colon tumor cells and effect on cell cycle-related events. J. Med. Chem., 2008, 51(23), 7508-7513.
[http://dx.doi.org/10.1021/jm800827q] [PMID: 19006285]
[73]
Ding, L.; Tang, F.; Huang, W.; Jin, Q.; Shen, H.; Wei, P. Design, synthesis, and biological evaluation of novel 3-pyrrolo[b]cyclohexylene-2-dihydroindolinone derivatives as potent receptor tyrosine kinase inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(20), 5630-5633.
[http://dx.doi.org/10.1016/j.bmcl.2013.08.037] [PMID: 23999040]
[74]
Dixon, S.L.; Smondyrev, A.M.; Knoll, E.H.; Rao, S.N.; Shaw, D.E.; Friesner, R.A. PHASE: A new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. J. Comput. Aided Mol. Des., 2006, 20(10-11), 647-671.
[http://dx.doi.org/10.1007/s10822-006-9087-6] [PMID: 17124629]
[75]
Dixon, S.L.; Smondyrev, A.M.; Rao, S.N. PHASE: A novel approach to pharmacophore modeling and 3D database searching. Chem. Biol. Drug Des., 2006, 67(5), 370-372.
[http://dx.doi.org/10.1111/j.1747-0285.2006.00384.x] [PMID: 16784462]
[76]
Schrödinger Suite 2009. Virtual screening workflow; Glide version 5.5; LigPrep 2.3; QikProp 3.2, Schrödinger, LLC, New York. 2009 Available from: http://www.schrodinger. com
[77]
Shah, U.A.; Deokar, H.S.; Kadam, S.S.; Kulkarni, V.M. Pharmacophore generation and atom-based 3D-QSAR of novel 2-(4-methylsulfonylphenyl)pyrimidines as COX-2 inhibitors. Mol. Divers., 2010, 14(3), 559-568.
[http://dx.doi.org/10.1007/s11030-009-9183-3] [PMID: 19669924]
[78]
Chen, X.; Lin, Y.; Gilson, M.K. The binding database: overview and user’s guide. Biopolymers, 2001-2002, 61(2), 127-141.
[http://dx.doi.org/10.1002/1097-0282(2002)61:2<127::AIDBIP10076>3.0.CO;2-N] [PMID: 11987162]
[79]
Chen, X.; Liu, M.; Gilson, M.K.; Binding, D.B. A web-accessible molecular recognition database. Comb. Chem. High Throughput Screen., 2001, 4(8), 719-725.
[http://dx.doi.org/10.2174/1386207013330670] [PMID: 11812264]
[80]
Liu, T.; Lin, Y.; Wen, X.; Jorissen, R.N.; Gilson, M.K.; Binding, D.B. A web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res., 2007, 35(Database issue), D198-D201.
[http://dx.doi.org/10.1093/nar/gkl999] [PMID: 17145705]
[81]
Irwin, J.J.; Sterling, T.; Mysinger, M.M.; Bolstad, E.S.; Coleman, R.G. ZINC: A free tool to discover chemistry for biology. J. Chem. Inf. Model., 2012, 52(7), 1757-1768.
[http://dx.doi.org/10.1021/ci3001277] [PMID: 22587354]
[82]
Kim, H.J.; Jung, M.H.; Kim, H.; El-Gamal, M.I.; Sim, T.B.; Lee, S.H.; Hong, J.H.; Hah, J.M.; Cho, J.H.; Choi, J.H.; Yoo, K.H.; Oh, C.H. Synthesis and antiproliferative activity of pyrrolo[3,2-b]pyridine derivatives against melanoma. Bioorg. Med. Chem. Lett., 2010, 20(1), 413-417.
[http://dx.doi.org/10.1016/j.bmcl.2009.08.005] [PMID: 19897366]
[83]
Zhao, C.R.; Wang, R.Q.; Li, G.; Xue, X.X.; Sun, C.J.; Qu, X.J.; Li, W.B. Synthesis of indazole based diarylurea derivatives and their antiproliferative activity against tumor cell lines. Bioorg. Med. Chem. Lett., 2013, 23(7), 1989-1992.
[http://dx.doi.org/10.1016/j.bmcl.2013.02.034] [PMID: 23454017]
[84]
Tetko, I.V. Computing chemistry on the web. Drug Discov. Today, 2005, 10(22), 1497-1500.
[http://dx.doi.org/10.1016/S1359-6446(05)03584-1] [PMID: 16257371]
[85]
Shanmugam, M.K.; Dai, X.; Kumar, A.P.; Tan, B.K.; Sethi, G.; Bishayee, A. Oleanolic acid and its synthetic derivatives for the prevention and therapy of cancer: preclinical and clinical evidence. Cancer Lett., 2014, 346(2), 206-216.
[http://dx.doi.org/10.1016/j.canlet.2014.01.016] [PMID: 24486850]
[86]
Gao, L.; Xu, Z.; Wang, Y.; Sun, B.; Song, Z.; Yang, B.; Liu, X.; Lin, Y.; Peng, J.; Han, G.; Wang, S.; Tang, Z. Anticancer effect of SZC017, a novel derivative of oleanolic acid, on human gastric cancer cells. Oncol. Rep., 2016, 35(2), 1101-1108.
[http://dx.doi.org/10.3892/or.2015.4447] [PMID: 26718492]
[87]
Salvador, J.A.R.; Leal, A.S.; Valdeira, A.S.; Gonçalves, B.M.F.; Alho, D.P.S.; Figueiredo, S.A.C.; Silvestre, S.M.; Mendes, V.I.S. Oleanane-, ursane-, and quinone methide friedelane-type triterpenoid derivatives: Recent advances in cancer treatment. Eur. J. Med. Chem., 2017, 142, 95-130.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.013] [PMID: 28754470]
[88]
Chu, F.; Zhang, W.; Guo, W.; Wang, Z.; Yang, Y.; Zhang, X.; Fang, K.; Yan, M.; Wang, P.; Lei, H. oleanolic acid-amino acids derivatives: design, synthesis, and hepatoprotective evaluation in vitro and in vivo. Molecules, 2018, 23(2), 322.
[http://dx.doi.org/10.3390/molecules23020322] [PMID: 29393898]
[89]
Mol, C.D.; Dougan, D.R.; Schneider, T.R.; Skene, R.J.; Kraus, M.L.; Scheibe, D.N.; Snell, G.P.; Zou, H.; Sang, B.C.; Wilson, K.P. Structural basis for the autoinhibition and STI-571 inhibition of c-Kit tyrosine kinase. J. Biol. Chem., 2004, 279(30), 31655-31663.
[http://dx.doi.org/10.1074/jbc.M403319200] [PMID: 15123710]
[90]
Rawluk, J.; Waller, C.F. Gefitinib. Recent Results Cancer Res., 2018, 211, 235-246.
[http://dx.doi.org/10.1007/978-3-319-91442-8_16] [PMID: 30069771]
[91]
Patel, S.B.; Patel, B.D.; Pannecouque, C.; Bhatt, H.G. Design, synthesis and anti-HIV activity of novel quinoxaline derivatives. Eur. J. Med. Chem., 2016, 117, 230-240.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.019] [PMID: 27105027]
[92]
El Newahie, A.M.; Ismail, N.S.; Abou El Ella, D.A.; Abouzid, K.A.; Abouzid, K.A. Quinoxaline-based scaffolds targeting tyrosine kinases and their potential anticancer activity. Arch. Pharm. (Weinheim), 2016, 349(5), 309-326.
[http://dx.doi.org/10.1002/ardp.201500468] [PMID: 27062086]
[93]
Cogo, J.; Cantizani, J.; Cotillo, I.; Sangi, D.P.; Corrêa, A.G.; Ueda-Nakamura, T.; Filho, B.P.D.; Martín, J.J.; Nakamura, C.V. Quinoxaline derivatives as potential antitrypanosomal and antileishmanial agents. Bioorg. Med. Chem., 2018, 26(14), 4065-4072.
[http://dx.doi.org/10.1016/j.bmc.2018.06.033] [PMID: 30100019]
[94]
Keri, R.S.; Pandule, S.S.; Budagumpi, S.; Nagaraja, B.M. Quinoxaline and quinoxaline-1,4-di-N-oxides: An emerging class of antimycobacterials. Arch. Pharm. (Weinheim), 2018, 351(5)e1700325
[http://dx.doi.org/10.1002/ardp.201700325] [PMID: 29611626]
[95]
Montana, M.; Mathias, F.; Terme, T.; Vanelle, P. Antitumoral activity of quinoxaline derivatives: A systematic review. Eur. J. Med. Chem., 2019, 163, 136-147.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.059] [PMID: 30503938]
[96]
Lv, Z.; Zhang, Y.; Zhang, M.; Chen, H.; Sun, Z.; Geng, D.; Niu, C.; Li, K. Design and synthesis of novel 2′-hydroxy group substituted 2-pyridone derivatives as anticancer agents. Eur. J. Med. Chem., 2013, 67, 447-453.
[http://dx.doi.org/10.1016/j.ejmech.2013.06.046] [PMID: 23920246]
[97]
Madaan, A.; Verma, R.; Kumar, V.; Singh, A.T.; Jain, S.K.; Jaggi, M. 1,8-naphthyridine derivatives: a review of multiple biological activities. Arch. Pharm. (Weinheim), 2015, 348(12), 837-860.
[http://dx.doi.org/10.1002/ardp.201500237] [PMID: 26548568]
[98]
Jia, H.; Song, Y.; Yu, J.; Zhan, P.; Rai, D.; Liang, X.; Ma, C.; Liu, X. Design, synthesis and primary biological evaluation of the novel 2-pyridone derivatives as potent non-nucleoside HBV inhibitors. Eur. J. Med. Chem., 2017, 136, 144-153.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.048] [PMID: 28494252]
[99]
Singh, S.; Goo, J-I.; Noh, H.; Lee, S.J.; Kim, M.W.; Park, H.; Jalani, H.B.; Lee, K.; Kim, C.; Kim, W-K.; Ju, C.; Choi, Y. Discovery of a novel series of N-hydroxypyridone derivatives protecting astrocytes against hydrogen peroxide-induced toxicity via improved mitochondrial functionality. Bioorg. Med. Chem., 2017, 25(4), 1394-1405.
[http://dx.doi.org/10.1016/j.bmc.2016.12.052] [PMID: 28089588]
[100]
Tejería, A.; Pérez-Pertejo, Y.; Reguera, R.M.; Balaña-Fouce, R.; Alonso, C.; González, M.; Rubiales, G.; Palacios, F. Substituted 1,5-naphthyridine derivatives as novel antileishmanial agents. Synthesis and biological evaluation. Eur. J. Med. Chem., 2018, 152, 137-147.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.033] [PMID: 29704722]
[101]
Peese, K.M.; Allard, C.W.; Connolly, T.; Johnson, B.L.; Li, C.; Patel, M.; Sorensen, M.E.; Walker, M.A.; Meanwell, N.A.; McAuliffe, B.; Minassian, B.; Krystal, M.; Parker, D.D.; Lewis, H.A.; Kish, K.; Zhang, P.; Nolte, R.T.; Simmermacher, J.; Jenkins, S.; Cianci, C.; Naidu, B.N. 5,6,7,8-Tetrahydro-1,6-naphthyridine derivatives as potent HIV-1-integrase-allosteric-site inhibitors. J. Med. Chem., 2019, 62(3), 1348-1361.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01473] [PMID: 30609350]
[102]
Mubarak, S.; Zia-Ur-Rehman, M.; Jamil, N.; Zaheer, M.; Nadeem Arshad, M.; Mohammad Asiri, A. Environment friendly synthesis of N′-(1,3-diphenylallylidene)-1-ethyl-7-methyl-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carbohydra-zides: Crystal Structure and Their Anti-oxidant Potential. Chem. Pharm. Bull. (Tokyo), 2019, 67(11), 1191-1200.
[http://dx.doi.org/10.1248/cpb.c19-00478] [PMID: 31685748]
[103]
Kumar, R.; Knick, V.B.; Rudolph, S.K.; Johnson, J.H.; Crosby, R.M.; Crouthamel, M.C.; Hopper, T.M.; Miller, C.G.; Harrington, L.E.; Onori, J.A.; Mullin, R.J.; Gilmer, T.M.; Truesdale, A.T.; Epperly, A.H.; Boloor, A.; Stafford, J.A.; Luttrell, D.K.; Cheung, M. Pharmacokinetic-pharmacodynamic correlation from mouse to human with pazopanib, a multikinase angiogenesis inhibitor with potent antitumor and antiangiogenic activity. Mol. Cancer Ther., 2007, 6(7), 2012-2021.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-0193] [PMID: 17620431]
[104]
Sari, S.; Kaynak, F.B.; Dalkara, S. Synthesis and anticonvulsant screening of 1,2,4-triazole derivatives. Pharmacol. Rep., 2018, 70(6), 1116-1123.
[http://dx.doi.org/10.1016/j.pharep.2018.06.007] [PMID: 30316046]
[105]
Tariq, S.; Kamboj, P.; Alam, O.; Amir, M. 1,2,4-Triazole-based benzothiazole/benzoxazole derivatives: Design, synthesis, p38α MAP kinase inhibition, anti-inflammatory activity and molecular docking studies. Bioorg. Chem., 2018, 81, 630-641.
[http://dx.doi.org/10.1016/j.bioorg.2018.09.015] [PMID: 30253336]
[106]
Jin, R.; Liu, J.; Zhang, G.; Li, J.; Zhang, S.; Guo, H. Design, synthesis, and antifungal activities of novel 1,2,4-triazole schiff base derivatives. Chem. Biodivers., 2018, 15(9)e1800263
[http://dx.doi.org/10.1002/cbdv.201800263] [PMID: 29981528]
[107]
Fan, Z.; Shi, J.; Bao, X. Synthesis and antimicrobial evaluation of novel 1,2,4-triazole thioether derivatives bearing a quinazoline moiety. Mol. Divers., 2018, 22(3), 657-667.
[http://dx.doi.org/10.1007/s11030-018-9821-8] [PMID: 29574502]
[108]
Shirinzadeh, H.; Süzen, S.; Altanlar, N.; Westwell, A.D. Antimicrobial activities of new indole derivatives containing 1,2,4-triazole, 1,3,4-thiadiazole and carbothioamide. Turk. J. Pharm. Sci, 2018, 15(3), 291-297.
[http://dx.doi.org/10.4274/tjps.55707] [PMID: 32454672]
[109]
Radwan, R.R.; Zaher, N.H.; El-Gazzar, M.G. Novel 1,2,4-triazole derivatives as antitumor agents against hepatocellular carcinoma. Chem. Biol. Interact., 2017, 274, 68-79.
[http://dx.doi.org/10.1016/j.cbi.2017.07.008] [PMID: 28693887]
[110]
Timur, İ.; Kocyigit, Ü.M.; Dastan, T.; Sandal, S.; Ceribası, A.O.; Taslimi, P.; Gulcin, İ.; Koparir, M.; Karatepe, M.; Çiftçi, M. In vitro cytotoxic and in vivo antitumoral activities of some aminomethyl derivatives of 2,4-dihydro-3H-1,2,4-triazole-3-thiones-Evaluation of their acetylcholinesterase and carbonic anhydrase enzymes inhibition profiles. J. Biochem. Mol. Toxicol., 2018.e22239
[PMID: 30368973]
[111]
La Pietra, V.; Sartini, S.; Botta, L.; Antonelli, A.; Ferrari, S.M.; Fallahi, P.; Moriconi, A.; Coviello, V.; Quattrini, L.; Ke, Y.Y.; Hsing-Pang, H.; Da Settimo, F.; Novellino, E.; La Motta, C.; Marinelli, L. Challenging clinically unresponsive medullary thyroid cancer: Discovery and pharmacological activity of novel RET inhibitors. Eur. J. Med. Chem., 2018, 150, 491-505.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.080] [PMID: 29549836]
[112]
Corless, C.L.; Barnett, C.M.; Heinrich, M.C. Gastrointestinal stromal tumours: origin and molecular oncology. Nat. Rev. Cancer, 2011, 11(12), 865-878.
[http://dx.doi.org/10.1038/nrc3143] [PMID: 22089421]
[113]
Ashman, L.K.; Griffith, R. Therapeutic targeting of c-KIT in cancer. Expert Opin. Investig. Drugs, 2013, 22(1), 103-115.
[http://dx.doi.org/10.1517/13543784.2013.740010] [PMID: 23127174]
[114]
Hirota, S.; Isozaki, K.; Moriyama, Y.; Hashimoto, K.; Nishida, T.; Ishiguro, S.; Kawano, K.; Hanada, M.; Kurata, A.; Takeda, M.; Muhammad Tunio, G.; Matsuzawa, Y.; Kanakura, Y.; Shinomura, Y.; Kitamura, Y. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science, 1998, 279(5350), 577-580.
[http://dx.doi.org/10.1126/science.279.5350.577] [PMID: 9438854]
[115]
Heinrich, M.C.; Corless, C.L.; Demetri, G.D.; Blanke, C.D.; von Mehren, M.; Joensuu, H.; McGreevey, L.S.; Chen, C.J.; Van den Abbeele, A.D.; Druker, B.J.; Kiese, B.; Eisenberg, B.; Roberts, P.J.; Singer, S.; Fletcher, C.D.; Silberman, S.; Dimitrijevic, S.; Fletcher, J.A. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J. Clin. Oncol., 2003, 21(23), 4342-4349.
[http://dx.doi.org/10.1200/JCO.2003.04.190] [PMID: 14645423]
[116]
Wang, Y.Y.; Zhou, G.B.; Yin, T.; Chen, B.; Shi, J.Y.; Liang, W.X.; Jin, X.L.; You, J.H.; Yang, G.; Shen, Z.X.; Chen, J.; Xiong, S.M.; Chen, G.Q.; Xu, F.; Liu, Y.W.; Chen, Z.; Chen, S.J. AML1-ETO and C-KIT mutation/overexpression in t(8;21) leukemia: implication in stepwise leukemogenesis and response to Gleevec. Proc. Natl. Acad. Sci. USA, 2005, 102(4), 1104-1109.
[http://dx.doi.org/10.1073/pnas.0408831102] [PMID: 15650049]
[117]
Ma, Y.; Zeng, S.; Metcalfe, D.D.; Akin, C.; Dimitrijevic, S.; Butterfield, J.H.; McMahon, G.; Longley, B.J. The c-KIT mutation causing human mastocytosis is resistant to STI571 and other KIT kinase inhibitors; kinases with enzymatic site mutations show different inhibitor sensitivity profiles than wild-type kinases and those with regulatory-type mutations. Blood, 2002, 99(5), 1741-1744.
[http://dx.doi.org/10.1182/blood.V99.5.1741] [PMID: 11861291]
[118]
Baird, J.H.; Gotlib, J. Clinical Validation of KIT Inhibition in Advanced Systemic Mastocytosis. Curr. Hematol. Malig. Rep., 2018, 13(5), 407-416.
[http://dx.doi.org/10.1007/s11899-018-0469-3] [PMID: 30155614]
[119]
InterBioScreen | Natural Compounds. https://www.ibscreen.com/ natural-compounds
[120]
Fabian, M.A.; Biggs, W.H., III; Treiber, D.K.; Atteridge, C.E.; Azimioara, M.D.; Benedetti, M.G.; Carter, T.A.; Ciceri, P.; Edeen, P.T.; Floyd, M.; Ford, J.M.; Galvin, M.; Gerlach, J.L.; Grotzfeld, R.M.; Herrgard, S.; Insko, D.E.; Insko, M.A.; Lai, A.G.; Lélias, J-M.; Mehta, S.A.; Milanov, Z.V.; Velasco, A.M.; Wodicka, L.M.; Patel, H.K.; Zarrinkar, P.P.; Lockhart, D.J. A small molecule-kinase interaction map for clinical kinase inhibitors. Nat. Biotechnol., 2005, 23(3), 329-336.
[http://dx.doi.org/10.1038/nbt1068] [PMID: 15711537]
[121]
Mol, C.D.; Lim, K.B.; Sridhar, V.; Zou, H.; Chien, E.Y.; Sang, B.C.; Nowakowski, J.; Kassel, D.B.; Cronin, C.N.; McRee, D.E. Structure of a c-kit product complex reveals the basis for kinase transactivation. J. Biol. Chem., 2003, 278(34), 31461-31464.
[http://dx.doi.org/10.1074/jbc.C300186200] [PMID: 12824176]
[122]
Park, H.; Lee, S.; Lee, S.; Hong, S. Structure-based de novo design and identification of D816V mutant-selective c-KIT inhibitors. Org. Biomol. Chem., 2014, 12(26), 4644-4655.
[http://dx.doi.org/10.1039/C4OB00053F] [PMID: 24853767]
[123]
Chauvot de Beauchêne, I.; Allain, A.; Panel, N.; Laine, E.; Trouvé, A.; Dubreuil, P.; Tchertanov, L. Hotspot mutations in KIT receptor differentially modulate its allosterically coupled conformational dynamics: impact on activation and drug sensitivity. PLOS Comput. Biol., 2014, 10(7)e1003749
[124]
Heinrich, M.C.; Maki, R.G.; Corless, C.L.; Antonescu, C.R.; Harlow, A.; Griffith, D.; Town, A.; McKinley, A.; Ou, W.B.; Fletcher, J.A.; Fletcher, C.D.; Huang, X.; Cohen, D.P.; Baum, C.M.; Demetri, G.D. Primary and secondary kinase genotypes correlate with the biological and clinical activity of sunitinib in imatinib-resistant gastrointestinal stromal tumor. J. Clin. Oncol., 2008, 26(33), 5352-5359.
[http://dx.doi.org/10.1200/JCO.2007.15.7461] [PMID: 18955458]
[125]
Peng, Y.H.; Shiao, H.Y.; Tu, C.H.; Liu, P.M.; Hsu, J.T.; Amancha, P.K.; Wu, J.S.; Coumar, M.S.; Chen, C.H.; Wang, S.Y.; Lin, W.H.; Sun, H.Y.; Chao, Y.S.; Lyu, P.C.; Hsieh, H.P.; Wu, S.Y. Protein kinase inhibitor design by targeting the Asp-Phe-Gly (DFG) motif: the role of the DFG motif in the design of epidermal growth factor receptor inhibitors. J. Med. Chem., 2013, 56(10), 3889-3903.
[http://dx.doi.org/10.1021/jm400072p] [PMID: 23611691]
[126]
Lauria, A.; Mannino, S.; Gentile, C.; Mannino, G.; Martorana, A.; Peri, D. DRUDIT: web-based DRUgs DIscovery Tools to design small molecules as modulators of biological targets. Bioinformatics, 2020, 36(5), 1562-1569.
[PMID: 31605102]
[127]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7, 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[128]
D’allard, D.; Gay, J.; Descarpentries, C.; Frisan, E.; Adam, K.; Verdier, F.; Floquet, C.; Dubreuil, P.; Lacombe, C.; Fontenay, M.; Mayeux, P.; Kosmider, O. Tyrosine kinase inhibitors induce down-regulation of c-Kit by targeting the ATP pocket. PLoS One, 2013, 8(4)e60961
[http://dx.doi.org/10.1371/journal.pone.0060961] [PMID: 23637779]
[129]
Garner, A.P.; Gozgit, J.M.; Anjum, R.; Vodala, S.; Schrock, A.; Zhou, T.; Serrano, C.; Eilers, G.; Zhu, M.; Ketzer, J.; Wardwell, S.; Ning, Y.; Song, Y.; Kohlmann, A.; Wang, F.; Clackson, T.; Heinrich, M.C.; Fletcher, J.A.; Bauer, S.; Rivera, V.M. Ponatinib inhibits polyclonal drug-resistant KIT oncoproteins and shows therapeutic potential in heavily pretreated gastrointestinal stromal tumor (GIST) patients. Clin. Cancer Res., 2014, 20(22), 5745-5755.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-1397] [PMID: 25239608]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy