Generic placeholder image

Current Nutraceuticals

Editor-in-Chief

ISSN (Print): 2665-9786
ISSN (Online): 2665-9794

Review Article

Recent Reports of Plants as DNA Protection Agents

Author(s): Muniba Raza, Salma Batool*, Rabia Razzaq, Laiba Asim, Farah Deeba, Muhammad Farhan Sohail, Muhammad Sheeraz Ahmad and Rahman Shah Zaib Saleem*

Volume 2, Issue 4, 2021

Published on: 07 September, 2021

Article ID: e070921196216 Pages: 8

DOI: 10.2174/2665978602666210907110945

Price: $65

Abstract

Background: DNA damage induced by reactive oxygen species (ROS) leads to cell death, tissue damage and may contribute towards the onset of several chronic diseases.

Objective: Plants carry a cocktail of compounds like flavonoids, polyphenolics, tannins, saponins, terpenoids, and alkaloids that have shown promising pharmacological potential in treating various illnesses responsible for high mortality. Some of the plant-derived compounds carry the potential to shield the DNA from damage induced by reactive oxygen species (ROS). The objective of this article is to present recent reports of plant extracts and natural products as DNA protecting agents in one place.

Methods: This review summarizes the plant-based extracts and isolated compounds with promising DNA protection activities against ROS induced damage. The antioxidant potential of plants is assessed using various antioxidant assays like DPPH assay, FRAP assay, and H2O2 assay. Further, the DNA protection of the extract is validated by using a plasmid protection assay. The mechanism of protection generally involves the scavenging of ROS by the antioxidants present in plant extracts.

Results and Conclusion: This review summarizes the work done on plant-based compounds for their antioxidant and DNA protection abilities invitro. However, in vivo evaluation of promising plants is the need of time.

Keywords: Reactive oxygen species, antioxidants, DNA protection, plant extract, natural products, DNA damage.

Graphical Abstract

[1]
Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol., 2007, 39(1), 44-84.
[http://dx.doi.org/10.1016/j.biocel.2006.07.001] [PMID: 16978905]
[2]
McMurray, F.; Patten, D.A.; Harper, M.E. Reactive oxygen species and oxidative stress in obesity-recent findings and empirical approaches. Obesity (Silver Spring), 2016, 24(11), 2301-2310.
[http://dx.doi.org/10.1002/oby.21654] [PMID: 27804267]
[3]
Shameem, N.; Kamili, A.N.; Ahmad, M.; Masoodi, F.; Parray, J.A. Radical scavenging potential and DNA damage protection of wild edible mushrooms of Kashmir Himalaya. J. Saudi Soc. Agric. Sci., 2017, 16(4), 314-321.
[http://dx.doi.org/10.1016/j.jssas.2015.10.005]
[4]
Marnett, L.J. Oxyradicals and DNA damage. Carcinogenesis, 2000, 21(3), 361-370.
[http://dx.doi.org/10.1093/carcin/21.3.361] [PMID: 10688856]
[5]
Caliskan-Can, E.; Miser-Salihoglu, E.; Atalay, C.; Yalcintas-Arslan, U.; Simsek, B.; Yardim-Akaydin, S. DNA damage and lipid peroxidation in several types of cancer. J. Pharm. Sci., 2010, 35(3), 125-132.
[6]
Pohl, F.; Kong Thoo Lin, P. The potential use of plant natural products and plant extracts with antioxidant properties for the prevention/treatment of neurodegenerative diseases: in vitro, in vivo and clinical trials. Molecules, 2018, 23(12), 3283.
[http://dx.doi.org/10.3390/molecules23123283] [PMID: 30544977]
[7]
Patel, R.; Rinker, L.; Peng, J.; Chilian, W.M. Reactive oxygen species: The good and the bad.Reactive oxygen species (ROS) in living cells. Intech Open, 2017.
[http://dx.doi.org/10.5772/intechopen.71547]
[8]
Sharma, P.; Jha, A.B.; Dubey, R.S.; Pessarakli, M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Botany, 2012, 12, 1-26.
[9]
Alamed, J.; Chaiyasit, W.; McClements, D.J.; Decker, E.A. Relationships between free radical scavenging and antioxidant activity in foods. J. Agric. Food Chem., 2009, 57(7), 2969-2976.
[http://dx.doi.org/10.1021/jf803436c] [PMID: 19265447]
[10]
Alexandrova, M.L.; Bochev, P.G. Oxidative stress during the chronic phase after stroke. Free Radic. Biol. Med., 2005, 39(3), 297-316.
[http://dx.doi.org/10.1016/j.freeradbiomed.2005.04.017] [PMID: 15993329]
[11]
Cerutti, P.A. Oxy-radicals and cancer. Lancet, 1994, 344(8926), 862-863.
[http://dx.doi.org/10.1016/S0140-6736(94)92832-0] [PMID: 7916406]
[12]
Wiseman, H.; Halliwell, B. Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem. J., 1996, 313(Pt 1), 17-29.
[http://dx.doi.org/10.1042/bj3130017] [PMID: 8546679]
[13]
Mouw, K.W.; Goldberg, M.S.; Konstantinopoulos, P.A.; D’Andrea, A.D. DNA damage and repair biomarkers of immunotherapy response. Cancer Discov., 2017, 7(7), 675-693.
[http://dx.doi.org/10.1158/2159-8290.CD-17-0226] [PMID: 28630051]
[14]
Chatterjee, N.; Walker, G.C. Mechanisms of DNA damage, repair, and mutagenesis. Environ. Mol. Mutagen., 2017, 58(5), 235-263.
[http://dx.doi.org/10.1002/em.22087] [PMID: 28485537]
[15]
Amor, Y.; Babiychuk, E.; Inzé, D.; Levine, A. The involvement of poly(ADP-ribose) polymerase in the oxidative stress responses in plants. FEBS Lett., 1998, 440(1-2), 1-7.
[http://dx.doi.org/10.1016/S0014-5793(98)01408-2] [PMID: 9862413]
[16]
Roldán-Arjona, T.; Ariza, R.R. Repair and tolerance of oxidative DNA damage in plants. Mutat. Res., 2009, 681(2-3), 169-179.
[http://dx.doi.org/10.1016/j.mrrev.2008.07.003] [PMID: 18707020]
[17]
Doutriaux, M-P.; Couteau, F.; Bergounioux, C.; White, C. Isolation and characterisation of the RAD51 and DMC1 homologs from Arabidopsis thaliana. Mol. Gen. Genet., 1998, 257(3), 283-291.
[http://dx.doi.org/10.1007/s004380050649] [PMID: 9520262]
[18]
Doucet-Chabeaud, G.; Godon, C.; Brutesco, C.; de Murcia, G.; Kazmaier, M. Ionising radiation induces the expression of PARP-1 and PARP-2 genes in Arabidopsis. Mol. Genet. Genomics, 2001, 265(6), 954-963.
[http://dx.doi.org/10.1007/s004380100506] [PMID: 11523787]
[19]
Heitzeberg, F.; Chen, I.P.; Hartung, F.; Orel, N.; Angelis, K.J.; Puchta, H. The Rad17 homologue of Arabidopsis is involved in the regulation of DNA damage repair and homologous recombination. Plant J., 2004, 38(6), 954-968.
[http://dx.doi.org/10.1111/j.1365-313X.2004.02097.x] [PMID: 15165187]
[20]
Siaud, N.; Dray, E.; Gy, I.; Gérard, E.; Takvorian, N.; Doutriaux, M.P. Brca2 is involved in meiosis in Arabidopsis thaliana as suggested by its interaction with Dmc1. EMBO J., 2004, 23(6), 1392-1401.
[http://dx.doi.org/10.1038/sj.emboj.7600146] [PMID: 15014444]
[21]
Golla, U; Bhimathati, SSR Evaluation of antioxidant and DNA damage protection activity of the hydroalcoholic extract of Desmostachya bipinnata L. Stapf. Scientific World J., 2014, 2014, 215084.
[http://dx.doi.org/10.1155/2014/215084] [PMID: 24574873]
[22]
Sevgi, K.; Tepe, B.; Sarikurkcu, C. Antioxidant and DNA damage protection potentials of selected phenolic acids. Food Chem. Toxicol., 2015, 77, 12-21.
[http://dx.doi.org/10.1016/j.fct.2014.12.006] [PMID: 25542528]
[23]
Batool, S.; Gulfraz, M.; Akram, A.; Naqvi, S.S.; Haq, I.; Mirza, B.; Ahmad, M.S. Evaluation of antioxidant potential and HPLC based identification of phenolics in Polygonum amplexicaule extract and its fractions. Pak. J. Pharm. Sci., 2015, 28(2), 431-435.
[PMID: 25730800]
[24]
Skała, E; Sitarek, P; Różalski, M; Krajewska, U; Szemraj, J; Wysokińska, H Antioxidant and DNA repair stimulating effect of extracts from transformed and normal roots of Rhaponticum carthamoides against induced oxidative stress and DNA damage in CHO cells. Oxidative medicine and cellular longevity., 2016, 2016
[25]
Wang, P-W; Cheng, Y-C; Hung, Y-C; Lee, C-H; Fang, J-Y; Li, W-T Red raspberry extract protects the skin against UVB-induced damage with antioxidative and anti-inflammatory properties. Oxidative medicine and cellular longevity, 2019, 2019
[26]
Bekhouche, K.; Ozen, T.; Boussaha, S.; Koldas, S.; Yenigun, S.; Lassed, S. Anti-oxidant, DNA-damage protection and anti-cancer properties of n-butanol extract of the endemic Perralderia coronopifolia. Bangladesh J. Pharmacol., 2018, 13(1), 82-89.
[http://dx.doi.org/10.3329/bjp.v13i1.34255]
[27]
Rezaeian, S.; Pourianfar, H.R.; Janpoor, J. Antioxidant properties of several medicinal plants growing wild in northeastern Iran. Asian J Plant Sci Res., 2015, 5(2), 63-68.
[28]
Kaska, A.; Deniz, N.; Çiçek, M.; Mammadov, R. Evaluation of antioxidant properties, phenolic compounds, anthelmintic, and cytotoxic activities of various extracts isolated from Nepeta cadmea: an endemic plant for Turkey. J. Food Sci., 2018, 83(6), 1552-1559.
[http://dx.doi.org/10.1111/1750-3841.14167] [PMID: 29746001]
[29]
Stanković, N.; Mihajilov-Krstev, T.; Zlatković, B.; Stankov-Jovanović, V.; Mitić, V.; Jović, J. Antibacterial and antioxidant activity of traditional medicinal plants from the Balkan Peninsula. NJAS Wagening. J. Life Sci., 2016, 78, 21-28.
[http://dx.doi.org/10.1016/j.njas.2015.12.006]
[30]
Buddhachat, K.; Osathanunkul, M.; Pukumpuang, W.; Pumiputavon, K.; Nganvongpanit, K.; Ongchai, S. Screening Thai plants for DNA protection, anti-collagenase and suppression of MMP-3 expression properties. Asian Pac. J. Trop. Dis., 2015, 5(6), 489-496.
[http://dx.doi.org/10.1016/S2222-1808(15)60821-0]
[31]
Souri, E.; Amin, G.; Farsam, H.; Jalalizadeh, H.; Barezi, S. Screening of thirteen medicinal plant extracts for antioxidant activity. Iran. J. Pharm. Res., 2010, 149-154.
[32]
Guha, G.; Rajkumar, V.; Mathew, L.; KUMAR, RA. The antioxidant and DNA protection potential of Indian tribal medicinal plants. Turk. J. Biol., 2011, 35(2), 233-242.
[33]
Falcioni, G.; Fedeli, D.; Tiano, L.; Calzuola, I.; Mancinelli, L.; Marsili, V. Antioxidant activity of wheat sprouts extract in vitro: inhibition of DNA oxidative damage. J. Food Sci., 2002, 67(8), 2918-2922.
[http://dx.doi.org/10.1111/j.1365-2621.2002.tb08838.x]
[34]
Mustafa, R.A.; Abdul Hamid, A.; Mohamed, S.; Bakar, F.A. Total phenolic compounds, flavonoids, and radical scavenging activity of 21 selected tropical plants. J. Food Sci., 2010, 75(1), C28-C35.
[http://dx.doi.org/10.1111/j.1750-3841.2009.01401.x] [PMID: 20492146]
[35]
Lin, K-H.; Chao, P-Y.; Yang, C-M.; Cheng, W-C.; Lo, H-F.; Chang, T-R. The effects of flooding and drought stresses on the antioxidant constituents in sweet potato leaves. Bot. Stud. (Taipei, Taiwan), 2006, 47(4), 417-426.
[36]
Anter, J.; Fernández-Bedmar, Z.; Villatoro-Pulido, M.; Demyda-Peyras, S.; Moreno-Millán, M.; Alonso-Moraga, A.; Muñoz-Serrano, A.; Luque de Castro, M.D. A pilot study on the DNA-protective, cytotoxic, and apoptosis-inducing properties of olive-leaf extracts. Mutat. Res., 2011, 723(2), 165-170.
[http://dx.doi.org/10.1016/j.mrgentox.2011.05.005] [PMID: 21620995]
[37]
Leonard, S.S.; Hogans, V.J.; Coppes-Petricorena, Z.; Peer, C.J.; Vining, T.A.; Fleming, D.W.; Harris, G.K. Analysis of free-radical scavenging of Yerba Mate (Ilex paraguriensis) using electron spin resonance and radical-induced DNA damage. J. Food Sci., 2010, 75(1), C14-C20.
[http://dx.doi.org/10.1111/j.1750-3841.2009.01394.x] [PMID: 20492144]
[38]
CierniaK, MK-Da.; Research, N. Antioxidant and genoprotective properties of extracts from edible flowers. J. Food Nutr. Res., 2019, 58(1), 42-50.
[39]
Craig, W.J. Health-promoting properties of common herbs. Am. J. Clin. Nutr., 1999, 70(3), 491S-499S.
[http://dx.doi.org/10.1093/ajcn/70.3.491s] [PMID: 10479221]
[40]
Russo, A.; Izzo, A.A.; Borrelli, F.; Renis, M.; Vanella, A. Free radical scavenging capacity and protective effect of Bacopa monniera L. on DNA damage. Phytother. Res., 2003, 17(8), 870-875.
[http://dx.doi.org/10.1002/ptr.1061] [PMID: 13680815]
[41]
Kumar, A.; Chattopadhyay, S. DNA damage protecting activity and antioxidant potential of pudina extract. Food Chem., 2007, 100(4), 1377-1384.
[http://dx.doi.org/10.1016/j.foodchem.2005.12.015]
[42]
Singh, B.N.; Singh, B.R.; Singh, R.L.; Prakash, D.; Dhakarey, R.; Upadhyay, G.; Singh, H.B. Oxidative DNA damage protective activity, antioxidant and anti-quorum sensing potentials of Moringa oleifera. Food Chem. Toxicol., 2009, 47(6), 1109-1116.
[http://dx.doi.org/10.1016/j.fct.2009.01.034] [PMID: 19425184]
[43]
Saenjum, C.; Chaiyasut, C.; Kadchumsang, S.; Chansakaow, S.; Suttajit, M. Antioxidant activity and protective effects on DNA damage of Caesalpinia sappan L. extract. J. Med. Plants Res., 2010, 4(15), 1594-1608.
[44]
Singh, B.N.; Singh, B.R.; Singh, R.L.; Prakash, D.; Singh, D.P.; Sarma, B.K.; Upadhyay, G.; Singh, H.B. Polyphenolics from various extracts/fractions of red onion (Allium cepa) peel with potent antioxidant and antimutagenic activities. Food Chem. Toxicol., 2009, 47(6), 1161-1167.
[http://dx.doi.org/10.1016/j.fct.2009.02.004] [PMID: 19425188]
[45]
Guleria, S.; Tiku, A.K.; Singh, G.; Vyas, D.; Bhardwaj, A. Antioxidant activity and protective effect against plasmid DNA strand scission of leaf, bark, and heartwood extracts from Acacia catechu. J. Food Sci., 2011, 76(7), C959-C964.
[http://dx.doi.org/10.1111/j.1750-3841.2011.02284.x] [PMID: 21806606]
[46]
Ramos, A.A.; Pedro, D.; Collins, A.R.; Pereira-Wilson, C. Protection by Salvia extracts against oxidative and alkylation damage to DNA in human HCT15 and CO115 cells. J. Toxicol. Environ. Health A, 2012, 75(13-15), 765-775.
[http://dx.doi.org/10.1080/15287394.2012.689804] [PMID: 22788364]
[47]
Sathisha, A.; Lingaraju, H.; Prasad, K.S. Evaluation of antioxidant activity of medicinal plant extracts produced for commercial purpose. J. Chem., 2011, 8(2), 882-886.
[48]
Rocha, R.S.; Kassuya, C.A.L.; Formagio, A.S.N.; Mauro, Mde.O.; Andrade-Silva, M.; Monreal, A.C.; Cunha-Laura, A.L.; Vieira, Mdo.C.; Oliveira, R.J. Analysis of the anti-inflammatory and chemopreventive potential and description of the antimutagenic mode of action of the Annona crassiflora methanolic extract. Pharm. Biol., 2016, 54(1), 35-47.
[http://dx.doi.org/10.3109/13880209.2015.1014567] [PMID: 25885939]
[49]
Limmongkon, A.; Pankam, J.; Somboon, T.; Wongshaya, P.; Nopprang, P. Evaluation of the DNA damage protective activity of the germinated peanut (Arachis hypogaea) in relation to antioxidant and anti-inflammatory activity. LWT, 2019, 101, 259-268.
[http://dx.doi.org/10.1016/j.lwt.2018.11.009]
[50]
Rahman, M.J.; Ambigaipalan, P.; Shahidi, F. Biological activities of Camelina and Sophia seeds phenolics: Inhibition of LDL oxidation, DNA damage, and pancreatic lipase and α-glucosidase activities. J. Food Sci., 2018, 83(1), 237-245.
[http://dx.doi.org/10.1111/1750-3841.14007] [PMID: 29278656]
[51]
Lin, K-H.; Yang, Y-Y.; Yang, C-M.; Huang, M-Y.; Lo, H-F.; Liu, K-C.; Lin, H.S.; Chao, P.Y. Antioxidant activity of herbaceous plant extracts protect against hydrogen peroxide-induced DNA damage in human lymphocytes. BMC Res. Notes, 2013, 6(1), 490.
[http://dx.doi.org/10.1186/1756-0500-6-490] [PMID: 24279749]
[52]
Bekhouche, K.; Ozen, T.; Boussaha, S.; Koldas, S.; Yenigun, S.; Lassed, S. Antioxidant, DNA-damage protection and anti-cancer properties of n-butanol extract of the endemic Perralderia coronopifolia. Bangladesh J. Pharmacol., 2018, 13(1), 82-89.
[http://dx.doi.org/10.3329/bjp.v13i1.34255]
[53]
Yen, G-C.; Chuang, D-Y. Antioxidant properties of water extracts from Cassia tora L. in relation to the degree of roasting. J. Agric. Food Chem., 2000, 48(7), 2760-2765.
[http://dx.doi.org/10.1021/jf991010q] [PMID: 10898619]
[54]
Santos-Sánchez, NF; Salas-Coronado, R; Villanueva-Cañongo, C; Hernández-Carlos, B Antioxidant compounds and their antioxidant mechanism.Antioxidants; IntechOpen, 2019.
[55]
Krishnamurthy, P; Wadhwani, A Antioxidant enzymes and human health. Antioxidant enzyme, 2012, 1, 3-18.
[http://dx.doi.org/10.5772/48109]
[56]
Morillas-Ruiz, J.M.; Hernández-Sánchez, P. Oxidative stress and antioxidant defenses induced by physical exercise.Basic principles and clinical significance of oxidative stress; , 2015, pp. 221-241.
[http://dx.doi.org/10.5772/61547]
[57]
Panda, SKJAE Assay guided comparison for enzymatic and non-enzymatic antioxidant activities with special reference to medicinal plants. 2012, 14, 382-400.
[58]
Acquaviva, R.; Russo, A.; Campisi, A.; Sorrenti, V.; Di Giacomo, C.; Barcellona, M. Antioxidant activity and protective effect on DNA cleavage of resveratrol. J. Food Sci., 2002, 67(1), 137-141.
[http://dx.doi.org/10.1111/j.1365-2621.2002.tb11373.x]
[59]
Liu, Y.L.; Tang, L.H.; Liang, Z.Q.; You, B.G.; Yang, S.L. Growth inhibitory and apoptosis inducing by effects of total flavonoids from Lysimachia clethroides Duby in human chronic myeloid leukemia K562 cells. J. Ethnopharmacol., 2010, 131(1), 1-9.
[http://dx.doi.org/10.1016/j.jep.2010.04.008] [PMID: 20420897]
[60]
Bansal, P.; Paul, P.; Nayak, P.G.; Pannakal, S.T.; Zou, J-h.; Laatsch, H. Phenolic compounds isolated from Pilea microphylla prevent radiation-induced cellular DNA damage. Acta Pharm. Sin. B, 2011, 1(4), 226-235.
[http://dx.doi.org/10.1016/j.apsb.2011.10.006]
[61]
Rengarajan, S; Melanathuru, V; Govindasamy, C; Chinnadurai, V; Elsadek, Antioxidant activity of flavonoid compounds isolated from the petals of Hibiscus rosa sinensis. J. King Saud Uni., 2020, 32(3), 2236-2242.
[62]
Soumya, K; Haridas, KR; James, J; Sameer Kumar, V; Edatt, L; Sudheesh, Study of in vitro antioxidant and DNA damage protection activity of a novel luteolin derivative isolated from Terminalia chebula. J. Taibah Uni. Sci., 2019, 13(1), 755-763.
[63]
Demiray, S.; Pintado, M.; Castro, P. Evaluation of phenolic profiles and antioxidant activities of Turkish medicinal plants: Tilia argentea, Crataegi folium leaves and Polygonum bistorta roots. World Acad. Sci. Eng. Technol., 2009, 54, 312-317.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy