Review Article

脂质代谢与线粒体:癌症中的相互影响

卷 23, 期 6, 2022

发表于: 24 August, 2021

页: [606 - 627] 页: 22

弟呕挨: 10.2174/1389450122666210824144907

价格: $65

摘要

代谢重编程被认为是癌症发生、发展和转移的一个重要事件。癌细胞的代谢特征包括糖酵解、线粒体呼吸、脂肪酸/脂质和氨基酸代谢的改变。作为各种代谢途径的交汇点,线粒体通过调节生物能量学、代谢和细胞死亡,在促进癌症生长中发挥关键作用。越来越多的证据表明,包括脂肪酸合成和脂肪酸氧化的脂质代谢的改变是转移进展的一个共同特征。然而,在癌变过程中脂质代谢和线粒体之间的相互作用仍不清楚。目前的综述集中在与线粒体调控相关的关键脂质代谢途径,驱动癌症表型和转移。我们还回顾了脂质代谢和线粒体的潜在靶点,以改善癌症患者的治疗方案。这篇综述旨在提高我们目前对脂质与线粒体复杂关系的理解,并为新的治疗方法提供见解。

关键词: 脂质代谢、线粒体、脂肪酸氧化、生物能学、心磷脂、细胞凋亡、癌症、转移、药物靶点、化学治疗学。

图形摘要

[1]
Benjamin DI, Cravatt BF, Nomura DK. Global profiling strategies for mapping dysregulated metabolic pathways in cancer. Cell Metab 2012; 16(5): 565-77.
[http://dx.doi.org/10.1016/j.cmet.2012.09.013] [PMID: 23063552]
[2]
DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation. Cell Metab 2008; 7(1): 11-20.
[http://dx.doi.org/10.1016/j.cmet.2007.10.002] [PMID: 18177721]
[3]
DeBerardinis RJ, Chandel NS. Fundamentals of cancer metabolism. Sci Adv 2016; 2(5): e1600200.
[http://dx.doi.org/10.1126/sciadv.1600200] [PMID: 27386546]
[4]
Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism. Cell Metab 2016; 23(1): 27-47.
[http://dx.doi.org/10.1016/j.cmet.2015.12.006] [PMID: 26771115]
[5]
Warburg O. On the origin of cancer cells. Science 1956; 123(3191): 309-14.
[http://dx.doi.org/10.1126/science.123.3191.309] [PMID: 13298683]
[6]
Deberardinis RJ, Sayed N, Ditsworth D, Thompson CB. Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev 2008; 18(1): 54-61.
[http://dx.doi.org/10.1016/j.gde.2008.02.003] [PMID: 18387799]
[7]
Currie E, Schulze A, Zechner R, Walther TC, Farese RV Jr. Cellular fatty acid metabolism and cancer. Cell Metab 2013; 18(2): 153-61.
[http://dx.doi.org/10.1016/j.cmet.2013.05.017] [PMID: 23791484]
[8]
Zechner R, Zimmermann R, Eichmann TO, et al. FAT SIGNALS--lipases and lipolysis in lipid metabolism and signaling. Cell Metab 2012; 15(3): 279-91.
[http://dx.doi.org/10.1016/j.cmet.2011.12.018] [PMID: 22405066]
[9]
Wallace DC. Mitochondria and cancer. Nat Rev Cancer 2012; 12(10): 685-98.
[http://dx.doi.org/10.1038/nrc3365] [PMID: 23001348]
[10]
Carracedo A, Cantley LC, Pandolfi PP. Cancer metabolism: fatty acid oxidation in the limelight. Nat Rev Cancer 2013; 13(4): 227-32.
[http://dx.doi.org/10.1038/nrc3483] [PMID: 23446547]
[11]
Cui Q, Wen S, Huang P. Targeting cancer cell mitochondria as a therapeutic approach: recent updates. Future Med Chem 2017; 9(9): 929-49.
[http://dx.doi.org/10.4155/fmc-2017-0011] [PMID: 28636410]
[12]
Fulda S, Galluzzi L, Kroemer G. Targeting mitochondria for cancer therapy. Nat Rev Drug Discov 2010; 9(6): 447-64.
[http://dx.doi.org/10.1038/nrd3137] [PMID: 20467424]
[13]
Wen S, Zhu D, Huang P. Targeting cancer cell mitochondria as a therapeutic approach. Future Med Chem 2013; 5(1): 53-67.
[http://dx.doi.org/10.4155/fmc.12.190] [PMID: 23256813]
[14]
Luo X, Cheng C, Tan Z, et al. Emerging roles of lipid metabolism in cancer metastasis. Mol Cancer 2017; 16(1): 76.
[http://dx.doi.org/10.1186/s12943-017-0646-3] [PMID: 28399876]
[15]
Wang W, Bai L, Li W, Cui J. The lipid metabolic landscape of cancers and new therapeutic perspectives. Front Oncol 2020; 10: 605154.
[http://dx.doi.org/10.3389/fonc.2020.605154] [PMID: 33364199]
[16]
Lehninger AL, Nelson DL, Cox MM. Lehninger principles of biochemistry. New York: W.H. Freeman 2013.
[17]
Mashima T, Seimiya H, Tsuruo T. De novo fatty-acid synthesis and related pathways as molecular targets for cancer therapy. Br J Cancer 2009; 100(9): 1369-72.
[http://dx.doi.org/10.1038/sj.bjc.6605007] [PMID: 19352381]
[18]
Abramson HN. The lipogenesis pathway as a cancer target. J Med Chem 2011; 54(16): 5615-38.
[http://dx.doi.org/10.1021/jm2005805] [PMID: 21726077]
[19]
Baenke F, Peck B, Miess H, Schulze A. Hooked on fat: the role of lipid synthesis in cancer metabolism and tumour development. Dis Model Mech 2013; 6(6): 1353-63.
[http://dx.doi.org/10.1242/dmm.011338] [PMID: 24203995]
[20]
Medes G, Thomas A, Weinhouse S. Metabolism of neoplastic tissue. IV. A study of lipid synthesis in neoplastic tissue slices in vitro. Cancer Res 1953; 13(1): 27-9.
[PMID: 13032945]
[21]
Jiang L, Wang H, Li J, et al. Up-regulated FASN expression promotes transcoelomic metastasis of ovarian cancer cell through epithelial-mesenchymal transition. Int J Mol Sci 2014; 15(7): 11539-54.
[http://dx.doi.org/10.3390/ijms150711539] [PMID: 24979135]
[22]
Li J, Dong L, Wei D, Wang X, Zhang S, Li H. Fatty acid synthase mediates the epithelial-mesenchymal transition of breast cancer cells. Int J Biol Sci 2014; 10(2): 171-80.
[http://dx.doi.org/10.7150/ijbs.7357] [PMID: 24520215]
[23]
Hao Q, Li T, Zhang X, et al. Expression and roles of fatty acid synthase in hepatocellular carcinoma. Oncol Rep 2014; 32(6): 2471-6.
[http://dx.doi.org/10.3892/or.2014.3484] [PMID: 25231933]
[24]
Wang H, Xi Q, Wu G. Fatty acid synthase regulates invasion and metastasis of colorectal cancer via Wnt signaling pathway. Cancer Med 2016; 5(7): 1599-606.
[http://dx.doi.org/10.1002/cam4.711] [PMID: 27139420]
[25]
Yasumoto Y, Miyazaki H, Vaidyan LK, et al. Inhibition of fatty acid synthase decreases expression of stemness markers in glioma stem cells. PLoS One 2016; 11(1): e0147717.
[http://dx.doi.org/10.1371/journal.pone.0147717] [PMID: 26808816]
[26]
Ahmad I, Mui E, Galbraith L, et al. Sleeping beauty screen reveals Pparg activation in metastatic prostate cancer. Proc Natl Acad Sci USA 2016; 113(29): 8290-5.
[http://dx.doi.org/10.1073/pnas.1601571113] [PMID: 27357679]
[27]
Bauer DE, Hatzivassiliou G, Zhao F, Andreadis C, Thompson CB. ATP citrate lyase is an important component of cell growth and transformation. Oncogene 2005; 24(41): 6314-22.
[http://dx.doi.org/10.1038/sj.onc.1208773] [PMID: 16007201]
[28]
Beckers A, Organe S, Timmermans L, et al. Chemical inhibition of acetyl-CoA carboxylase induces growth arrest and cytotoxicity selectively in cancer cells. Cancer Res 2007; 67(17): 8180-7.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0389] [PMID: 17804731]
[29]
Kuhajda FP. Fatty-acid synthase and human cancer: New perspectives on its role in tumor biology. Nutrition 2000; 16(3): 202-8.
[http://dx.doi.org/10.1016/S0899-9007(99)00266-X] [PMID: 10705076]
[30]
Orita H, Coulter J, Lemmon C, et al. Selective inhibition of fatty acid synthase for lung cancer treatment. Clin Cancer Res 2007; 13(23): 7139-45.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1186] [PMID: 18056164]
[31]
Hatzivassiliou G, Zhao F, Bauer DE, et al. ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 2005; 8(4): 311-21.
[http://dx.doi.org/10.1016/j.ccr.2005.09.008] [PMID: 16226706]
[32]
Sounni NE, Cimino J, Blacher S, et al. Blocking lipid synthesis overcomes tumor regrowth and metastasis after antiangiogenic therapy withdrawal. Cell Metab 2014; 20(2): 280-94.
[http://dx.doi.org/10.1016/j.cmet.2014.05.022] [PMID: 25017943]
[33]
Qian X, Hu J, Zhao J, Chen H. ATP citrate lyase expression is associated with advanced stage and prognosis in gastric adenocarcinoma. Int J Clin Exp Med 2015; 8(5): 7855-60.
[PMID: 26221340]
[34]
Lucenay KS, Doostan I, Karakas C, et al. Cyclin E associates with the lipogenic enzyme atp-citrate lyase to enable malignant growth of breast cancer cells. Cancer Res 2016; 76(8): 2406-18.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-1646] [PMID: 26928812]
[35]
Wang MD, Wu H, Fu GB, et al. Acetyl-coenzyme A carboxylase alpha promotion of glucose-mediated fatty acid synthesis enhances survival of hepatocellular carcinoma in mice and patients. Hepatology 2016; 63(4): 1272-86.
[http://dx.doi.org/10.1002/hep.28415] [PMID: 26698170]
[36]
Wang H, Zhang Y, Lu Y, et al. The role of stearoyl-coenzyme A desaturase 1 in clear cell renal cell carcinoma. Tumour Biol 2016; 37(1): 479-89.
[http://dx.doi.org/10.1007/s13277-015-3451-x] [PMID: 26224474]
[37]
Swinnen JV, Brusselmans K, Verhoeven G. Increased lipogenesis in cancer cells: new players, novel targets. Curr Opin Clin Nutr Metab Care 2006; 9(4): 358-65.
[http://dx.doi.org/10.1097/01.mco.0000232894.28674.30] [PMID: 16778563]
[38]
Guo D, Prins RM, Dang J, et al. EGFR signaling through an Akt-SREBP-1-dependent, rapamycin-resistant pathway sensitizes glioblastomas to antilipogenic therapy. Sci Signal 2009; 2(101): ra82.
[http://dx.doi.org/10.1126/scisignal.2000446] [PMID: 20009104]
[39]
Huang WC, Li X, Liu J, Lin J, Chung LW. Activation of androgen receptor, lipogenesis, and oxidative stress converged by SREBP-1 is responsible for regulating growth and progression of prostate cancer cells. Mol Cancer Res 2012; 10(1): 133-42.
[http://dx.doi.org/10.1158/1541-7786.MCR-11-0206] [PMID: 22064655]
[40]
Alli PM, Pinn ML, Jaffee EM, McFadden JM, Kuhajda FP. Fatty acid synthase inhibitors are chemopreventive for mammary cancer in neu-N transgenic mice. Oncogene 2005; 24(1): 39-46.
[http://dx.doi.org/10.1038/sj.onc.1208174] [PMID: 15489885]
[41]
Migita T, Narita T, Nomura K, et al. ATP citrate lyase: activation and therapeutic implications in non-small cell lung cancer. Cancer Res 2008; 68(20): 8547-54.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1235] [PMID: 18922930]
[42]
Koppenol WH, Bounds PL, Dang CV. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer 2011; 11(5): 325-37.
[http://dx.doi.org/10.1038/nrc3038] [PMID: 21508971]
[43]
Vander Heiden MG, Locasale JW, Swanson KD, et al. Evidence for an alternative glycolytic pathway in rapidly proliferating cells. Science 2010; 329(5998): 1492-9.
[http://dx.doi.org/10.1126/science.1188015] [PMID: 20847263]
[44]
Locasale JW, Grassian AR, Melman T, et al. Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat Genet 2011; 43(9): 869-74.
[http://dx.doi.org/10.1038/ng.890] [PMID: 21804546]
[45]
DeBerardinis RJ, Mancuso A, Daikhin E, et al. Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA 2007; 104(49): 19345-50.
[http://dx.doi.org/10.1073/pnas.0709747104] [PMID: 18032601]
[46]
Wise DR, Thompson CB. Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci 2010; 35(8): 427-33.
[http://dx.doi.org/10.1016/j.tibs.2010.05.003] [PMID: 20570523]
[47]
Prentki M, Madiraju SR. Glycerolipid metabolism and signaling in health and disease. Endocr Rev 2008; 29(6): 647-76.
[http://dx.doi.org/10.1210/er.2008-0007] [PMID: 18606873]
[48]
Przybytkowski E, Joly E, Nolan CJ, et al. Upregulation of cellular triacylglycerol - free fatty acid cycling by oleate is associated with long-term serum-free survival of human breast cancer cells. Biochem Cell Biol 2007; 85(3): 301-10.
[http://dx.doi.org/10.1139/O07-001] [PMID: 17612624]
[49]
Menendez JA. Fine-tuning the lipogenic/lipolytic balance to optimize the metabolic requirements of cancer cell growth: molecular mechanisms and therapeutic perspectives. Biochim Biophys Acta 2010; 1801(3): 381-91.
[http://dx.doi.org/10.1016/j.bbalip.2009.09.005] [PMID: 19782152]
[50]
Nomura DK, Long JZ, Niessen S, Hoover HS, Ng SW, Cravatt BF. Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell 2010; 140(1): 49-61.
[http://dx.doi.org/10.1016/j.cell.2009.11.027] [PMID: 20079333]
[51]
Cai Q, Zhao Z, Antalis C, et al. Elevated and secreted phospholipase A(2); activities as new potential therapeutic targets in human epithelial ovarian cancer. FASEB J 2012; 26(8): 3306-20.
[http://dx.doi.org/10.1096/fj.12-207597] [PMID: 22767227]
[52]
Henkels KM, Boivin GP, Dudley ES, Berberich SJ, Gomez-Cambronero J, Phospholipase D. Phospholipase D (PLD) drives cell invasion, tumor growth and metastasis in a human breast cancer xenograph model. Oncogene 2013; 32(49): 5551-62.
[http://dx.doi.org/10.1038/onc.2013.207] [PMID: 23752189]
[53]
Luo X, Zhao X, Cheng C, Li N, Liu Y, Cao Y. The implications of signaling lipids in cancer metastasis. Exp Mol Med 2018; 50(9): 1-10.
[http://dx.doi.org/10.1038/s12276-018-0150-x] [PMID: 30242145]
[54]
Chance B, Williams GR. The respiratory chain and oxidative phosphorylation. Adv Enzymol Relat Areas Mol Biol 1956; 17: 65-134.
[PMID: 13313307]
[55]
Mitchell P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 1961; 191: 144-8.
[http://dx.doi.org/10.1038/191144a0] [PMID: 13771349]
[56]
Suliman HB, Piantadosi CA. Mitochondrial quality control as a therapeutic target. Pharmacol Rev 2016; 68(1): 20-48.
[http://dx.doi.org/10.1124/pr.115.011502] [PMID: 26589414]
[57]
Horvath SE, Daum G. Lipids of mitochondria. Prog Lipid Res 2013; 52(4): 590-614.
[http://dx.doi.org/10.1016/j.plipres.2013.07.002] [PMID: 24007978]
[58]
Daum G, Vance JE. Import of lipids into mitochondria. Prog Lipid Res 1997; 36(2-3): 103-30.
[http://dx.doi.org/10.1016/S0163-7827(97)00006-4] [PMID: 9624424]
[59]
Tamura Y, Harada Y, Nishikawa S, et al. Tam41 is a CDP-diacylglycerol synthase required for cardiolipin biosynthesis in mitochondria. Cell Metab 2013; 17(5): 709-18.
[http://dx.doi.org/10.1016/j.cmet.2013.03.018] [PMID: 23623749]
[60]
Osman C, Haag M, Wieland FT, Brügger B, Langer T. A mitochondrial phosphatase required for cardiolipin biosynthesis: the PGP phosphatase Gep4. EMBO J 2010; 29(12): 1976-87.
[http://dx.doi.org/10.1038/emboj.2010.98] [PMID: 20485265]
[61]
Beyer K, Klingenberg M. ADP/ATP carrier protein from beef heart mitochondria has high amounts of tightly bound cardiolipin, as revealed by 31P nuclear magnetic resonance. Biochemistry 1985; 24(15): 3821-6.
[http://dx.doi.org/10.1021/bi00336a001] [PMID: 2996583]
[62]
Acehan D, Malhotra A, Xu Y, Ren M, Stokes DL, Schlame M. Cardiolipin affects the supramolecular organization of ATP synthase in mitochondria. Biophys J 2011; 100(9): 2184-92.
[http://dx.doi.org/10.1016/j.bpj.2011.03.031] [PMID: 21539786]
[63]
Kagan VE, Tyurin VA, Jiang J, et al. Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors. Nat Chem Biol 2005; 1(4): 223-32.
[http://dx.doi.org/10.1038/nchembio727] [PMID: 16408039]
[64]
Dudek J. Role of cardiolipin in mitochondrial signaling pathways. Front Cell Dev Biol 2017; 5: 90.
[http://dx.doi.org/10.3389/fcell.2017.00090] [PMID: 29034233]
[65]
Ren M, Phoon CK, Schlame M. Metabolism and function of mitochondrial cardiolipin. Prog Lipid Res 2014; 55: 1-16.
[http://dx.doi.org/10.1016/j.plipres.2014.04.001] [PMID: 24769127]
[66]
Hiltunen JK, Okubo F, Kursu VA, Autio KJ, Kastaniotis AJ. Mitochondrial fatty acid synthesis and maintenance of respiratory competent mitochondria in yeast. Biochem Soc Trans 2005; 33(Pt 5): 1162-5.
[http://dx.doi.org/10.1042/BST0331162] [PMID: 16246072]
[67]
Xia M, Zhang Y, Jin K, Lu Z, Zeng Z, Xiong W. Communication between mitochondria and other organelles: a brand-new perspective on mitochondria in cancer. Cell Biosci 2019; 9: 27.
[http://dx.doi.org/10.1186/s13578-019-0289-8] [PMID: 30931098]
[68]
Olzmann JA, Carvalho P. Dynamics and functions of lipid droplets. Nat Rev Mol Cell Biol 2019; 20(3): 137-55.
[http://dx.doi.org/10.1038/s41580-018-0085-z] [PMID: 30523332]
[69]
Scharwey M, Tatsuta T, Langer T. Mitochondrial lipid transport at a glance. J Cell Sci 2013; 126(Pt 23): 5317-23.
[PMID: 24190879]
[70]
Lopez J, Tait SW. Mitochondrial apoptosis: Killing cancer using the enemy within. Br J Cancer 2015; 112(6): 957-62.
[http://dx.doi.org/10.1038/bjc.2015.85] [PMID: 25742467]
[71]
Tait SW, Green DR. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 2010; 11(9): 621-32.
[http://dx.doi.org/10.1038/nrm2952] [PMID: 20683470]
[72]
Garcia-Ruiz C, Conde de la Rosa L, Ribas V, Fernandez-Checa JC. Mitochondrial cholesterol and cancer. Semin Cancer Biol 2020.
[PMID: 32805396]
[73]
Randall EC, Zadra G, Chetta P, et al. Molecular Characterization of Prostate Cancer with Associated Gleason Score Using Mass Spectrometry Imaging. Mol Cancer Res 2019; 17(5): 1155-65.
[http://dx.doi.org/10.1158/1541-7786.MCR-18-1057] [PMID: 30745465]
[74]
Kiebish MA, Han X, Cheng H, Chuang JH, Seyfried TN. Cardiolipin and electron transport chain abnormalities in mouse brain tumor mitochondria: Lipidomic evidence supporting the Warburg theory of cancer. J Lipid Res 2008; 49(12): 2545-56.
[http://dx.doi.org/10.1194/jlr.M800319-JLR200] [PMID: 18703489]
[75]
Feng HM, Zhao Y, Zhang JP, et al. Expression and potential mechanism of metabolism-related genes and CRLS1 in non-small cell lung cancer. Oncol Lett 2018; 15(2): 2661-8.
[PMID: 29434989]
[76]
Yin J, Liu Q, Chen C, Liu W. Small regulatory polypeptide of amino acid response negatively relates to poor prognosis and controls hepatocellular carcinoma progression via regulating microRNA-5581-3p/human cardiolipin synthase 1. J Cell Physiol 2019; 234(10): 17589-99.
[http://dx.doi.org/10.1002/jcp.28383] [PMID: 30825207]
[77]
Garcia I, Crowther AJ, Gama V, Miller CR, Deshmukh M, Gershon TR. Bax deficiency prolongs cerebellar neurogenesis, accelerates medulloblastoma formation and paradoxically increases both malignancy and differentiation. Oncogene 2015; 34(29): 3881.
[http://dx.doi.org/10.1038/onc.2015.204] [PMID: 26179456]
[78]
Chen M, Zhang Y, Zheng PS. Tafazzin (TAZ) promotes the tumorigenicity of cervical cancer cells and inhibits apoptosis. PLoS One 2017; 12(5): e0177171.
[http://dx.doi.org/10.1371/journal.pone.0177171] [PMID: 28489874]
[79]
Pathak S, Meng WJ, Zhang H, et al. Tafazzin protein expression is associated with tumorigenesis and radiation response in rectal cancer: a study of Swedish clinical trial on preoperative radiotherapy. PLoS One 2014; 9(5): e98317.
[http://dx.doi.org/10.1371/journal.pone.0098317] [PMID: 24858921]
[80]
Praharaj PP, Naik PP, Panigrahi DP, et al. Intricate role of mitochondrial lipid in mitophagy and mitochondrial apoptosis: its implication in cancer therapeutics. Cell Mol Life Sci 2019; 76(9): 1641-52.
[http://dx.doi.org/10.1007/s00018-018-2990-x] [PMID: 30539200]
[81]
Sentelle RD, Senkal CE, Jiang W, et al. Ceramide targets autophagosomes to mitochondria and induces lethal mitophagy. Nat Chem Biol 2012; 8(10): 831-8.
[http://dx.doi.org/10.1038/nchembio.1059] [PMID: 22922758]
[82]
Tirodkar TS, Voelkel-Johnson C. Sphingolipids in apoptosis. Exp Oncol 2012; 34(3): 231-42.
[PMID: 23070008]
[83]
Ahmadpour ST, Mahéo K, Servais S, Brisson L, Dumas JF. Cardiolipin, the mitochondrial signature lipid: Implication in cancer. Int J Mol Sci 2020; 21(21): 21.
[http://dx.doi.org/10.3390/ijms21218031] [PMID: 33126604]
[84]
McGarry JD, Brown NF. The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur J Biochem 1997; 244(1): 1-14.
[http://dx.doi.org/10.1111/j.1432-1033.1997.00001.x] [PMID: 9063439]
[85]
Samudio I, Harmancey R, Fiegl M, et al. Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction. J Clin Invest 2010; 120(1): 142-56.
[http://dx.doi.org/10.1172/JCI38942] [PMID: 20038799]
[86]
Schafer ZT, Grassian AR, Song L, et al. Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature 2009; 461(7260): 109-13.
[http://dx.doi.org/10.1038/nature08268] [PMID: 19693011]
[87]
Zaugg K, Yao Y, Reilly PT, et al. Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress. Genes Dev 2011; 25(10): 1041-51.
[http://dx.doi.org/10.1101/gad.1987211] [PMID: 21576264]
[88]
Aznar Benitah S. Metastatic-initiating cells and lipid metabolism. Cell Stress 2017; 1(3): 110-4.
[http://dx.doi.org/10.15698/cst2017.12.113] [PMID: 31225441]
[89]
Halldorsson S, Rohatgi N, Magnusdottir M, et al. Metabolic re-wiring of isogenic breast epithelial cell lines following epithelial to mesenchymal transition. Cancer Lett 2017; 396: 117-29.
[http://dx.doi.org/10.1016/j.canlet.2017.03.019] [PMID: 28323032]
[90]
Carracedo A, Weiss D, Leliaert AK, et al. A metabolic prosurvival role for PML in breast cancer. J Clin Invest 2012; 122(9): 3088-100.
[http://dx.doi.org/10.1172/JCI62129] [PMID: 22886304]
[91]
Park JH, Vithayathil S, Kumar S, et al. Fatty acid oxidation-driven src links mitochondrial energy reprogramming and oncogenic properties in triple-negative breast cancer. Cell Rep 2016; 14(9): 2154-65.
[http://dx.doi.org/10.1016/j.celrep.2016.02.004] [PMID: 26923594]
[92]
Jeon SM, Chandel NS, Hay N. AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature 2012; 485(7400): 661-5.
[http://dx.doi.org/10.1038/nature11066] [PMID: 22660331]
[93]
Padanad MS, Konstantinidou G, Venkateswaran N, et al. Fatty acid oxidation mediated by acyl-coa synthetase long chain 3 is required for mutant kras lung tumorigenesis. Cell Rep 2016; 16(6): 1614-28.
[http://dx.doi.org/10.1016/j.celrep.2016.07.009] [PMID: 27477280]
[94]
Cook KL, Soto-Pantoja DR, Clarke PA, et al. Endoplasmic reticulum stress protein grp78 modulates lipid metabolism to control drug sensitivity and antitumor immunity in breast cancer. Cancer Res 2016; 76(19): 5657-70.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-2616] [PMID: 27698188]
[95]
Linher-Melville K, Zantinge S, Sanli T, Gerstein H, Tsakiridis T, Singh G. Establishing a relationship between prolactin and altered fatty acid β-oxidation via carnitine palmitoyl transferase 1 in breast cancer cells. BMC Cancer 2011; 11: 56.
[http://dx.doi.org/10.1186/1471-2407-11-56] [PMID: 21294903]
[96]
Wu Y, Hurren R, MacLean N, et al. Carnitine transporter CT2 (SLC22A16) is over-expressed in acute myeloid leukemia (AML) and target knockdown reduces growth and viability of AML cells. Apoptosis 2015; 20(8): 1099-108.
[http://dx.doi.org/10.1007/s10495-015-1137-x] [PMID: 25998464]
[97]
Wang MD, Wu H, Huang S, et al. HBx regulates fatty acid oxidation to promote hepatocellular carcinoma survival during metabolic stress. Oncotarget 2016; 7(6): 6711-26.
[http://dx.doi.org/10.18632/oncotarget.6817] [PMID: 26744319]
[98]
Lin H, Patel S, Affleck VS, et al. Fatty acid oxidation is required for the respiration and proliferation of malignant glioma cells. Neuro-oncol 2017; 19(1): 43-54.
[http://dx.doi.org/10.1093/neuonc/now128] [PMID: 27365097]
[99]
Ma Y, Temkin SM, Hawkridge AM, et al. Fatty acid oxidation: An emerging facet of metabolic transformation in cancer. Cancer Lett 2018; 435: 92-100.
[http://dx.doi.org/10.1016/j.canlet.2018.08.006] [PMID: 30102953]
[100]
Qu Q, Zeng F, Liu X, Wang QJ, Deng F. Fatty acid oxidation and carnitine palmitoyltransferase I: emerging therapeutic targets in cancer. Cell Death Dis 2016; 7: e2226.
[http://dx.doi.org/10.1038/cddis.2016.132] [PMID: 27195673]
[101]
Liu PP, Liu J, Jiang WQ, et al. Elimination of chronic lymphocytic leukemia cells in stromal microenvironment by targeting CPT with an antiangina drug perhexiline. Oncogene 2016; 35(43): 5663-73.
[http://dx.doi.org/10.1038/onc.2016.103] [PMID: 27065330]
[102]
Shi J, Fu H, Jia Z, He K, Fu L, Wang W. High expression of CPT1A predicts adverse outcomes: A potential therapeutic target for acute myeloid leukemia. EBioMedicine 2016; 14: 55-64.
[http://dx.doi.org/10.1016/j.ebiom.2016.11.025] [PMID: 27916548]
[103]
Shao H, Mohamed EM, Xu GG, et al. Carnitine palmitoyltransferase 1A functions to repress FoxO transcription factors to allow cell cycle progression in ovarian cancer. Oncotarget 2016; 7(4): 3832-46.
[http://dx.doi.org/10.18632/oncotarget.6757] [PMID: 26716645]
[104]
Aiderus A, Black MA, Dunbier AK. Fatty acid oxidation is associated with proliferation and prognosis in breast and other cancers. BMC Cancer 2018; 18(1): 805.
[http://dx.doi.org/10.1186/s12885-018-4626-9] [PMID: 30092766]
[105]
Rubio-Gozalbo ME, Bakker JA, Waterham HR, Wanders RJ. Carnitine-acylcarnitine translocase deficiency, clinical, biochemical and genetic aspects. Mol Aspects Med 2004; 25(5-6): 521-32.
[http://dx.doi.org/10.1016/j.mam.2004.06.007] [PMID: 15363639]
[106]
Gao T, Li M, Mu G, Hou T, Zhu WG, Yang Y. PKCζ phosphorylates SIRT6 to mediate fatty acid β-oxidation in colon cancer cells. Neoplasia 2019; 21(1): 61-73.
[http://dx.doi.org/10.1016/j.neo.2018.11.008] [PMID: 30504065]
[107]
Valentino A, Calarco A, Di Salle A, et al. Deregulation of MicroRNAs mediated control of carnitine cycle in prostate cancer: molecular basis and pathophysiological consequences. Oncogene 2017; 36(43): 6030-40.
[http://dx.doi.org/10.1038/onc.2017.216] [PMID: 28671672]
[108]
Melone MAB, Valentino A, Margarucci S, Galderisi U, Giordano A, Peluso G. The carnitine system and cancer metabolic plasticity. Cell Death Dis 2018; 9(2): 228.
[http://dx.doi.org/10.1038/s41419-018-0313-7] [PMID: 29445084]
[109]
Kim WT, Yun SJ, Yan C, et al. Metabolic pathway signatures associated with urinary metabolite biomarkers differentiate bladder cancer patients from healthy controls. Yonsei Med J 2016; 57(4): 865-71.
[http://dx.doi.org/10.3349/ymj.2016.57.4.865] [PMID: 27189278]
[110]
Sun C, Wang F, Zhang Y, Yu J, Wang X. Mass spectrometry imaging-based metabolomics to visualize the spatially resolved reprogramming of carnitine metabolism in breast cancer. Theranostics 2020; 10(16): 7070-82.
[http://dx.doi.org/10.7150/thno.45543] [PMID: 32641979]
[111]
Yu DL, Li HW, Wang Y, et al. Acyl-CoA dehydrogenase long chain expression is associated with esophageal squamous cell carcinoma progression and poor prognosis. OncoTargets Ther 2018; 11: 7643-53.
[http://dx.doi.org/10.2147/OTT.S171963] [PMID: 30464513]
[112]
Xie BX, Zhang H, Wang J, et al. Analysis of differentially expressed genes in LNCaP prostate cancer progression model. J Androl 2011; 32(2): 170-82.
[http://dx.doi.org/10.2164/jandrol.109.008748] [PMID: 20864652]
[113]
Huang D, Li T, Li X, et al. HIF-1-mediated suppression of acyl-CoA dehydrogenases and fatty acid oxidation is critical for cancer progression. Cell Rep 2014; 8(6): 1930-42.
[http://dx.doi.org/10.1016/j.celrep.2014.08.028] [PMID: 25242319]
[114]
Balaban S, Nassar ZD, Zhang AY, et al. Extracellular fatty acids are the major contributor to lipid synthesis in prostate cancer. Mol Cancer Res 2019; 17(4): 949-62.
[http://dx.doi.org/10.1158/1541-7786.MCR-18-0347] [PMID: 30647103]
[115]
Yeh CS, Wang JY, Cheng TL, Juan CH, Wu CH, Lin SR. Fatty acid metabolism pathway play an important role in carcinogenesis of human colorectal cancers by Microarray-Bioinformatics analysis. Cancer Lett 2006; 233(2): 297-308.
[http://dx.doi.org/10.1016/j.canlet.2005.03.050] [PMID: 15885896]
[116]
Birkenkamp-Demtroder K, Christensen LL, Olesen SH, et al. Gene expression in colorectal cancer. Cancer Res 2002; 62(15): 4352-63.
[PMID: 12154040]
[117]
Jankova L, Chan C, Fung CL, et al. Proteomic comparison of colorectal tumours and non-neoplastic mucosa from paired patient samples using iTRAQ mass spectrometry. Mol Biosyst 2011; 7(11): 2997-3005.
[http://dx.doi.org/10.1039/c1mb05236e] [PMID: 21808808]
[118]
Cho NH, Koh ES, Lee DW, et al. Comparative proteomics of pulmonary tumors with neuroendocrine differentiation. J Proteome Res 2006; 5(3): 643-50.
[http://dx.doi.org/10.1021/pr050460x] [PMID: 16512680]
[119]
Sakata M, Kurachi H, Morishige K, et al. Messenger RNA differential display reverse-transcriptase-polymerase-chain-reaction analysis of a progestogen-suppressive gene in a human endometrial-cancer cell line. Int J Cancer 1998; 78(1): 125-9.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19980925)78:1<125::AID-IJC20>3.0.CO;2-9] [PMID: 9724104]
[120]
Zhu XS, Gao P, Dai YC, Xie JP, Zeng W, Lian QN. Attenuation of enoyl coenzyme A hydratase short chain 1 expression in gastric cancer cells inhibits cell proliferation and migration in vitro. Cell Mol Biol Lett 2014; 19(4): 576-89.
[http://dx.doi.org/10.2478/s11658-014-0213-5] [PMID: 25338767]
[121]
Yokoyama Y, Kuramitsu Y, Takashima M, et al. Proteomic profiling of proteins decreased in hepatocellular carcinoma from patients infected with hepatitis C virus. Proteomics 2004; 4(7): 2111-6.
[http://dx.doi.org/10.1002/pmic.200300712] [PMID: 15221772]
[122]
Montesdeoca N, López M, Ariza X, Herrero L, Makowski K. Inhibitors of lipogenic enzymes as a potential therapy against cancer. FASEB J 2020; 34(9): 11355-81.
[http://dx.doi.org/10.1096/fj.202000705R] [PMID: 32761847]
[123]
Board M, Newsholme E. Hydroxycitrate causes altered pyruvate metabolism by tumorigenic cells. Biochem Mol Biol Int 1996; 40(5): 1047-56.
[http://dx.doi.org/10.1080/15216549600201683] [PMID: 8955895]
[124]
Guais A, Baronzio G, Sanders E, et al. Adding a combination of hydroxycitrate and lipoic acid (METABLOC™) to chemotherapy improves effectiveness against tumor development: experimental results and case report. Invest New Drugs 2012; 30(1): 200-11.
[http://dx.doi.org/10.1007/s10637-010-9552-x] [PMID: 20931262]
[125]
Qiao C, Huang W, Chen J, et al. IGF1-mediated HOXA13 overexpression promotes colorectal cancer metastasis through upregulating ACLY and IGF1R. Cell Death Dis 2021; 12(6): 564.
[http://dx.doi.org/10.1038/s41419-021-03833-2] [PMID: 34075028]
[126]
Svensson RU, Parker SJ, Eichner LJ, et al. Inhibition of acetyl-CoA carboxylase suppresses fatty acid synthesis and tumor growth of non-small-cell lung cancer in preclinical models. Nat Med 2016; 22(10): 1108-19.
[http://dx.doi.org/10.1038/nm.4181] [PMID: 27643638]
[127]
Chen L, Duan Y, Wei H, et al. Acetyl-CoA carboxylase (ACC) as a therapeutic target for metabolic syndrome and recent developments in ACC1/2 inhibitors. Expert Opin Investig Drugs 2019; 28(10): 917-30.
[http://dx.doi.org/10.1080/13543784.2019.1657825] [PMID: 31430206]
[128]
Corominas-Faja B, Cuyàs E, Gumuzio J, et al. Chemical inhibition of acetyl-CoA carboxylase suppresses self-renewal growth of cancer stem cells. Oncotarget 2014; 5(18): 8306-16.
[http://dx.doi.org/10.18632/oncotarget.2059] [PMID: 25246709]
[129]
Harwood HJ Jr, Petras SF, Shelly LD, et al. Isozyme-nonselective N-substituted bipiperidylcarboxamide acetyl-CoA carboxylase inhibitors reduce tissue malonyl-CoA concentrations, inhibit fatty acid synthesis, and increase fatty acid oxidation in cultured cells and in experimental animals. J Biol Chem 2003; 278(39): 37099-111.
[http://dx.doi.org/10.1074/jbc.M304481200] [PMID: 12842871]
[130]
Hess D, Chisholm JW, Igal RA. Inhibition of stearoylCoA desaturase activity blocks cell cycle progression and induces programmed cell death in lung cancer cells. PLoS One 2010; 5(6): e11394.
[http://dx.doi.org/10.1371/journal.pone.0011394] [PMID: 20613975]
[131]
Li EQ, Zhao W, Zhang C, et al. Synthesis and anti-cancer activity of ND-646 and its derivatives as acetyl-CoA carboxylase 1 inhibitors. Eur J Pharm Sci 2019; 137: 105010.
[http://dx.doi.org/10.1016/j.ejps.2019.105010] [PMID: 31325544]
[132]
Schcolnik-Cabrera A, Chávez-Blanco A, Domínguez-Gómez G, et al. Orlistat as a FASN inhibitor and multitargeted agent for cancer therapy. Expert Opin Investig Drugs 2018; 27(5): 475-89.
[http://dx.doi.org/10.1080/13543784.2018.1471132] [PMID: 29723075]
[133]
Bhargava-Shah A, Foygel K, Devulapally R, Paulmurugan R. Orlistat and antisense-miRNA-loaded PLGA-PEG nanoparticles for enhanced triple negative breast cancer therapy. Nanomedicine (Lond) 2016; 11(3): 235-47.
[http://dx.doi.org/10.2217/nnm.15.193] [PMID: 26787319]
[134]
Ventura R, Mordec K, Waszczuk J, et al. Inhibition of de novo palmitate synthesis by fatty acid synthase induces apoptosis in tumor cells by remodeling cell membranes, inhibiting signaling pathways, and reprogramming gene expression. EBioMedicine 2015; 2(8): 808-24.
[http://dx.doi.org/10.1016/j.ebiom.2015.06.020] [PMID: 26425687]
[135]
Falchook G, Patel M, Infante J, et al. Abstract CT153: First in human study of the first-in-class fatty acid synthase (FASN) inhibitor TVB-2640. 2017; CT153-CT153.
[136]
Longo N, Frigeni M, Pasquali M. Carnitine transport and fatty acid oxidation. Biochim Biophys Acta 2016; 1863(10): 2422-35.
[http://dx.doi.org/10.1016/j.bbamcr.2016.01.023] [PMID: 26828774]
[137]
Tomoda H, Igarashi K, Cyong JC, Omura S. Evidence for an essential role of long chain acyl-CoA synthetase in animal cell proliferation. Inhibition of long chain acyl-CoA synthetase by triacsins caused inhibition of Raji cell proliferation. J Biol Chem 1991; 266(7): 4214-9.
[http://dx.doi.org/10.1016/S0021-9258(20)64309-5] [PMID: 1999415]
[138]
Zhang J, Liu Z, Lian Z, et al. Monoacylglycerol lipase: A novel potential therapeutic target and prognostic indicator for hepatocellular carcinoma. Sci Rep 2016; 6: 35784.
[http://dx.doi.org/10.1038/srep35784] [PMID: 27767105]
[139]
Granchi C, Caligiuri I, Minutolo F, Rizzolio F, Tuccinardi T. A patent review of Monoacylglycerol Lipase (MAGL) inhibitors (2013-2017). Expert Opin Ther Pat 2017; 27(12): 1341-51.
[http://dx.doi.org/10.1080/13543776.2018.1389899] [PMID: 29053063]
[140]
Ma M, Bai J, Ling Y, et al. Monoacylglycerol lipase inhibitor JZL184 regulates apoptosis and migration of colorectal cancer cells. Mol Med Rep 2016; 13(3): 2850-6.
[http://dx.doi.org/10.3892/mmr.2016.4829] [PMID: 26847687]
[141]
Granchi C, Lapillo M, Glasmacher S, et al. Optimization of a benzoylpiperidine class identifies a highly potent and selective reversible monoacylglycerol lipase (MAGL) inhibitor. J Med Chem 2019; 62(4): 1932-58.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01483] [PMID: 30715876]
[142]
Muccioli GG, Labar G, Lambert DM. CAY10499, a novel monoglyceride lipase inhibitor evidenced by an expeditious MGL assay. ChemBioChem 2008; 9(16): 2704-10.
[http://dx.doi.org/10.1002/cbic.200800428] [PMID: 18855964]
[143]
Tracz-Gaszewska Z, Dobrzyn P. Stearoyl-CoA desaturase 1 as a therapeutic target for the treatment of cancer. Cancers 2019; 11(7): 948.
[http://dx.doi.org/10.3390/cancers11070948] [PMID: 31284458]
[144]
von Roemeling CA, Marlow LA, Wei JJ, et al. Stearoyl-CoA desaturase 1 is a novel molecular therapeutic target for clear cell renal cell carcinoma. Clin Cancer Res 2013; 19(9): 2368-80.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-3249] [PMID: 23633458]
[145]
Piao C, Cui X, Zhan B, et al. Inhibition of stearoyl CoA desaturase-1 activity suppresses tumour progression and improves prognosis in human bladder cancer. J Cell Mol Med 2019; 23(3): 2064-76.
[http://dx.doi.org/10.1111/jcmm.14114] [PMID: 30592142]
[146]
Ma MKF, Lau EYT, Leung DHW, et al. Stearoyl-CoA desaturase regulates sorafenib resistance via modulation of ER stress-induced differentiation. J Hepatol 2017; 67(5): 979-90.
[http://dx.doi.org/10.1016/j.jhep.2017.06.015] [PMID: 28647567]
[147]
Chen L, Ren J, Yang L, et al. Stearoyl-CoA desaturase-1 mediated cell apoptosis in colorectal cancer by promoting ceramide synthesis. Sci Rep 2016; 6: 19665.
[http://dx.doi.org/10.1038/srep19665] [PMID: 26813308]
[148]
Li W, Bai H, Liu S, et al. Targeting stearoyl-CoA desaturase 1 to repress endometrial cancer progression. Oncotarget 2018; 9(15): 12064-78.
[http://dx.doi.org/10.18632/oncotarget.24304] [PMID: 29552293]
[149]
Roongta UV, Pabalan JG, Wang X, et al. Cancer cell dependence on unsaturated fatty acids implicates stearoyl-CoA desaturase as a target for cancer therapy. Mol Cancer Res 2011; 9(11): 1551-61.
[http://dx.doi.org/10.1158/1541-7786.MCR-11-0126] [PMID: 21954435]
[150]
Li J, Condello S, Thomes-Pepin J, et al. Lipid desaturation is a metabolic marker and therapeutic target of ovarian cancer stem cells. Cell Stem Cell 2017; 20(3): 303-314.e5.
[http://dx.doi.org/10.1016/j.stem.2016.11.004] [PMID: 28041894]
[151]
Huang G-M, Jiang Q-H, Cai C, Qu M, Shen W. SCD1 negatively regulates autophagy-induced cell death in human hepatocellular carcinoma through inactivation of the AMPK signaling pathway. Cancer Lett 2015; 358(2): 180-90.
[http://dx.doi.org/10.1016/j.canlet.2014.12.036] [PMID: 25528629]
[152]
Pinkham K, Park DJ, Hashemiaghdam A, et al. Stearoyl CoA desaturase is essential for regulation of endoplasmic reticulum homeostasis and tumor growth in glioblastoma cancer stem cells. Stem Cell Reports 2019; 12(4): 712-27.
[http://dx.doi.org/10.1016/j.stemcr.2019.02.012] [PMID: 30930246]
[153]
Wang Y, Lu JH, Wang F, et al. Inhibition of fatty acid catabolism augments the efficacy of oxaliplatin-based chemotherapy in gastrointestinal cancers. Cancer Lett 2020; 473: 74-89.
[http://dx.doi.org/10.1016/j.canlet.2019.12.036] [PMID: 31904482]
[154]
Schlaepfer IR, Rider L, Rodrigues LU, et al. Lipid catabolism via CPT1 as a therapeutic target for prostate cancer. Mol Cancer Ther 2014; 13(10): 2361-71.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0183] [PMID: 25122071]
[155]
Cheng S, Wang G, Wang Y, et al. Fatty acid oxidation inhibitor etomoxir suppresses tumor progression and induces cell cycle arrest via PPARγ-mediated pathway in bladder cancer. Clin Sci (Lond) 2019; 133(15): 1745-58.
[http://dx.doi.org/10.1042/CS20190587] [PMID: 31358595]
[156]
Gugiatti E, Tenca C, Ravera S, et al. A reversible carnitine palmitoyltransferase (CPT1) inhibitor offsets the proliferation of chronic lymphocytic leukemia cells. Haematologica 2018; 103(11): e531-6.
[http://dx.doi.org/10.3324/haematol.2017.175414] [PMID: 29930162]
[157]
Ricciardi MR, Mirabilii S, Allegretti M, et al. Targeting the leukemia cell metabolism by the CPT1a inhibition: functional preclinical effects in leukemias. Blood 2015; 126(16): 1925-9.
[http://dx.doi.org/10.1182/blood-2014-12-617498] [PMID: 26276667]
[158]
Ambrosio MR, Piccaluga PP, Ponzoni M, et al. The alteration of lipid metabolism in Burkitt lymphoma identifies a novel marker: adipophilin. PLoS One 2012; 7(8): e44315.
[http://dx.doi.org/10.1371/journal.pone.0044315] [PMID: 22952953]
[159]
Nallanthighal S, Rada M, Heiserman JP, et al. Inhibition of collagen XI alpha 1-induced fatty acid oxidation triggers apoptotic cell death in cisplatin-resistant ovarian cancer. Cell Death Dis 2020; 11(4): 258.
[http://dx.doi.org/10.1038/s41419-020-2442-z] [PMID: 32312965]
[160]
Lee EA, Angka L, Rota SG, et al. Targeting mitochondria with avocatin B induces selective leukemia cell death. Cancer Res 2015; 75(12): 2478-88.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-2676] [PMID: 26077472]
[161]
Wang CH, Wang SS, Ko WJ, et al. Acetyl-l-carnitine and oxfenicine on cardiac pumping mechanics in streptozotocin-induced diabetes in male Wistar rats. PLoS One 2013; 8(7): e69977.
[http://dx.doi.org/10.1371/journal.pone.0069977] [PMID: 23922880]
[162]
Kantor PF, Lucien A, Kozak R, Lopaschuk GD. The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase. Circ Res 2000; 86(5): 580-8.
[http://dx.doi.org/10.1161/01.RES.86.5.580] [PMID: 10720420]
[163]
Zacharowski K, Blackburn B, Thiemermann C. Ranolazine, a partial fatty acid oxidation inhibitor, reduces myocardial infarct size and cardiac troponin T release in the rat. Eur J Pharmacol 2001; 418(1-2): 105-10.
[http://dx.doi.org/10.1016/S0014-2999(01)00920-7] [PMID: 11334871]
[164]
Hossain F, Al-Khami AA, Wyczechowska D, et al. Inhibition of fatty acid oxidation modulates immunosuppressive functions of myeloid-derived suppressor cells and enhances cancer therapies. Cancer Immunol Res 2015; 3(11): 1236-47.
[http://dx.doi.org/10.1158/2326-6066.CIR-15-0036] [PMID: 26025381]
[165]
Loubière C, Goiran T, Laurent K, Djabari Z, Tanti JF, Bost F. Metformin-induced energy deficiency leads to the inhibition of lipogenesis in prostate cancer cells. Oncotarget 2015; 6(17): 15652-61.
[http://dx.doi.org/10.18632/oncotarget.3404] [PMID: 26002551]
[166]
Fendt SM, Bell EL, Keibler MA, et al. Metformin decreases glucose oxidation and increases the dependency of prostate cancer cells on reductive glutamine metabolism. Cancer Res 2013; 73(14): 4429-38.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-0080] [PMID: 23687346]
[167]
Lord SR, Collins JM, Cheng WC, et al. Transcriptomic analysis of human primary breast cancer identifies fatty acid oxidation as a target for metformin. Br J Cancer 2020; 122(2): 258-65.
[http://dx.doi.org/10.1038/s41416-019-0665-5] [PMID: 31819193]
[168]
Zhou G, Myers R, Li Y, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 2001; 108(8): 1167-74.
[http://dx.doi.org/10.1172/JCI13505] [PMID: 11602624]
[169]
De Oliveira MP, Liesa M. The role of mitochondrial fat oxidation in cancer cell proliferation and survival. Cells 2020; 9(12): 9.
[http://dx.doi.org/10.3390/cells9122600] [PMID: 33291682]
[170]
Koundouros N, Poulogiannis G. Reprogramming of fatty acid metabolism in cancer. Br J Cancer 2020; 122(1): 4-22.
[http://dx.doi.org/10.1038/s41416-019-0650-z] [PMID: 31819192]
[171]
Singh KB, Hahm E-R, Pore SK, Singh SV. Leelamine is a novel lipogenesis inhibitor in prostate cancer cells in vitro and in vivo. Mol Cancer Ther 2019; 18(10): 1800-10.
[http://dx.doi.org/10.1158/1535-7163.MCT-19-0046] [PMID: 31395683]
[172]
Deng Z, Wong N-K, Guo Z, Zou K, Xiao Y, Zhou Y. Dehydrocurvularin is a potent antineoplastic agent irreversibly blocking ATP-citrate lyase: Evidence from chemoproteomics. Chem Commun (Camb) 2019; 55(29): 4194-7.
[http://dx.doi.org/10.1039/C9CC00256A] [PMID: 30895984]
[173]
Pike LS, Smift AL, Croteau NJ, Ferrick DA, Wu M. Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells. Biochim Biophys Acta 2011; 1807(6): 726-34.
[http://dx.doi.org/10.1016/j.bbabio.2010.10.022] [PMID: 21692241]
[174]
Estañ MC, Calviño E, Calvo S, et al. Apoptotic efficacy of etomoxir in human acute myeloid leukemia cells. Cooperation with arsenic trioxide and glycolytic inhibitors, and regulation by oxidative stress and protein kinase activities. PLoS One 2014; 9(12): e115250.
[http://dx.doi.org/10.1371/journal.pone.0115250] [PMID: 25506699]
[175]
Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 2014; 94(3): 909-50.
[http://dx.doi.org/10.1152/physrev.00026.2013] [PMID: 24987008]
[176]
Green DR, Reed JC. Mitochondria and apoptosis. Science 1998; 281(5381): 1309-12.
[http://dx.doi.org/10.1126/science.281.5381.1309] [PMID: 9721092]
[177]
Wang C, Youle RJ. The role of mitochondria in apoptosis*. Annu Rev Genet 2009; 43: 95-118.
[http://dx.doi.org/10.1146/annurev-genet-102108-134850] [PMID: 19659442]
[178]
Bartel K, Pein H, Popper B, et al. Connecting lysosomes and mitochondria - a novel role for lipid metabolism in cancer cell death. Cell Commun Signal 2019; 17(1): 87.
[http://dx.doi.org/10.1186/s12964-019-0399-2] [PMID: 31358011]
[179]
Bosc C, Broin N, Fanjul M, et al. Autophagy regulates fatty acid availability for oxidative phosphorylation through mitochondria-endoplasmic reticulum contact sites. Nat Commun 2020; 11(1): 4056.
[http://dx.doi.org/10.1038/s41467-020-17882-2] [PMID: 32792483]
[180]
Alexander S, Swatson WS, Alexander H. Pharmacogenetics of resistance to Cisplatin and other anticancer drugs and the role of sphingolipid metabolism. Methods Mol Biol 2013; 983: 185-204.
[http://dx.doi.org/10.1007/978-1-62703-302-2_10] [PMID: 23494308]
[181]
Gouazé-Andersson V, Flowers M, Karimi R, et al. Inhibition of acid ceramidase by a 2-substituted aminoethanol amide synergistically sensitizes prostate cancer cells to N-(4-hydroxyphenyl) retinamide. Prostate 2011; 71(10): 1064-73.
[http://dx.doi.org/10.1002/pros.21321] [PMID: 21557271]
[182]
Flowers M, Fabriás G, Delgado A, Casas J, Abad JL, Cabot MC. C6-ceramide and targeted inhibition of acid ceramidase induce synergistic decreases in breast cancer cell growth. Breast Cancer Res Treat 2012; 133(2): 447-58.
[http://dx.doi.org/10.1007/s10549-011-1768-8] [PMID: 21935601]
[183]
Bai M, Rone MB, Papadopoulos V, Bornhop DJ. A novel functional translocator protein ligand for cancer imaging. Bioconjug Chem 2007; 18(6): 2018-23.
[http://dx.doi.org/10.1021/bc700251e] [PMID: 17979225]
[184]
Mukherjee S, Das SK. Translocator protein (TSPO) in breast cancer. Curr Mol Med 2012; 12(4): 443-57.
[PMID: 22348612]
[185]
Kim SK, Foote MB, Huang L. The targeted intracellular delivery of cytochrome C protein to tumors using lipid-apolipoprotein nanoparticles. Biomaterials 2012; 33(15): 3959-66.
[http://dx.doi.org/10.1016/j.biomaterials.2012.02.010] [PMID: 22365810]
[186]
Vladimirov YA, Sarisozen C, Vladimirov GK, Filipczak N, Polimova AM, Torchilin VP. The cytotoxic action of cytochrome c/cardiolipin nanocomplex (Cyt-CL) on cancer cells in culture. Pharm Res 2017; 34(6): 1264-75.
[http://dx.doi.org/10.1007/s11095-017-2143-1] [PMID: 28321609]
[187]
Ralph SJ, Low P, Dong L, Lawen A, Neuzil J. Mitocans: mitochondrial targeted anti-cancer drugs as improved therapies and related patent documents. Recent Patents Anticancer Drug Discov 2006; 1(3): 327-46.
[http://dx.doi.org/10.2174/157489206778776952] [PMID: 18221044]
[188]
Gogada R, Amadori M, Zhang H, et al. Curcumin induces Apaf-1-dependent, p21-mediated caspase activation and apoptosis. Cell Cycle 2011; 10(23): 4128-37.
[http://dx.doi.org/10.4161/cc.10.23.18292] [PMID: 22101335]
[189]
Gogada R, Prabhu V, Amadori M, Scott R, Hashmi S, Chandra D. Resveratrol induces p53-independent, X-linked inhibitor of apoptosis protein (XIAP)-mediated Bax protein oligomerization on mitochondria to initiate cytochrome c release and caspase activation. J Biol Chem 2011; 286(33): 28749-60.
[http://dx.doi.org/10.1074/jbc.M110.202440] [PMID: 21712378]
[190]
Wang L, Liu L, Shi Y, et al. Berberine induces caspase-independent cell death in colon tumor cells through activation of apoptosis-inducing factor. PLoS One 2012; 7(5): e36418.
[http://dx.doi.org/10.1371/journal.pone.0036418] [PMID: 22574158]
[191]
Heiligtag SJ, Bredehorst R, David KA. Key role of mitochondria in cerulenin-mediated apoptosis. Cell Death Differ 2002; 9(9): 1017-25.
[http://dx.doi.org/10.1038/sj.cdd.4401055] [PMID: 12181752]
[192]
Fimognari C, Lenzi M, Ferruzzi L, et al. Mitochondrial pathway mediates the antileukemic effects of Hemidesmus indicus, a promising botanical drug. PLoS One 2011; 6(6): e21544.
[http://dx.doi.org/10.1371/journal.pone.0021544] [PMID: 21738701]
[193]
Griffin C, Karnik A, McNulty J, Pandey S. Pancratistatin selectively targets cancer cell mitochondria and reduces growth of human colon tumor xenografts. Mol Cancer Ther 2011; 10(1): 57-68.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0735] [PMID: 21220492]
[194]
Capozzi A, Mantuano E, Matarrese P, et al. A new 4-phenyl-1,8-naphthyridine derivative affects carcinoma cell proliferation by impairing cell cycle progression and inducing apoptosis. Anticancer Agents Med Chem 2012; 12(6): 653-62.
[http://dx.doi.org/10.2174/187152012800617731] [PMID: 22263796]
[195]
Park MT, Song MJ, Oh ET, et al. The anti-tumour compound, RH1, causes mitochondria-mediated apoptosis by activating c-Jun N-terminal kinase. Br J Pharmacol 2011; 163(3): 567-85.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01233.x] [PMID: 21250978]
[196]
Broadley K, Larsen L, Herst PM, Smith RA, Berridge MV, McConnell MJ. The novel phloroglucinol PMT7 kills glycolytic cancer cells by blocking autophagy and sensitizing to nutrient stress. J Cell Biochem 2011; 112(7): 1869-79.
[http://dx.doi.org/10.1002/jcb.23107] [PMID: 21433059]
[197]
Freitas M, Alves V, Sarmento-Ribeiro AB, Mota-Pinto A. Combined effect of sodium selenite and docetaxel on PC3 metastatic prostate cancer cell line. Biochem Biophys Res Commun 2011; 408(4): 713-9.
[http://dx.doi.org/10.1016/j.bbrc.2011.04.109] [PMID: 21549092]
[198]
Mollinedo F, Fernández M, Hornillos V, et al. Involvement of lipid rafts in the localization and dysfunction effect of the antitumor ether phospholipid edelfosine in mitochondria. Cell Death Dis 2011; 2: e158.
[http://dx.doi.org/10.1038/cddis.2011.41] [PMID: 21593790]
[199]
Dong LF, Jameson VJ, Tilly D, et al. Mitochondrial targeting of vitamin E succinate enhances its pro-apoptotic and anti-cancer activity via mitochondrial complex II. J Biol Chem 2011; 286(5): 3717-28.
[http://dx.doi.org/10.1074/jbc.M110.186643] [PMID: 21059645]
[200]
Sun RC, Board PG, Blackburn AC. Targeting metabolism with arsenic trioxide and dichloroacetate in breast cancer cells. Mol Cancer 2011; 10: 142.
[http://dx.doi.org/10.1186/1476-4598-10-142] [PMID: 22093145]
[201]
Jolly C, Morimoto RI. Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J Natl Cancer Inst 2000; 92(19): 1564-72.
[http://dx.doi.org/10.1093/jnci/92.19.1564] [PMID: 11018092]
[202]
Kang BH, Tavecchio M, Goel HL, et al. Targeted inhibition of mitochondrial Hsp90 suppresses localised and metastatic prostate cancer growth in a genetic mouse model of disease. Br J Cancer 2011; 104(4): 629-34.
[http://dx.doi.org/10.1038/bjc.2011.9] [PMID: 21285984]
[203]
Peng B, Xu L, Cao F, et al. HSP90 inhibitor, celastrol, arrests human monocytic leukemia cell U937 at G0/G1 in thiol-containing agents reversible way. Mol Cancer 2010; 9: 79.
[http://dx.doi.org/10.1186/1476-4598-9-79] [PMID: 20398364]
[204]
Dai Y, Desano J, Tang W, et al. Natural proteasome inhibitor celastrol suppresses androgen-independent prostate cancer progression by modulating apoptotic proteins and NF-kappaB. PLoS One 2010; 5(12): e14153.
[http://dx.doi.org/10.1371/journal.pone.0014153] [PMID: 21170316]
[205]
Chen G, Zhang X, Zhao M, et al. Celastrol targets mitochondrial respiratory chain complex I to induce reactive oxygen species-dependent cytotoxicity in tumor cells. BMC Cancer 2011; 11: 170.
[http://dx.doi.org/10.1186/1471-2407-11-170] [PMID: 21569548]
[206]
Wheaton WW, Weinberg SE, Hamanaka RB, et al. Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. eLife 2014; 3: e02242.
[http://dx.doi.org/10.7554/eLife.02242] [PMID: 24843020]
[207]
Fedeles BI, Zhu AY, Young KS, et al. Chemical genetics analysis of an aniline mustard anticancer agent reveals complex I of the electron transport chain as a target. J Biol Chem 2011; 286(39): 33910-20.
[http://dx.doi.org/10.1074/jbc.M111.278390] [PMID: 21832047]
[208]
Raza H, John A, Benedict S. Acetylsalicylic acid-induced oxidative stress, cell cycle arrest, apoptosis and mitochondrial dysfunction in human hepatoma HepG2 cells. Eur J Pharmacol 2011; 668(1-2): 15-24.
[http://dx.doi.org/10.1016/j.ejphar.2011.06.016] [PMID: 21722632]
[209]
Jose C, Hébert-Chatelain E, Bellance N, et al. AICAR inhibits cancer cell growth and triggers cell-type distinct effects on OXPHOS biogenesis, oxidative stress and Akt activation. Biochim Biophys Acta 2011; 1807(6): 707-18.
[http://dx.doi.org/10.1016/j.bbabio.2010.12.002] [PMID: 21692240]
[210]
Lamb R, Ozsvari B, Lisanti CL, et al. Antibiotics that target mitochondria effectively eradicate cancer stem cells, across multiple tumor types: treating cancer like an infectious disease. Oncotarget 2015; 6(7): 4569-84.
[http://dx.doi.org/10.18632/oncotarget.3174] [PMID: 25625193]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy