Research Article

使用机器学习方法通过 16 个预后相关基因特征识别 WHO II/III 胶质瘤

卷 29, 期 9, 2022

发表于: 27 August, 2021

页: [1622 - 1639] 页: 18

弟呕挨: 10.2174/0929867328666210827103049

价格: $65

摘要

背景:临床观察发现,同一级别胶质瘤的预后在世界卫生组织(WHO)II级和III级之间存在较大差异。因此,需要更好地了解 WHO II 级和 III 级胶质瘤的遗传学和分子机制,目的是在分子水平而不是传统的病理形态学水平上制定分类方案。 方法:我们使用从中国神经胶质瘤基因组图谱和癌症基因组图谱下载的表达数据集,结合最小绝对收缩和选择算子的机器学习方法进行生存分析。通过总生存相关基因的表达水平及其多变量Cox比例风险回归系数的乘积计算风险评分。 WHO II 级和 III 级胶质瘤分为低危亚组、中危亚组和高危亚组。我们使用 16 个预后相关基因作为输入特征,使用完全连接的神经网络构建基于预后的分类模型。还进行了基因功能注释。 结果:筛选出与胶质瘤预后相关的16个基因(AKNAD1、C7orf13、CDK20、CHRFAM7A、CHRNA1、EFNB1、GAS1、HIST2H2BE、KCNK3、KLHL4、LRRK2、NXPH3、PIGZ、SAMD5、ERINC2、SIX6)。选择的 16 个基因与神经胶质瘤的发展和癌变有关。来自两个队列的全连接神经网络模型的外部验证数据集的准确率达到了 95.5%。我们的方法在将 WHO II 级和 III 级胶质瘤分类为低风险、中风险和高风险亚组方面具有良好的潜在能力。亚组在总生存期方面表现出显着差异(P<0.01)。 结论:这导致了16个与胶质瘤预后相关的基因的鉴定。在这里,我们开发了一种计算方法,将 WHO II 级和 III 级胶质瘤区分为具有不同预后的三个亚组。基于基因表达的方法为确定神经胶质瘤的预后提供了一种可靠的替代方法。

关键词: 胶质瘤,生存分析,基因,神经网络,LASSO,预后相关基因。

[1]
Molinaro, A.M.; Taylor, J.W.; Wiencke, J.K.; Wrensch, M.R. Genetic and molecular epidemiology of adult diffuse glioma. Nat. Rev. Neurol., 2019, 15(7), 405-417.
[http://dx.doi.org/10.1038/s41582-019-0220-2] [PMID: 31227792]
[2]
Rasmussen, B.K.; Hansen, S.; Laursen, R.J.; Kosteljanetz, M.; Schultz, H.; Nørgård, B.M.; Guldberg, R.; Gradel, K.O. Epidemiology of glioma: Clinical characteristics, symptoms, and predictors of glioma patients grade I-IV in the the Danish Neuro-Oncology Registry. J. Neurooncol., 2017, 135(3), 571-579.
[http://dx.doi.org/10.1007/s11060-017-2607-5] [PMID: 28861666]
[3]
Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 world health organization classification of tumors of the central nervous system: A summary. Acta Neuropathol., 2016, 131(6), 803-820.
[http://dx.doi.org/10.1007/s00401-016-1545-1] [PMID: 27157931]
[4]
Ostrom, Q.T.; Gittleman, H.; Stetson, L.; Virk, S.M.; Barnholtz-Sloan, J.S. Epidemiology of Gliomas. .Cancer treatment and research; Raizer, J.; Parsa, A., Eds.; Springer International Publishing: Cham,, 2015, 163, pp. 1-14.
[5]
Jiang, T.; Nam, D.H.; Ram, Z.; Poon, W.S.; Wang, J.; Boldbaatar, D.; Mao, Y.; Ma, W.; Mao, Q.; You, Y.; Jiang, C.; Yang, X.; Kang, C.; Qiu, X.; Li, W.; Li, S.; Chen, L.; Li, X.; Liu, Z.; Wang, W.; Bai, H.; Yao, Y.; Li, S.; Wu, A.; Sai, K.; Li, G.; Yao, K.; Wei, X.; Liu, X.; Zhang, Z.; Dai, Y.; Lv, S.; Wang, L.; Lin, Z.; Dong, J.; Xu, G.; Ma, X.; Zhang, W.; Zhang, C.; Chen, B.; You, G.; Wang, Y.; Wang, Y.; Bao, Z.; Yang, P.; Fan, X.; Liu, X.; Zhao, Z.; Wang, Z.; Li, Y.; Wang, Z.; Li, G.; Fang, S.; Li, L.; Liu, Y.; Liu, S.; Shan, X.; Liu, Y.; Chai, R.; Hu, H.; Chen, J.; Yan, W.; Cai, J.; Wang, H.; Chen, L.; Yang, Y.; Wang, Y.; Han, L.; Wang, Q. Clinical practice guidelines for the management of adult diffuse gliomas. Cancer Lett., 2021, 499, 60-72.
[http://dx.doi.org/10.1016/j.canlet.2020.10.050] [PMID: 33166616]
[6]
Yang, P.; Cai, J.; Yan, W.; Zhang, W.; Wang, Y.; Chen, B.; Li, G.; Li, S.; Wu, C.; Yao, K.; Li, W.; Peng, X.; You, Y.; Chen, L.; Jiang, C.; Qiu, X.; Jiang, T. Classification based on mutations of TERT promoter and IDH characterizes subtypes in grade II/III gliomas. Neuro-oncol., 2016, 18(8), 1099-1108.
[http://dx.doi.org/10.1093/neuonc/now021] [PMID: 26957363]
[7]
Colman, H.; Zhang, L.; Sulman, E.P.; McDonald, J.M.; Shooshtari, N.L.; Rivera, A.; Popoff, S.; Nutt, C.L.; Louis, D.N.; Cairncross, J.G.; Gilbert, M.R.; Phillips, H.S.; Mehta, M.P.; Chakravarti, A.; Pelloski, C.E.; Bhat, K.; Feuerstein, B.G.; Jenkins, R.B.; Aldape, K. A multigene predictor of outcome in glioblastoma. Neuro-oncol., 2010, 12(1), 49-57.
[http://dx.doi.org/10.1093/neuonc/nop007] [PMID: 20150367]
[8]
Zhao, J.; Wang, L.; Hu, G.; Wei, B.A. 6-Gene Risk Signature Predicts Survival of Glioblastoma Multiforme. BioMed Res. Int., 2019, 2019, 1649423.
[http://dx.doi.org/10.1155/2019/1649423] [PMID: 31531345]
[9]
Li, C.; Zou, H.; Xiong, Z.; Xiong, Y.; Miyagishima, D.F.; Wanggou, S.; Li, X. Construction and validation of a 13-gene signature for prognosis prediction in medulloblastoma. Front. Genet., 2020, 11, 429.
[http://dx.doi.org/10.3389/fgene.2020.00429] [PMID: 32508873]
[10]
Cao, H.; Zhang, Y.; Zhao, J.; Zhu, L.; Wang, Y.; Li, J.; Feng, Y-M.; Zhang, N. Prediction of the ebola virus infection related human genes using protein-protein interaction network. Comb. Chem. High Throughput Screen., 2017, 20(7), 638-646.
[http://dx.doi.org/10.2174/1386207320666170310114816] [PMID: 28294056]
[11]
Zhang, N.; Jiang, M.; Huang, T.; Cai, Y.D. Identification of influenza A/H7N9 virus infection-related human genes based on shortest paths in a virus-human protein interaction network. Biomed Res. Int., 2014, 2014, 239462.
[http://dx.doi.org/10.1155/2014/239462] [PMID: 24955349]
[12]
Li, M.; Guo, Y.; Feng, Y-M.; Zhang, N. Identification of triple-negative breast cancer genes and a novel high-risk breast cancer prediction model development based on ppi data and support vector machines. Front. Genet., 2019, 10(MAR), 180.
[http://dx.doi.org/10.3389/fgene.2019.00180] [PMID: 30930932]
[13]
Liu, Q.; Wang, W.; Yang, X.; Zhao, D.; Li, F.; Wang, H. MicroRNA-146a inhibits cell migration and invasion by targeting RhoA in breast cancer. Oncol. Rep., 2016, 36(1), 189-196.
[http://dx.doi.org/10.3892/or.2016.4788] [PMID: 27175941]
[14]
Li, B.Q.; You, J.; Chen, L.; Zhang, J.; Zhang, N.; Li, H.P.; Huang, T.; Kong, X.Y.; Cai, Y.D. Identification of lung-cancer-related genes with the shortest path approach in a protein-protein interaction network. BioMed Res. Int., 2013, 2013, 267375.
[http://dx.doi.org/10.1155/2013/267375] [PMID: 23762832]
[15]
Li, B.Q.; Huang, T.; Zhang, J.; Zhang, N.; Huang, G.H.; Liu, L.; Cai, Y.D. An ensemble prognostic model for colorectal cancer. PLoS One, 2013, 8(5), e63494.
[http://dx.doi.org/10.1371/journal.pone.0063494] [PMID: 23658834]
[16]
van Vliet, M.H.; Horlings, H.M.; van de Vijver, M.J.; Reinders, M.J.T.; Wessels, L.F.A. Integration of clinical and gene expression data has a synergetic effect on predicting breast cancer outcome. PLoS One, 2012, 7(7), e40358.
[http://dx.doi.org/10.1371/journal.pone.0040358] [PMID: 22808140]
[17]
Ceccarelli, M.; Barthel, F.P.; Malta, T.M.; Sabedot, T.S.; Salama, S.R.; Murray, B.A.; Morozova, O.; Newton, Y.; Radenbaugh, A.; Pagnotta, S.M.; Anjum, S.; Wang, J.; Manyam, G.; Zoppoli, P.; Ling, S.; Rao, A.A.; Grifford, M.; Cherniack, A.D.; Zhang, H.; Poisson, L.; Carlotti, C.G., Jr; Tirapelli, D.P.D.C.; Rao, A.; Mikkelsen, T.; Lau, C.C.; Yung, W.K.A.; Rabadan, R.; Huse, J.; Brat, D.J.; Lehman, N.L.; Barnholtz-Sloan, J.S.; Zheng, S.; Hess, K.; Rao, G.; Meyerson, M.; Beroukhim, R.; Cooper, L.; Akbani, R.; Wrensch, M.; Haussler, D.; Aldape, K.D.; Laird, P.W.; Gutmann, D.H.; Noushmehr, H.; Iavarone, A.; Verhaak, R.G.; Balasundaram, M.; Balu, S.; Barnett, G.; Baylin, S.; Bell, S.; Benz, C.; Bir, N.; Black, K.L.; Bodenheimer, T.; Boice, L.; Bootwalla, M.S.; Bowen, J.; Bristow, C.A.; Butterfield, Y.S.N.; Chen, Q.R.; Chin, L.; Cho, J.; Chuah, E.; Chudamani, S.; Coetzee, S.G.; Cohen, M.L.; Colman, H.; Couce, M.; D’Angelo, F.; Davidsen, T.; Davis, A.; Demchok, J.A.; Devine, K.; Ding, L.; Duell, R.; Elder, J.B.; Eschbacher, J.M.; Fehrenbach, A.; Ferguson, M.; Frazer, S.; Fuller, G.; Fulop, J.; Gabriel, S.B.; Garofano, L.; Gastier-Foster, J.M.; Gehlenborg, N.; Gerken, M.; Getz, G.; Giannini, C.; Gibson, W.J.; Hadjipanayis, A.; Hayes, D.N.; Heiman, D.I.; Hermes, B.; Hilty, J.; Hoadley, K.A.; Hoyle, A.P.; Huang, M.; Jefferys, S.R.; Jones, C.D.; Jones, S.J.M.; Ju, Z.; Kastl, A.; Kendler, A.; Kim, J.; Kucherlapati, R.; Lai, P.H.; Lawrence, M.S.; Lee, S.; Leraas, K.M.; Lichtenberg, T.M.; Lin, P.; Liu, Y.; Liu, J.; Ljubimova, J.Y.; Lu, Y.; Ma, Y.; Maglinte, D.T.; Mahadeshwar, H.S.; Marra, M.A.; McGraw, M.; McPherson, C.; Meng, S.; Mieczkowski, P.A.; Miller, C.R.; Mills, G.B.; Moore, R.A.; Mose, L.E.; Mungall, A.J.; Naresh, R.; Naska, T.; Neder, L.; Noble, M.S.; Noss, A.; O’Neill, B.P.; Ostrom, Q.T.; Palmer, C.; Pantazi, A.; Parfenov, M.; Park, P.J.; Parker, J.S.; Perou, C.M.; Pierson, C.R.; Pihl, T.; Protopopov, A.; Radenbaugh, A.; Ramirez, N.C.; Rathmell, W.K.; Ren, X.; Roach, J.; Robertson, A.G.; Saksena, G.; Schein, J.E.; Schumacher, S.E.; Seidman, J.; Senecal, K.; Seth, S.; Shen, H.; Shi, Y.; Shih, J.; Shimmel, K.; Sicotte, H.; Sifri, S.; Silva, T.; Simons, J.V.; Singh, R.; Skelly, T.; Sloan, A.E.; Sofia, H.J.; Soloway, M.G.; Song, X.; Sougnez, C.; Souza, C.; Staugaitis, S.M.; Sun, H.; Sun, C.; Tan, D.; Tang, J.; Tang, Y.; Thorne, L.; Trevisan, F.A.; Triche, T.; Van Den Berg, D.J.; Veluvolu, U.; Voet, D.; Wan, Y.; Wang, Z.; Warnick, R.; Weinstein, J.N.; Weisenberger, D.J.; Wilkerson, M.D.; Williams, F.; Wise, L.; Wolinsky, Y.; Wu, J.; Xu, A.W.; Yang, L.; Yang, L.; Zack, T.I.; Zenklusen, J.C.; Zhang, J.; Zhang, W.; Zhang, J.; Zmuda, E.; Noushmehr, H.; Iavarone, A.; Verhaak, R.G.W. Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell, 2016, 164(3), 550-563.
[http://dx.doi.org/10.1016/j.cell.2015.12.028] [PMID: 26824661]
[18]
Zhao, Z.; Zhang, K-N.; Wang, Q.; Li, G.; Zeng, F.; Zhang, Y.; Wu, F.; Chai, R.; Wang, Z.; Zhang, C.; Zhang, W.; Bao, Z.; Jiang, T. Chinese glioma genome atlas (CGGA): A comprehensive resource with functional genomic data from chinese gliomas. Genomics Proteomics Bioinformatics, 2021. S1672-0229(21)00045-0
[PMID: 33662628]
[19]
Sun, Y.; Zhang, W.; Chen, D.; Lv, Y.; Zheng, J.; Lilljebjörn, H.; Ran, L.; Bao, Z.; Soneson, C.; Sjögren, H.O.; Salford, L.G.; Ji, J.; French, P.J.; Fioretos, T.; Jiang, T.; Fan, X. A glioma classification scheme based on coexpression modules of EGFR and PDGFRA. Proc. Natl. Acad. Sci. USA, 2014, 111(9), 3538-3543.
[http://dx.doi.org/10.1073/pnas.1313814111] [PMID: 24550449]
[20]
Ahmad, F.K.; Deris, S.; Othman, N.H. Toward integrated clinical and gene- expression profiles for breast cancer prognosis: A review paper. Int. J. Biometrics Bioinforma., 2009, 3(4), 31-47.
[21]
Spina, R.; Voss, D.M.; Asnaghi, L.; Sloan, A.; Bar, E.E. Atracurium Besylate and other neuromuscular blocking agents promote astroglial differentiation and deplete glioblastoma stem cells. Oncotarget, 2016, 7(1), 459-472.
[http://dx.doi.org/10.18632/oncotarget.6314] [PMID: 26575950]
[22]
Zamorano, A.; Lamas, M.; Vergara, P.; Naranjo, J.R.; Segovia, J. Transcriptionally mediated gene targeting of gas1 to glioma cells elicits growth arrest and apoptosis. J. Neurosci. Res., 2003, 71(2), 256-263.
[http://dx.doi.org/10.1002/jnr.10461] [PMID: 12503088]
[23]
Wijethilake, N.; Islam, M.; Ren, H. Radiogenomics model for overall survival prediction of glioblastoma. Med. Biol. Eng. Comput., 2020, 58(8), 1767-1777.
[http://dx.doi.org/10.1007/s11517-020-02179-9] [PMID: 32488372]
[24]
Qi, C.; Lei, L.; Hu, J.; Wang, G.; Liu, J.; Ou, S. Serine incorporator 2 (serinc2) expression predicts an unfavorable prognosis of low-grade glioma (LGG): Evidence from bioinformatics analysis. J. Mol. Neurosci., 2020, 70(10), 1521-1532.
[http://dx.doi.org/10.1007/s12031-020-01620-w] [PMID: 32642801]
[25]
Bao, Z.S.; Chen, H.M.; Yang, M.Y.; Zhang, C.B.; Yu, K.; Ye, W.L.; Hu, B.Q.; Yan, W.; Zhang, W.; Akers, J.; Ramakrishnan, V.; Li, J.; Carter, B.; Liu, Y.W.; Hu, H.M.; Wang, Z.; Li, M.Y.; Yao, K.; Qiu, X.G.; Kang, C.S.; You, Y.P.; Fan, X.L.; Song, W.S.; Li, R.Q.; Su, X.D.; Chen, C.C.; Jiang, T. RNA-seq of 272 gliomas revealed a novel, recurrent PTPRZ1-MET fusion transcript in secondary glioblastomas. Genome Res., 2014, 24(11), 1765-1773.
[http://dx.doi.org/10.1101/gr.165126.113] [PMID: 25135958]
[26]
Zhao, Z.; Meng, F.; Wang, W.; Wang, Z.; Zhang, C.; Jiang, T. Comprehensive RNA-seq transcriptomic profiling in the malignant progression of gliomas. Sci. Data, 2017, 4, 170024.
[http://dx.doi.org/10.1038/sdata.2017.24] [PMID: 28291232]
[27]
Liu, X.; Li, Y.; Qian, Z.; Sun, Z.; Xu, K.; Wang, K.; Liu, S.; Fan, X.; Li, S.; Zhang, Z.; Jiang, T.; Wang, Y. A radiomic signature as a non-invasive predictor of progression-free survival in patients with lower-grade gliomas. Neuroimage Clin., 2018, 20, 1070-1077.
[http://dx.doi.org/10.1016/j.nicl.2018.10.014] [PMID: 30366279]
[28]
Wang, Y.; Qian, T.; You, G.; Peng, X.; Chen, C.; You, Y.; Yao, K.; Wu, C.; Ma, J.; Sha, Z.; Wang, S.; Jiang, T. Localizing seizure-susceptible brain regions associated with low-grade gliomas using voxel-based lesion-symptom mapping. Neuro-oncol., 2015, 17(2), 282-288.
[http://dx.doi.org/10.1093/neuonc/nou130] [PMID: 25031032]
[29]
Leek, J.T.; Scharpf, R.B.; Bravo, H.C.; Simcha, D.; Langmead, B.; Johnson, W.E.; Geman, D.; Baggerly, K.; Irizarry, R.A. Tackling the widespread and critical impact of batch effects in high-throughput data. Nat. Rev. Genet., 2010, 11(10), 733-739.
[http://dx.doi.org/10.1038/nrg2825] [PMID: 20838408]
[30]
Leek, J.T.; Johnson, W.E.; Parker, H.S.; Fertig, E.J.; Jaffe, A.E.; Zhang, Y.; Storey, J.D. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics, 2012, 28(6), 882-3.
[31]
Lin, H.; Zelterman, D. Modeling survival data: Extending the cox model. Technometrics, 2002, 44(1), 85-86.
[http://dx.doi.org/10.1198/tech.2002.s656]
[32]
Kosinski, M.; Kassambara, A.; Biecek, P. Drawing survival curves using “Ggplot2.” R package version 0.4.7., 2020. Available from: https://CRAN.R-project.org/package=survminer
[33]
Simon, N.; Friedman, J.; Hastie, T.; Tibshirani, R. Regularization paths for cox’s proportional hazards model via coordinate descent. J. Stat. Softw., 2011, 39(5), 1-13.
[http://dx.doi.org/10.18637/jss.v039.i05] [PMID: 27065756]
[34]
Therneau, T.M.; Grambsch, P.M. The cox model.Statistics for biology and health; John Wiley & Sons. Ltd, 2000, 20, 39-77.
[35]
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.; Brucher, M.; Perrot, M.; Duchesnay, É. Scikit-learn: Machine learning in python. J. Mach. Learn. Res., 2011, 12, 2825-2830.
[36]
Van Der Walt, S.; Colbert, S.C.; Varoquaux, G. The Numpy array: A structure for efficient numerical computation. Comput. Sci. Eng., 2011, 13(2), 22-30.
[http://dx.doi.org/10.1109/MCSE.2011.37]
[37]
Li, J.; Pu, Y.; Tang, J.; Zou, Q.; Guo, F. DeepAVP: A dual-channel deep neural network for identifying variable-length antiviral peptides. IEEE J. Biomed. Health Inform., 2020, 24(10), 3012-3019.
[http://dx.doi.org/10.1109/JBHI.2020.2977091] [PMID: 32142462]
[38]
Lv, Z.; Ding, H.; Wang, L.; Zou, Q. A convolutional neural network using dinucleotide one-hot encoder for identifying DNA N6-methyladenine sites in the rice genome. Neurocomputing, 2021, 422(4), 214-221.
[http://dx.doi.org/10.1016/j.neucom.2020.09.056]
[39]
Mostavi, M.; Chiu, Y.C.; Huang, Y.; Chen, Y. Convolutional neural network models for cancer type prediction based on gene expression. BMC Med. Genomics, 2020, 13(S5), 44.
[http://dx.doi.org/10.1186/s12920-020-0677-2] [PMID: 32241303]
[40]
Chen, L.; Pan, X.; Zhang, Y.H.; Liu, M.; Huang, T.; Cai, Y.D. Classification of widely and rarely expressed genes with recurrent neural network. Comput. Struct. Biotechnol. J., 2018, 17, 49-60.
[http://dx.doi.org/10.1016/j.csbj.2018.12.002] [PMID: 30595815]
[41]
Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13(null), 281-305.
[42]
Friedman, J.; Hastie, T.; Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw., 2010, 33(1), 1-22.
[http://dx.doi.org/10.18637/jss.v033.i01] [PMID: 20808728]
[43]
Kemp, F. Modern applied statistics with S, 4th. Springer, 2003, 52.
[44]
Kingma, D.P.; Ba, J.L. Adam: A method for stochastic optimization. 3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc., 2015.
[45]
Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. Cluster profiler: an R package for comparing biological themes among gene clusters. Omi. A J. Integr. Biol., 2012, 16(5), 284-287.
[http://dx.doi.org/10.1089/omi.2011.0118] [PMID: 22455463]
[46]
Carlson, M. Genome wide annotation for human; Bioconducter, 2019.
[http://dx.doi.org/10.18129/B9.bioc.org.Hs.eg.db]
[47]
Eisen, M.B.; Spellman, P.T.; Brown, P.O.; Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA, 1998, 95(25), 14863-14868.
[http://dx.doi.org/10.1073/pnas.95.25.14863] [PMID: 9843981]
[48]
Durinck, S.; Spellman, P.T.; Birney, E.; Huber, W. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat. Protoc., 2009, 4(8), 1184-1191.
[http://dx.doi.org/10.1038/nprot.2009.97] [PMID: 19617889]
[49]
Arai, E.; Gotoh, M.; Tian, Y.; Sakamoto, H.; Ono, M.; Matsuda, A.; Takahashi, Y.; Miyata, S.; Totsuka, H.; Chiku, S.; Komiyama, M.; Fujimoto, H.; Matsumoto, K.; Yamada, T.; Yoshida, T.; Kanai, Y. Alterations of the spindle checkpoint pathway in clinicopathologically aggressive CpG island methylator phenotype clear cell renal cell carcinomas. Int. J. Cancer, 2015, 137(11), 2589-2606.
[http://dx.doi.org/10.1002/ijc.29630] [PMID: 26061684]
[50]
Etcheverry, A.; Aubry, M.; de Tayrac, M.; Vauleon, E.; Boniface, R.; Guenot, F.; Saikali, S.; Hamlat, A.; Riffaud, L.; Menei, P.; Quillien, V.; Mosser, J. DNA methylation in glioblastoma: Impact on gene expression and clinical outcome. BMC Genomics, 2010, 11(1), 701.
[http://dx.doi.org/10.1186/1471-2164-11-701] [PMID: 21156036]
[51]
Bruyère, C.; Meijer, L. Targeting cyclin-dependent kinases in anti-neoplastic therapy. Curr. Opin. Cell Biol., 2013, 25(6), 772-779.
[http://dx.doi.org/10.1016/j.ceb.2013.08.004] [PMID: 24011867]
[52]
Biedler, J.L.; Roffler-Tarlov, S.; Schachner, M.; Freedman, L.S. Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones. Cancer Res.,, 1978. 38(11 Pt1), 3751-3757.
[PMID: 29704]
[53]
Sinkus, M. L.; Graw, S.; Freedman, R.; Ross, R. G.; Lester, H. A.; Leonard, S. The human chrna7 and chrfam7a genes: A review of the genetics, regulation, and function. Neuropharmacology,, 2015, 96(PB), 274-288.
[54]
Tsai, Y-S.; Lin, C-T.; Tseng, G.C.; Chung, I-F.; Pal, N.R. Discovery of dominant and dormant genes from expression data using a novel generalization of SNR for multi-class problems. BMC Bioinformatics, 2008, 9(1), 425.
[http://dx.doi.org/10.1186/1471-2105-9-425] [PMID: 18842155]
[55]
Wang, J.; Lin, Z.J.; Liu, L.; Xu, H.Q.; Shi, Y.W.; Yi, Y.H.; He, N.; Liao, W.P. Epilepsy-associated genes. Seizure, 2017, 44, 11-20.
[http://dx.doi.org/10.1016/j.seizure.2016.11.030] [PMID: 28007376]
[56]
Guo, W.; Zhu, L.; Yu, M.; Zhu, R.; Chen, Q.; Wang, Q. A five-DNA methylation signature act as a novel prognostic biomarker in patients with ovarian serous cystadenocarcinoma. Clin. Epigenetics, 2018, 10(1), 142.
[http://dx.doi.org/10.1186/s13148-018-0574-0] [PMID: 30446011]
[57]
Wakabayashi, T.; Natsume, A.; Hashizume, Y.; Fujii, M.; Mizuno, M.; Yoshida, J. A phase I clinical trial of interferon-beta gene therapy for high-grade glioma: Novel findings from gene expression profiling and autopsy. J. Gene Med., 2008, 10(4), 329-339.
[http://dx.doi.org/10.1002/jgm.1160] [PMID: 18220319]
[58]
Liu, W.; Xu, Z.; Zhou, J.; Xing, S.; Li, Z.; Gao, X.; Feng, S.; Xiao, Y. High levels of hist1h2bk in low-grade glioma predicts poor prognosis: A study using cgga and tcga data. Front. Oncol., 2020, 10, 627.
[http://dx.doi.org/10.3389/fonc.2020.00627] [PMID: 32457836]
[59]
MacLeod, D.; Dowman, J.; Hammond, R.; Leete, T.; Inoue, K.; Abeliovich, A. The familial Parkinsonism gene LRRK2 regulates neurite process morphology. Neuron, 2006, 52(4), 587-593.
[http://dx.doi.org/10.1016/j.neuron.2006.10.008] [PMID: 17114044]
[60]
Fig. Method of analysing a blood sample of a subject for the presence of a disease marker. Google Patents, 2019.
[61]
Zhou, Y.; Fu, X.; Zheng, Z.; Ren, Y.; Zheng, Z.; Zhang, B.; Yuan, M.; Duan, J.; Li, M.; Hong, T.; Lu, G.; Zhou, D. Identification of gene co-expression modules and hub genes associated with the invasiveness of pituitary adenoma. Endocrine, 2020, 68(2), 377-389.
[http://dx.doi.org/10.1007/s12020-020-02316-2] [PMID: 32342269]
[62]
Aguilar-Morante, D.; Morales-Garcia, J.A.; Santos, A.; Perez-Castillo, A. CCAAT/enhancer binding protein β induces motility and invasion of glioblastoma cells through transcriptional regulation of the calcium binding protein S100A4. Oncotarget, 2015, 6(6), 4369-4384.
[http://dx.doi.org/10.18632/oncotarget.2976] [PMID: 25738360]
[63]
Du, C.; Pan, P.; Jiang, Y.; Zhang, Q.; Bao, J.; Liu, C. Microarray data analysis to identify crucial genes regulated by CEBPB in human SNB19 glioma cells. World J. Surg. Oncol., 2016, 14(1), 258.
[http://dx.doi.org/10.1186/s12957-016-0997-z] [PMID: 27716259]
[64]
Hnoonual, A.; Thammachote, W.; Tim-Aroon, T.; Rojnueangnit, K.; Hansakunachai, T.; Sombuntham, T.; Roongpraiwan, R.; Worachotekamjorn, J.; Chuthapisith, J.; Fucharoen, S.; Wattanasirichaigoon, D.; Ruangdaraganon, N.; Limprasert, P.; Jinawath, N. Chromosomal microarray analysis in a cohort of underrepresented population identifies SERINC2 as a novel candidate gene for autism spectrum disorder. Sci. Rep., 2017, 7(1), 12096.
[http://dx.doi.org/10.1038/s41598-017-12317-3] [PMID: 28935972]
[65]
Cortez, M.A.; Anfossi, S.; Ramapriyan, R.; Menon, H.; Atalar, S.C.; Aliru, M.; Welsh, J.; Calin, G.A. Role of miRNAs in immune responses and immunotherapy in cancer. Genes Chromosomes Cancer, 2019, 58(4), 244-253.
[http://dx.doi.org/10.1002/gcc.22725] [PMID: 30578699]
[66]
Topalian, S.L.; Drake, C.G.; Pardoll, D.M. Immune checkpoint blockade: A common denominator approach to cancer therapy. Cancer Cell, 2015, 27(4), 450-461.
[http://dx.doi.org/10.1016/j.ccell.2015.03.001] [PMID: 25858804]
[67]
Zhou, J.; Liu, M.; Sun, H.; Feng, Y.; Xu, L.; Chan, A.W.H.; Tong, J.H.; Wong, J.; Chong, C.C.N.; Lai, P.B.S.; Wang, H.K.S.; Tsang, S.W.; Goodwin, T.; Liu, R.; Huang, L.; Chen, Z.; Sung, J.J.Y.; Chow, K.L.; To, K.F.; Cheng, A.S.L. Hepatoma-intrinsic CCRK inhibition diminishes myeloid-derived suppressor cell immunosuppression and enhances immune-checkpoint blockade efficacy. Gut, 2018, 67(5), 931-944.
[http://dx.doi.org/10.1136/gutjnl-2017-314032] [PMID: 28939663]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy