Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

阿尔茨海默病、β-淀粉样蛋白、中性粒细胞、β-淀粉样蛋白降解酶、生物活性肽、神经毒性。

卷 18, 期 5, 2021

发表于: 06 September, 2021

页: [428 - 442] 页: 15

弟呕挨: 10.2174/1567205018666210906092940

价格: $65

摘要

背景:高胆固醇会加剧阿尔茨海默病 (AD) 的风险发展。 AD与血脑屏障中淀粉样蛋白-β(Aβ)的转运障碍密切相关。目前尚不清楚高胆固醇是否通过影响 Aβ 转运来影响 AD 认知障碍的风险。该研究的目的是研究高胆固醇是否通过低密度脂蛋白受体相关蛋白 1 (LRP1) 和高级糖化终产物受体 (RAGE) 调节 AD 风险发展中的 Aβ 转运。 方法:建立高胆固醇AD小鼠模型。学习和记忆功能由莫里斯水迷宫(MWM)评估。分离、培养和观察脑微血管内皮细胞。观察内皮细胞LRP1和RAGE的表达水平及其对体内Aβ转运的影响。在使用 Wnt 抑制剂 DKK-1 和 β-catenin 抑制剂 XAV-939 后,在培养的微血管中检测 LRP1 和 RAGE 的表达水平。 结果:高胆固醇血症加剧了空间学习和记忆障碍。高胆固醇血症增加血清 Aβ40 水平,而血清 Aβ42 水平没有显着变化。高胆固醇血症降低了脑微血管内皮细胞中 LRP1 的表达并增加了 RAGE 的表达。高胆固醇血症增加了 AD 小鼠的脑细胞凋亡。在体外实验中,高胆固醇降低了LRP1的表达,增加了RAGE的表达,增加了脑微血管内皮细胞中Aβ40的表达。高胆固醇通过 Wnt/β-catenin 信号通路调节 LRP1 和 RAGE 的表达以及 LRP1 和 RAGE 启动子的转录活性。 结论:高胆固醇降低脑微血管内皮细胞LRP1表达,增加RAGE表达,导致血脑屏障Aβ转运障碍。脑内 Aβ 沉积增加会加剧脑细胞凋亡,导致 AD 小鼠的认知障碍。

关键词: 阿尔茨海默病、高胆固醇、低密度脂蛋白受体相关蛋白、晚期糖基化终产物受体、β淀粉样蛋白、血脑屏障。

[1]
Jia L, Quan M, Fu Y, et al. Dementia in China: Epidemiology, clinical management, and research advances. Lancet Neurol 2020; 19(1): 81-92.
[http://dx.doi.org/10.1016/S1474-4422(19)30290-X] [PMID: 31494009]
[2]
Zhou M, Wang H, Zeng X, et al. Mortality, morbidity, and risk factors in China and its provinces, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019; 394(10204): 1145-58.
[http://dx.doi.org/10.1016/S0140-6736(19)30427-1] [PMID: 31248666]
[3]
Egan MF, Kost J, Tariot PN, et al. Randomized trial of verubecestat for mild-to-moderate alzheimer’s disease. N Engl J Med 2018; 378(18): 1691-703.
[http://dx.doi.org/10.1056/NEJMoa1706441] [PMID: 29719179]
[4]
Wang J, Jin WS, Bu XL, et al. Physiological clearance of tau in the periphery and its therapeutic potential for tauopathies. Acta Neuropathol 2018; 136(4): 525-36.
[http://dx.doi.org/10.1007/s00401-018-1891-2] [PMID: 30074071]
[5]
Liu YH, Giunta B, Zhou HD, Tan J, Wang YJ. Immunotherapy for Alzheimer disease: The challenge of adverse effects. Nat Rev Neurol 2012; 8(8): 465-9.
[http://dx.doi.org/10.1038/nrneurol.2012.118] [PMID: 22751529]
[6]
Ingelsson M, Fukumoto H, Newell KL, et al. Early Abeta accumulation and progressive synaptic loss, gliosis, and tangle formation in AD brain. Neurology 2004; 62(6): 925-31.
[http://dx.doi.org/10.1212/01.WNL.0000115115.98960.37] [PMID: 15037694]
[7]
Jeong S. Molecular and cellular basis of neurodegeneration in alzheimer’s disease. Mol Cells 2017; 40(9): 613-20.
[PMID: 28927263]
[8]
Willén K, Edgar JR, Hasegawa T, Tanaka N, Futter CE, Gouras GK. Aβ accumulation causes MVB enlargement and is modelled by dominant negative VPS4A. Mol Neurodegener 2017; 12(1): 61.
[http://dx.doi.org/10.1186/s13024-017-0203-y] [PMID: 28835279]
[9]
Donohue MC, Sperling RA, Petersen R, Sun CK, Weiner MW, Aisen PS. Association between elevated brain amyloid and subsequent cognitive decline among cognitively normal persons. JAMA 2017; 317(22): 2305-16.
[http://dx.doi.org/10.1001/jama.2017.6669] [PMID: 28609533]
[10]
Mawuenyega KG, Sigurdson W, Ovod V, et al. Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science 2010; 330(6012): 1774.
[http://dx.doi.org/10.1126/science.1197623] [PMID: 21148344]
[11]
O’Brien JT, Markus HS. Vascular risk factors and Alzheimer’s disease. BMC Med 2014; 12: 218.
[http://dx.doi.org/10.1186/s12916-014-0218-y] [PMID: 25385509]
[12]
Zambón D, Quintana M, Mata P, et al. Higher incidence of mild cognitive impairment in familial hypercholesterolemia. Am J Med 2010; 123(3): 267-74.
[http://dx.doi.org/10.1016/j.amjmed.2009.08.015] [PMID: 20193836]
[13]
Llorente-Cortes V, Casani L, Cal R, et al. Cholesterol-lowering strategies reduce vascular LRP1 overexpression induced by hypercholesterolaemia. Eur J Clin Invest 2011; 41(10): 1087-97.
[http://dx.doi.org/10.1111/j.1365-2362.2011.02513.x] [PMID: 21434892]
[14]
Yang H, Wang Y, Kar S. Effects of cholesterol transport inhibitor U18666A on APP metabolism in rat primary astrocytes. Glia 2017; 65(11): 1728-43.
[http://dx.doi.org/10.1002/glia.23191] [PMID: 28722194]
[15]
Chang TY, Yamauchi Y, Hasan MT, Chang C. Cellular cholesterol homeostasis and Alzheimer’s disease. J Lipid Res 2017; 58(12): 2239-54.
[http://dx.doi.org/10.1194/jlr.R075630] [PMID: 28298292]
[16]
Pedrini S, Thomas C, Brautigam H, et al. Dietary composition modulates brain mass and solubilizable Abeta levels in a mouse model of aggressive Alzheimer’s amyloid pathology. Mol Neurodegener 2009; 4: 40.
[http://dx.doi.org/10.1186/1750-1326-4-40] [PMID: 19845940]
[17]
Wang R, Li JJ, Diao S, et al. Metabolic stress modulates Alzheimer’s β-secretase gene transcription via SIRT1-PPARγ-PGC-1 in neurons. Cell Metab 2013; 17(5): 685-94.
[http://dx.doi.org/10.1016/j.cmet.2013.03.016] [PMID: 23663737]
[18]
Park HJ, Shabashvili D, Nekorchuk MD, et al. Retention in endoplasmic reticulum 1 (RER1) modulates amyloid-β (Aβ) production by altering trafficking of γ-secretase and amyloid precursor protein (APP). J Biol Chem 2012; 287(48): 40629-40.
[http://dx.doi.org/10.1074/jbc.M112.418442] [PMID: 23043097]
[19]
Löffler T, Flunkert S, Temmel M, Hutter-Paier B. Decreased plasma Aβ in hyperlipidemic APPSL transgenic mice is associated with BBB dysfunction. Front Neurosci 2016; 10: 232.
[http://dx.doi.org/10.3389/fnins.2016.00232] [PMID: 27313503]
[20]
Do TM, Dodacki A, Alata W, et al. Age-dependent regulation of the blood-brain barrier influx/efflux equilibrium of amyloid-β peptide in a mouse model of Alzheimer’s disease (3xTg-AD). J Alzheimers Dis 2016; 49(2): 287-300.
[http://dx.doi.org/10.3233/JAD-150350] [PMID: 26484906]
[21]
Kut C, Grossman SA, Blakeley J. How critical is the blood-brain barrier to the development of neurotherapeutics? JAMA Neurol 2015; 72(4): 381-2.
[http://dx.doi.org/10.1001/jamaneurol.2014.3736] [PMID: 25642802]
[22]
Erickson MA, Hansen K, Banks WA. Inflammation-induced dysfunction of the low-density lipoprotein receptor-related protein-1 at the blood-brain barrier: Protection by the antioxidant N-acetylcysteine. Brain Behav Immun 2012; 26(7): 1085-94.
[http://dx.doi.org/10.1016/j.bbi.2012.07.003] [PMID: 22809665]
[23]
Chen C, Li XH, Tu Y, et al. Aβ-AGE aggravates cognitive deficit in rats via RAGE pathway. Neuroscience 2014; 257: 1-10.
[http://dx.doi.org/10.1016/j.neuroscience.2013.10.056] [PMID: 24188791]
[24]
Kim DE, Priefer R. Therapeutic potential of direct clearance of the amyloid-β in Alzheimer’s disease. Brain Sci 2020; 10(2)E93
[http://dx.doi.org/10.3390/brainsci10020093] [PMID: 32050618]
[25]
Jaya Prasanthi RP, Schommer E, Thomasson S, Thompson A, Feist G, Ghribi O. Regulation of beta-amyloid levels in the brain of cholesterol-fed rabbit, a model system for sporadic Alzheimer’s disease. Mech Ageing Dev 2008; 129(11): 649-55.
[http://dx.doi.org/10.1016/j.mad.2008.09.002] [PMID: 18845178]
[26]
Wang YJ, Zhou HD, Zhou XF. Clearance of amyloid-beta in Alzheimer’s disease: Progress, problems and perspectives. Drug Discov Today 2006; 11(19-20): 931-8.
[http://dx.doi.org/10.1016/j.drudis.2006.08.004] [PMID: 16997144]
[27]
Bracko O, Vinarcsik LK, Cruz Hernández JC, et al. High fat diet worsens Alzheimer’s disease-related behavioral abnormalities and neuropathology in APP/PS1 mice, but not by synergistically decreasing cerebral blood flow. Sci Rep 2020; 10(1): 9884.
[http://dx.doi.org/10.1038/s41598-020-65908-y] [PMID: 32555372]
[28]
Fang EF, Hou Y, Palikaras K, et al. Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat Neurosci 2019; 22(3): 401-12.
[http://dx.doi.org/10.1038/s41593-018-0332-9] [PMID: 30742114]
[29]
Shin EJ, Park JH, Sung MJ, Chung MY, Hwang JT. Citrus junos Tanaka peel ameliorates hepatic lipid accumulation in HepG2 cells and in mice fed a high-cholesterol diet. BMC Complement Altern Med 2016; 16(1): 499.
[http://dx.doi.org/10.1186/s12906-016-1460-y] [PMID: 27912736]
[30]
Shibata M, Yamada S, Kumar SR, et al. Clearance of Alzheimer’s amyloid-ss(1-40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J Clin Invest 2000; 106(12): 1489-99.
[http://dx.doi.org/10.1172/JCI10498] [PMID: 11120756]
[31]
Cui H, Zhu Y, Jiang D. The RIP1-RIP3 complex mediates osteocyte necroptosis after ovariectomy in rats. PLoS One 2016; 11(3)e0150805
[http://dx.doi.org/10.1371/journal.pone.0150805] [PMID: 26985994]
[32]
Morales-Corraliza J, Schmidt SD, Mazzella MJ, et al. Immunization targeting a minor plaque constituent clears β-amyloid and rescues behavioral deficits in an Alzheimer’s disease mouse model. Neurobiol Aging 2013; 34(1): 137-45.
[http://dx.doi.org/10.1016/j.neurobiolaging.2012.04.007] [PMID: 22608241]
[33]
Taylor SC, Posch A. The design of a quantitative western blot experiment. BioMed Res Int 2014; 2014361590
[http://dx.doi.org/10.1155/2014/361590] [PMID: 24738055]
[34]
Xue-Shan Z, Juan P, Qi W, et al. Imbalanced cholesterol metabolism in Alzheimer’s disease. Clin Chim Acta 2016; 456: 107-14.
[http://dx.doi.org/10.1016/j.cca.2016.02.024] [PMID: 26944571]
[35]
Solomon A, Kåreholt I, Ngandu T, et al. Serum cholesterol changes after midlife and late-life cognition: Twenty-one-year follow-up study. Neurology 2007; 68(10): 751-6.
[http://dx.doi.org/10.1212/01.wnl.0000256368.57375.b7] [PMID: 17339582]
[36]
Helzner EP, Luchsinger JA, Scarmeas N, et al. Contribution of vascular risk factors to the progression in Alzheimer disease. Arch Neurol 2009; 66(3): 343-8.
[http://dx.doi.org/10.1001/archneur.66.3.343] [PMID: 19273753]
[37]
Shepardson NE, Shankar GM, Selkoe DJ. Cholesterol level and statin use in Alzheimer disease: I. Review of epidemiological and preclinical studies. Arch Neurol 2011; 68(10): 1239-44.
[http://dx.doi.org/10.1001/archneurol.2011.203] [PMID: 21987540]
[38]
Longenberger J, Shah ZA. Simvastatin and other HMG-CoA reductase inhibitors on brain cholesterol levels in Alzheimer’s disease. Curr Alzheimer Res 2011; 8(4): 434-42.
[http://dx.doi.org/10.2174/156720511795745393] [PMID: 21244355]
[39]
Lin FC, Chuang YS, Hsieh HM, et al. Early statin use and the progression of alzheimer disease: A total population-based case-control study. Medicine (Baltimore) 2015; 94(47)e2143
[http://dx.doi.org/10.1097/MD.0000000000002143] [PMID: 26632742]
[40]
Ismail N, Ismail M, Azmi NH, et al. Thymoquinone-rich fraction nanoemulsion (TQRFNE) decreases Aβ40 and Aβ42 levels by modulating APP processing, up-regulating IDE and LRP1, and down-regulating BACE1 and RAGE in response to high fat/cholesterol diet-induced rats. Biomed Pharmacother 2017; 95: 780-8.
[http://dx.doi.org/10.1016/j.biopha.2017.08.074] [PMID: 28892789]
[41]
Cai Z, Qiao PF, Wan CQ, Cai M, Zhou NK, Li Q. Role of blood-brain barrier in Alzheimer’s disease. J Alzheimers Dis 2018; 63(4): 1223-34.
[http://dx.doi.org/10.3233/JAD-180098] [PMID: 29782323]
[42]
Yin K, Jin J, Zhu X, et al. CART modulates beta-amyloid metabolism-associated enzymes and attenuates memory deficits in APP/PS1 mice. Neurol Res 2017; 39(10): 885-94.
[http://dx.doi.org/10.1080/01616412.2017.1348689] [PMID: 28743230]
[43]
Ashok A, Rai NK, Raza W, Pandey R, Bandyopadhyay S. Chronic cerebral hypoperfusion-induced impairment of Aβ clearance requires HB-EGF-dependent sequential activation of HIF1α and MMP9. Neurobiol Dis 2016; 95: 179-93.
[http://dx.doi.org/10.1016/j.nbd.2016.07.013] [PMID: 27431094]
[44]
Donahue JE, Flaherty SL, Johanson CE, et al. RAGE, LRP-1, and amyloid-beta protein in Alzheimer’s disease. Acta Neuropathol 2006; 112(4): 405-15.
[http://dx.doi.org/10.1007/s00401-006-0115-3] [PMID: 16865397]
[45]
Ma LY, Fei YL, Wang XY, et al. The Research on the Relationship of RAGE, LRP-1, and Aβ Accumulation in the Hippocampus, Prefrontal Lobe, and Amygdala of STZ-Induced Diabetic Rats. J Mol Neurosci 2017; 62(1): 1-10.
[http://dx.doi.org/10.1007/s12031-017-0892-2] [PMID: 28401370]
[46]
Moir RD, Tanzi RE. LRP-mediated clearance of Abeta is inhibited by KPI-containing isoforms of APP. Curr Alzheimer Res 2005; 2(2): 269-73.
[http://dx.doi.org/10.2174/1567205053585918] [PMID: 15974929]
[47]
Sharma HS, Castellani RJ, Smith MA, Sharma A. The blood-brain barrier in Alzheimer’s disease: Novel therapeutic targets and nanodrug delivery. Int Rev Neurobiol 2012; 102: 47-90.
[http://dx.doi.org/10.1016/B978-0-12-386986-9.00003-X] [PMID: 22748826]
[48]
Liu CC, Hu J, Zhao N, et al. Astrocytic lrp1 mediates brain aβ clearance and impacts amyloid deposition. J Neurosci 2017; 37(15): 4023-31.
[http://dx.doi.org/10.1523/JNEUROSCI.3442-16.2017] [PMID: 28275161]
[49]
Shinohara M, Tachibana M, Kanekiyo T, Bu G. Role of LRP1 in the pathogenesis of Alzheimer’s disease: Evidence from clinical and preclinical studies. J Lipid Res 2017; 58(7): 1267-81.
[http://dx.doi.org/10.1194/jlr.R075796] [PMID: 28381441]
[50]
Storck SE, Meister S, Nahrath J, et al. Endothelial LRP1 transports amyloid-β(1-42) across the blood-brain barrier. J Clin Invest 2016; 126(1): 123-36.
[http://dx.doi.org/10.1172/JCI81108] [PMID: 26619118]
[51]
Van Gool B, Storck SE, Reekmans SM, et al. LRP1 has a predominant role in production over clearance of aβ in a mouse model of alzheimer’s disease. Mol Neurobiol 2019; 56(10): 7234-45.
[http://dx.doi.org/10.1007/s12035-019-1594-2] [PMID: 31004319]
[52]
Rauch JN, Luna G, Guzman E, et al. LRP1 is a master regulator of tau uptake and spread. Nature 2020; 580(7803): 381-5.
[http://dx.doi.org/10.1038/s41586-020-2156-5] [PMID: 32296178]
[53]
Candela P, Gosselet F, Saint-Pol J, et al. Apical-to-basolateral transport of amyloid-β peptides through blood-brain barrier cells is mediated by the receptor for advanced glycation end-products and is restricted by P-glycoprotein. J Alzheimers Dis 2010; 22(3): 849-59.
[http://dx.doi.org/10.3233/JAD-2010-100462] [PMID: 20858979]
[54]
Cui L, Cai Y, Cheng W, et al. A novel, multi-target natural drug candidate, matrine, improves cognitive deficits in alzheimer’s disease transgenic mice by inhibiting aβ aggregation and blocking the rage/aβ axis. Mol Neurobiol 2017; 54(3): 1939-52.
[http://dx.doi.org/10.1007/s12035-016-9783-8] [PMID: 26899576]
[55]
Derk J, MacLean M, Juranek J, Schmidt AM. The receptor for advanced glycation endproducts (rage) and mediation of inflammatory neurodegeneration. J Alzheimers Dis Parkinsonism 2018; 8(1): 421.
[http://dx.doi.org/10.4172/2161-0460.1000421] [PMID: 30560011]
[56]
Ding B, Lin C, Liu Q, et al. Tanshinone IIA attenuates neuroinflammation via inhibiting RAGE/NF-κB signaling pathway in vivo and in vitro. J Neuroinflammation 2020; 17(1): 302.
[http://dx.doi.org/10.1186/s12974-020-01981-4] [PMID: 33054814]
[57]
Fani Maleki A, Cisbani G, Plante MM, et al. Muramyl dipeptide-mediated immunomodulation on monocyte subsets exerts therapeutic effects in a mouse model of Alzheimer’s disease. J Neuroinflammation 2020; 17(1): 218.
[http://dx.doi.org/10.1186/s12974-020-01893-3] [PMID: 32698829]
[58]
Wang H, Chen F, Du YF, et al. Targeted inhibition of RAGE reduces amyloid-β influx across the blood-brain barrier and improves cognitive deficits in db/db mice. Neuropharmacology 2018; 131: 143-53.
[http://dx.doi.org/10.1016/j.neuropharm.2017.12.026] [PMID: 29248482]
[59]
Fang F, Yu Q, Arancio O, et al. RAGE mediates Aβ accumulation in a mouse model of Alzheimer’s disease via modulation of β- and γ-secretase activity. Hum Mol Genet 2018; 27(6): 1002-14.
[http://dx.doi.org/10.1093/hmg/ddy017] [PMID: 29329433]
[60]
Yan SD, Chen X, Fu J, et al. RAGE and amyloid-beta peptide neurotoxicity in Alzheimer’s disease. Nature 1996; 382(6593): 685-91.
[http://dx.doi.org/10.1038/382685a0] [PMID: 8751438]
[61]
C RC. Lukose B, Rani P. G82S RAGE polymorphism influences amyloid-RAGE interactions relevant in Alzheimer’s disease pathology. PLoS One 2020; 15(10)e0225487
[http://dx.doi.org/10.1371/journal.pone.0225487] [PMID: 33119615]
[62]
Zhang H, Wang Y, Yan S, et al. Genetic deficiency of neuronal RAGE protects against AGE-induced synaptic injury. Cell Death Dis 2014; 5(6)e1288
[http://dx.doi.org/10.1038/cddis.2014.248] [PMID: 24922072]
[63]
Wang P, Huang R, Lu S, et al. RAGE and AGEs in mild cognitive impairment of diabetic patients: A cross-sectional study. PLoS One 2016; 11(1)e0145521
[http://dx.doi.org/10.1371/journal.pone.0145521] [PMID: 26745632]
[64]
Kuntz M, Candela P, Saint-Pol J, et al. Bexarotene promotes cholesterol efflux and restricts apical-to-basolateral transport of amyloid-β peptides in an in vitro model of the human blood-brain barrier. J Alzheimers Dis 2015; 48(3): 849-62.
[http://dx.doi.org/10.3233/JAD-150469] [PMID: 26402114]
[65]
Wahrle SE, Jiang H, Parsadanian M, et al. Deletion of Abca1 increases Abeta deposition in the PDAPP transgenic mouse model of Alzheimer disease. J Biol Chem 2005; 280(52): 43236-42.
[http://dx.doi.org/10.1074/jbc.M508780200] [PMID: 16207708]
[66]
Zhang J, Liu Q. Cholesterol metabolism and homeostasis in the brain. Protein Cell 2015; 6(4): 254-64.
[http://dx.doi.org/10.1007/s13238-014-0131-3] [PMID: 25682154]
[67]
Jiang X, Guo M, Su J, et al. Simvastatin blocks blood-brain barrier disruptions induced by elevated cholesterol both in vivo and in vitro. Int J Alzheimers Dis 2012; 2012109324
[http://dx.doi.org/10.1155/2012/109324] [PMID: 22506129]
[68]
Loera-Valencia R, Goikolea J, Parrado-Fernandez C, Merino-Serrais P, Maioli S. Alterations in cholesterol metabolism as a risk factor for developing Alzheimer’s disease: Potential novel targets for treatment. J Steroid Biochem Mol Biol 2019; 190: 104-14.
[http://dx.doi.org/10.1016/j.jsbmb.2019.03.003] [PMID: 30878503]
[69]
Chang KW, Zong HF, Ma KG, et al. Activation of α7 nicotinic acetylcholine receptor alleviates Aβ1-42-induced neurotoxicity via downregulation of p38 and JNK MAPK signaling pathways. Neurochem Int 2018; 120: 238-50.
[http://dx.doi.org/10.1016/j.neuint.2018.09.005] [PMID: 30217465]
[70]
Yang TT, Hsu CT, Kuo YM. Cell-derived soluble oligomers of human amyloid-beta peptides disturb cellular homeostasis and induce apoptosis in primary hippocampal neurons. J Neural Transm (Vienna) 2009; 116(12): 1561-9.
[http://dx.doi.org/10.1007/s00702-009-0311-0] [PMID: 19809865]
[71]
Long Z, Zheng M, Zhao L, et al. Valproic acid attenuates neuronal loss in the brain of APP/PS1 double transgenic Alzheimer’s disease mice model. Curr Alzheimer Res 2013; 10(3): 261-9.
[http://dx.doi.org/10.2174/1567205011310030005] [PMID: 23036022]
[72]
LaFerla FM, Hall CK, Ngo L, Jay G. Extracellular deposition of beta-amyloid upon p53-dependent neuronal cell death in transgenic mice. J Clin Invest 1996; 98(7): 1626-32.
[http://dx.doi.org/10.1172/JCI118957] [PMID: 8833912]
[73]
Zhou L, Chen D, Huang XM, et al. Wnt5a promotes cortical neuron survival by inhibiting cell-cycle activation. Front Cell Neurosci 2017; 11: 281.
[http://dx.doi.org/10.3389/fncel.2017.00281] [PMID: 29033786]
[74]
Borrell-Pagès M, Romero JC, Badimon L. LRP5 deficiency down-regulates Wnt signalling and promotes aortic lipid infiltration in hypercholesterolaemic mice. J Cell Mol Med 2015; 19(4): 770-7.
[http://dx.doi.org/10.1111/jcmm.12396] [PMID: 25656427]
[75]
Liu L, Wan W, Xia S, Kalionis B, Li Y. Dysfunctional Wnt/β-catenin signaling contributes to blood-brain barrier breakdown in Alzheimer’s disease. Neurochem Int 2014; 75: 19-25.
[http://dx.doi.org/10.1016/j.neuint.2014.05.004] [PMID: 24859746]
[76]
Vallon M, Yuki K, Nguyen TD, et al. A RECK-WNT7 receptor-ligand interaction enables isoform-specific regulation of wnt bioavailability. Cell Rep 2018; 25(2): 339-349.e9.
[http://dx.doi.org/10.1016/j.celrep.2018.09.045] [PMID: 30304675]
[77]
Patel MM, Behar AR, Silasi R, et al. Role of ADTRP (androgen-dependent tissue factor pathway inhibitor regulating protein) in vascular development and function. J Am Heart Assoc 2018; 7(22)e010690
[http://dx.doi.org/10.1161/JAHA.118.010690] [PMID: 30571485]
[78]
Li HF, Liu JY. Effects of MiR-26a on respiratory distress syndrome in neonatal rats via the wnt/β-catenin signaling pathway. Eur Rev Med Pharmacol Sci 2019; 23(6): 2525-31.
[PMID: 30964179]
[79]
Azizian-Farsani F, Abedpoor N, Hasan Sheikhha M, Gure AO, Nasr-Esfahani MH, Ghaedi K. Receptor for advanced glycation end products acts as a fuel to colorectal cancer development. Front Oncol 2020; 10552283
[http://dx.doi.org/10.3389/fonc.2020.552283] [PMID: 33117687]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy