Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Oral Angiotensin-(1-7) Peptide Modulates Intestinal Microbiota Improving Metabolic Profile in Obese Mice

Author(s): Amanda Machado, Janaína Ribeiro Oliveira, Deborah de F. Lelis, Victor Hugo D. Guimarães, Alfredo M.B. de Paula, Andre L.S. Guimarães, Igor V. Brandi, Bruna Mara A. de Carvalho, Diego Vicente da Costa, Cláudia Regina Vieira, Ulisses Alves Pereira, Theles de Oliveira Costa, João M.O. Andrade, Robson Augusto Souza Santos and Sérgio H.S. Santos*

Volume 28, Issue 10, 2021

Published on: 16 August, 2021

Page: [1127 - 1137] Pages: 11

DOI: 10.2174/0929866528666210816115645

Price: $65

Abstract

Background: Obesity is a serious health problem that dysregulate Renin-Angiotensin System (RAS) and intestinal microbiota.

Objective: The present study aimed to evaluate the Angiotensin-(1-7) [ANG-(1-7)] oral formulation effects on obese mice intestinal microbiota.

Methods: Mice were divided into four groups: obese and non-obese treated with ANG-(1-7) and obese and non-obese without ANG-(1-7) during four weeks.

Results: We observed a significant decrease in the fasting plasma glucose, total cholesterol, triglycerides, and Low-density lipoprotein levels and increased High-density lipoprotein in animals treated with ANG-(1-7). The histological analysis showed intestinal villi height reduction in mice treated with ANG-(1-7). Additionally, increased Bacteroidetes and decreased Firmicutes (increased Bacteroidetes/ Firmicutes ratio) and Enterobacter cloacae populations were observed in the High-Fat Diet + ANG-(1-7) group. Receptor toll-like 4 (TLR4) intestinal mRNA expression was reduced in the HFD+ANG-(1-7) group. Finally, the intestinal expression of the neutral amino acid transporter (B0AT1) was increased in animals treated with ANG-(1-7), indicating a possible mechanism associated with tryptophan uptake.

Conclusion: The results of the present study suggest for the first time an interaction between oral ANG-(1-7) and intestinal microbiota modulation.

Keywords: Gut microbiota, metabolism, renin-angiotensin system, metabolic endotoxemia, small intestine, ACE2.

Graphical Abstract

[1]
Kelly, T.; Yang, W.; Chen, C.S.; Reynolds, K.; He, J. Global burden of obesity in 2005 and projections to 2030. Int. J. Obes., 2008, 32(9), 1431-1437.
[http://dx.doi.org/10.1038/ijo.2008.102] [PMID: 18607383]
[2]
Alberti, K.G.M.M.; Zimmet, P.; Shaw, J. Metabolic syndrome-a new world-wide definition. A consensus statement from the international diabetes federation. Diabet. Med., 2006, 23(5), 469-480.
[http://dx.doi.org/10.1111/j.1464-5491.2006.01858.x] [PMID: 16681555]
[3]
Santos, S.H.; Andrade, J.M.; Fernandes, L.R.; Sinisterra, R.D.; Sousa, F.B.; Feltenberger, J.D.; Alvarez-Leite, J.I.; Santos, R.A. Oral Angiotensin-(1-7) prevented obesity and hepatic inflammation by inhibition of resistin/TLR4/MAPK/NF-κB in rats fed with high-fat diet. Peptides, 2013, 46, 47-52.
[http://dx.doi.org/10.1016/j.peptides.2013.05.010] [PMID: 23714175]
[4]
Santos, S.H.; Fernandes, L.R.; Mario, E.G.; Ferreira, A.V.; Pôrto, L.C.; Alvarez-Leite, J.I.; Botion, L.M.; Bader, M.; Alenina, N.; Santos, R.A. Mas deficiency in FVB/N mice produces marked changes in lipid and glycemic metabolism. Diabetes, 2008, 57(2), 340-347.
[http://dx.doi.org/10.2337/db07-0953] [PMID: 18025412]
[5]
Santos, S.H.; Fernandes, L.R.; Pereira, C.S.; Guimarães, A.L.; de Paula, A.M.; Campagnole-Santos, M.J.; Alvarez-Leite, J.I.; Bader, M.; Santos, R.A. Increased circulating angiotensin-(1-7) protects white adipose tissue against development of a proinflammatory state stimulated by a high-fat diet. Regul. Pept., 2012, 178(1-3), 64-70.
[http://dx.doi.org/10.1016/j.regpep.2012.06.009] [PMID: 22749992]
[6]
Santos, S.H.; Braga, J.F.; Mario, E.G.; Pôrto, L.C.; Rodrigues-Machado, Mda.G.; Murari, A.; Botion, L.M.; Alenina, N.; Bader, M.; Santos, R.A. Improved lipid and glucose metabolism in transgenic rats with increased circulating angiotensin-(1-7). Arterioscler. Thromb. Vasc. Biol., 2010, 30(5), 953-961.
[http://dx.doi.org/10.1161/ATVBAHA.109.200493] [PMID: 20203301]
[7]
Tremaroli, V.; Bäckhed, F. Functional interactions between the gut microbiota and host metabolism. Nature, 2012, 489(7415), 242-249.
[http://dx.doi.org/10.1038/nature11552] [PMID: 22972297]
[8]
Mendes, K.L.; Lelis, D.F.; de Freitas, D.F.; da Silveira, L.H.; de Paula, A.M.B.; Guimarães, A.L.S.; Oliveira, J.R.; Andrade, M.C.; Nobre, S.A.M.; Santos, S.H.S. Acute oral treatment with resveratrol and Lactococcus Lactis Subsp. Lactis decrease body weight and improve liver proinflammatory markers in C57BL/6 mice. Mol. Biol. Rep., 2021, 48(2), 1725-1734.
[http://dx.doi.org/10.1007/s11033-021-06190-7] [PMID: 33586053]
[9]
Ley, R.E.; Bäckhed, F.; Turnbaugh, P.; Lozupone, C.A.; Knight, R.D.; Gordon, J.I. Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. USA, 2005, 102(31), 11070-11075.
[http://dx.doi.org/10.1073/pnas.0504978102] [PMID: 16033867]
[10]
Ley, R.E.; Turnbaugh, P.J.; Klein, S.; Gordon, J.I. Microbial ecology: human gut microbes associated with obesity. Nature, 2006, 444(7122), 1022-1023.
[http://dx.doi.org/10.1038/4441022a] [PMID: 17183309]
[11]
Bäckhed, F.; Ding, H.; Wang, T.; Hooper, L.V.; Koh, G.Y.; Nagy, A.; Semenkovich, C.F.; Gordon, J.I. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. USA, 2004, 101(44), 15718-15723.
[http://dx.doi.org/10.1073/pnas.0407076101] [PMID: 15505215]
[12]
Bäckhed, F.; Manchester, J.K.; Semenkovich, C.F.; Gordon, J.I. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc. Natl. Acad. Sci. USA, 2007, 104(3), 979-984.
[http://dx.doi.org/10.1073/pnas.0605374104] [PMID: 17210919]
[13]
Ridaura, V.K.; Faith, J.J.; Rey, F.E.; Cheng, J.; Duncan, A.E.; Kau, A.L.; Griffin, N.W.; Lombard, V.; Henrissat, B.; Bain, J.R.; Muehlbauer, M.J.; Ilkayeva, O.; Semenkovich, C.F.; Funai, K.; Hayashi, D.K.; Lyle, B.J.; Martini, M.C.; Ursell, L.K.; Clemente, J.C.; Van Treuren, W.; Walters, W.A.; Knight, R.; Newgard, C.B.; Heath, A.C.; Gordon, J.I. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science, 2013, 341(6150), 1241214.
[http://dx.doi.org/10.1126/science.1241214] [PMID: 24009397]
[14]
Machado, A.S.; Oliveira, J.R.; Lelis, D.F.; de Paula, A.M.B.; Guimarães, A.L.S.; Andrade, J.M.O.; Brandi, I.V.; Santos, S.H.S. Oral probiotic bifidobacterium longum supplementation improves metabolic parameters and alters the expression of the renin-angiotensin system in obese mice liver. Biol. Res. Nurs., 2021, 23(1), 100-108.
[http://dx.doi.org/10.1177/1099800420942942] [PMID: 32700545]
[15]
Hashimoto, T.; Perlot, T.; Rehman, A.; Trichereau, J.; Ishiguro, H.; Paolino, M.; Sigl, V.; Hanada, T.; Hanada, R.; Lipinski, S.; Wild, B.; Camargo, S.M.; Singer, D.; Richter, A.; Kuba, K.; Fukamizu, A.; Schreiber, S.; Clevers, H.; Verrey, F.; Rosenstiel, P.; Penninger, J.M. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature, 2012, 487(7408), 477-481.
[http://dx.doi.org/10.1038/nature11228] [PMID: 22837003]
[16]
Oliveira Andrade, J.M.; de Farias Lelis, D.; Mafra, V.; Cota, J. The Angiotensin converting enzyme 2 (ACE2), gut microbiota, and cardiovascular health. Protein Pept. Lett., 2017, 24(9), 827-832.
[http://dx.doi.org/10.2174/0929866524666170728145333] [PMID: 28758592]
[17]
Cole-Jeffrey, C.T.; Liu, M.; Katovich, M.J.; Raizada, M.K.; Shenoy, V. ACE2 and microbiota: emerging targets for cardiopulmonary disease therapy. J. Cardiovasc. Pharmacol., 2015, 66(6), 540-550.
[http://dx.doi.org/10.1097/FJC.0000000000000307] [PMID: 26322922]
[18]
Lula, I.; Denadai, A.L.; Resende, J.M.; de Sousa, F.B.; de Lima, G.F.; Pilo-Veloso, D.; Heine, T.; Duarte, H.A.; Santos, R.A.; Sinisterra, R.D. Study of angiotensin-(1-7) vasoactive peptide and its beta-cyclodextrin inclusion complexes: complete sequence-specific NMR assignments and structural studies. Peptides, 2007, 28(11), 2199-2210.
[http://dx.doi.org/10.1016/j.peptides.2007.08.011] [PMID: 17904691]
[19]
Andrade, J.M.; Lemos, Fde.O.; da Fonseca Pires, S.; Millán, R.D.; de Sousa, F.B.; Guimarães, A.L.; Qureshi, M.; Feltenberger, J.D.; de Paula, A.M.; Neto, J.T.; Lopes, M.T.; Andrade, H.M.; Santos, R.A.; Santos, S.H. Proteomic white adipose tissue analysis of obese mice fed with a high-fat diet and treated with oral angiotensin-(1-7). Peptides, 2014, 60, 56-62.
[http://dx.doi.org/10.1016/j.peptides.2014.07.023] [PMID: 25102447]
[20]
Haslam, D.W.; James, W.P. Obesity. Lancet, 2005, 366(9492), 1197-1209.
[http://dx.doi.org/10.1016/S0140-6736(05)67483-1] [PMID: 16198769]
[21]
Rocha, V.Z.; Libby, P. Obesity, inflammation, and atherosclerosis. Nat. Rev. Cardiol., 2009, 6(6), 399-409.
[http://dx.doi.org/10.1038/nrcardio.2009.55] [PMID: 19399028]
[22]
Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem., 1972, 18(6), 499-502.
[http://dx.doi.org/10.1093/clinchem/18.6.499] [PMID: 4337382]
[23]
Navarrete, J.; Vásquez, B.; Del Sol, M. Morphoquantitative analysis of the Ileum of C57BL/6 mice (Mus musculus) fed with a high-fat diet. Int. J. Clin. Exp. Pathol., 2015, 8(11), 14649-14657.
[PMID: 26823788]
[24]
Lee, S.J.; Bose, S.; Seo, J.G.; Chung, W.S.; Lim, C.Y.; Kim, H. The effects of co-administration of probiotics with herbal medicine on obesity, metabolic endotoxemia and dysbiosis: a randomized double-blind controlled clinical trial. Clin. Nutr., 2014, 33(6), 973-981.
[http://dx.doi.org/10.1016/j.clnu.2013.12.006] [PMID: 24411490]
[25]
Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001, 25(4), 402-408.
[http://dx.doi.org/10.1006/meth.2001.1262] [PMID: 11846609]
[26]
Santos, E.M.S.; Santos, H.O.; Fonseca, S.N.; Guimarães, T.A.; Fraga, C.A.C.; Jones, K.M.; Paula, A.M.B.d.; Santos, S.H.S.; Guimarães, A.L.S.; Farias, L.C. Obesity-related genes and oral cancer: a bioinformatics approach and systematic review. J. Appl. Bioinforma. Comput. Biol., 2016, 5(1)
[27]
Oliveira Andrade, J.M.; Paraíso, A.F.; Garcia, Z.M.; Ferreira, A.V.; Sinisterra, R.D.; Sousa, F.B.; Guimarães, A.L.; de Paula, A.M.; Campagnole-Santos, M.J.; dos Santos, R.A.; Santos, S.H. Cross talk between angiotensin-(1-7)/Mas axis and sirtuins in adipose tissue and metabolism of high-fat feed mice. Peptides, 2014, 55, 158-165.
[http://dx.doi.org/10.1016/j.peptides.2014.03.006] [PMID: 24642355]
[28]
Williams, I.M.; Otero, Y.F.; Bracy, D.P.; Wasserman, D.H.; Biaggioni, I.; Arnold, A.C. Chronic angiotensin-(1-7) improves insulin sensitivity in high-fat fed mice independent of blood pressure. Hypertension, 2016, 67(5), 983-991.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.115.06935] [PMID: 26975707]
[29]
Feltenberger, J.D.; Andrade, J.M.; Paraíso, A.; Barros, L.O.; Filho, A.B.; Sinisterra, R.D.; Sousa, F.B.; Guimarães, A.L.; de Paula, A.M.; Campagnole-Santos, M.J.; Qureshi, M.; dos Santos, R.A.; Santos, S.H. Oral formulation of angiotensin-(1-7) improves lipid metabolism and prevents high-fat diet-induced hepatic steatosis and inflammation in mice. Hypertension, 2013, 62(2), 324-330.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.111.00919] [PMID: 23753417]
[30]
Soares, A.; Beraldi, E.J.; Ferreira, P.E.; Bazotte, R.B.; Buttow, N.C. Intestinal and neuronal myenteric adaptations in the small intestine induced by a high-fat diet in mice. BMC Gastroenterol., 2015, 15, 3.
[http://dx.doi.org/10.1186/s12876-015-0228-z] [PMID: 25609418]
[31]
Santoro, S.; Velhote, M.C.P.; Malzoni, C.E.; Mechenas, A.S.G.; Strassmann, V.; Scheinberg, M. Digestive adaptation: a new surgical proposal to treat obesity based on physiology and evolution. risk, 2003, 19, 20.
[32]
Pluske, J.R.; Hampson, D.J.; Williams, I.H. Factors influencing the structure and function of the small intestine in the weaned pig: a review. Livest. Prod. Sci., 1997, 51(1), 215-236.
[http://dx.doi.org/10.1016/S0301-6226(97)00057-2]
[33]
Fu, X.Y.; Li, Z.; Zhang, N.; Yu, H.T.; Wang, S.R.; Liu, J.R. Effects of gastrointestinal motility on obesity. Nutr. Metab. (Lond.), 2014, 11(1), 3.
[http://dx.doi.org/10.1186/1743-7075-11-3] [PMID: 24398016]
[34]
De Wit, N.J.; Bosch-Vermeulen, H.; De Groot, P.J.; Hooiveld, G.J.; Bromhaar, M.M.; Jansen, J.; Muller, M.; Van Der Meer, R. The role of the small intestine in the development of dietary fat-induced obesity and insulin resistance in C57BL/6J mice. BMC Med Genomics., 2008, 1, 14.
[35]
Oliveira, L.P.; Guimarães, V.H.D.; Oliveira, J.R.; Guimarães, A.L.S.; de Paula, A.M.B.; Bader, M.; Santos, R.A.S.D.; Santos, S.H.S. Genetic deletion of the angiotensin-(1-7) receptor Mas leads to alterations in gut villi length modulating TLR4/PI3K/AKT and produces microbiome dysbiosis. Neuropeptides, 2020, 82, 102056.
[http://dx.doi.org/10.1016/j.npep.2020.102056] [PMID: 32505463]
[36]
Sharma, R.; Schumacher, U.; Ronaasen, V.; Coates, M. Rat intestinal mucosal responses to a microbial flora and different diets. Gut, 1995, 36(2), 209-214.
[http://dx.doi.org/10.1136/gut.36.2.209] [PMID: 7883219]
[37]
Gordon, H.A.; Bruckner-Kardoss, E. Effect of normal microbial flora on intestinal surface area. Am. J. Physiol., 1961, 201, 175-178.
[http://dx.doi.org/10.1152/ajplegacy.1961.201.1.175] [PMID: 13707165]
[38]
Reinhardt, C.; Bergentall, M.; Greiner, T.U.; Schaffner, F.; Ostergren-Lundén, G.; Petersen, L.C.; Ruf, W.; Bäckhed, F. Tissue factor and PAR1 promote microbiota-induced intestinal vascular remodelling. Nature, 2012, 483(7391), 627-631.
[http://dx.doi.org/10.1038/nature10893] [PMID: 22407318]
[39]
Banasaz, M.; Norin, E.; Holma, R.; Midtvedt, T. Increased enterocyte production in gnotobiotic rats mono-associated with Lactobacillus rhamnosus GG. Appl. Environ. Microbiol., 2002, 68(6), 3031-3034.
[http://dx.doi.org/10.1128/AEM.68.6.3031-3034.2002] [PMID: 12039764]
[40]
Alam, M.; Midtvedt, T.; Uribe, A. Differential cell kinetics in the ileum and colon of germfree rats. Scand. J. Gastroenterol., 1994, 29(5), 445-451.
[http://dx.doi.org/10.3109/00365529409096836] [PMID: 8036460]
[41]
Qin, J.; Li, R.; Raes, J.; Arumugam, M.; Burgdorf, K.S.; Manichanh, C.; Nielsen, T.; Pons, N.; Levenez, F.; Yamada, T.; Mende, D.R.; Li, J.; Xu, J.; Li, S.; Li, D.; Cao, J.; Wang, B.; Liang, H.; Zheng, H.; Xie, Y.; Tap, J.; Lepage, P.; Bertalan, M.; Batto, J-M.; Hansen, T.; Le Paslier, D.; Linneberg, A.; Nielsen, H.B.; Pelletier, E.; Renault, P.; Sicheritz-Ponten, T.; Turner, K.; Zhu, H.; Yu, C.; Li, S.; Jian, M.; Zhou, Y.; Li, Y.; Zhang, X.; Li, S.; Qin, N.; Yang, H.; Wang, J.; Brunak, S.; Doré, J.; Guarner, F.; Kristiansen, K.; Pedersen, O.; Parkhill, J.; Weissenbach, J.; Bork, P.; Ehrlich, S.D.; Wang, J. A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 2010, 464(7285), 59-65.
[http://dx.doi.org/10.1038/nature08821] [PMID: 20203603]
[42]
Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature, 2012, 486(7402), 207-214.
[http://dx.doi.org/10.1038/nature11234] [PMID: 22699609]
[43]
Karlsson, F.; Tremaroli, V.; Nielsen, J.; Bäckhed, F. Assessing the human gut microbiota in metabolic diseases. Diabetes, 2013, 62(10), 3341-3349.
[http://dx.doi.org/10.2337/db13-0844] [PMID: 24065795]
[44]
Kien, C.L.; Schmitz-Brown, M.; Solley, T.; Sun, D.; Frankel, W.L. Increased colonic luminal synthesis of butyric acid is associated with lowered colonic cell proliferation in piglets. J. Nutr., 2006, 136(1), 64-69.
[http://dx.doi.org/10.1093/jn/136.1.64] [PMID: 16365060]
[45]
Turnbaugh, P.J.; Ley, R.E.; Mahowald, M.A.; Magrini, V.; Mardis, E.R.; Gordon, J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 2006, 444(7122), 1027-1031.
[http://dx.doi.org/10.1038/nature05414] [PMID: 17183312]
[46]
Villanueva-Millán, M.J.; Pérez-Matute, P.; Oteo, J.A. Gut microbiota: a key player in health and disease. A review focused on obesity. J. Physiol. Biochem., 2015, 71(3), 509-525.
[http://dx.doi.org/10.1007/s13105-015-0390-3] [PMID: 25749935]
[47]
Fleissner, C.K.; Huebel, N.; Abd El-Bary, M.M.; Loh, G.; Klaus, S.; Blaut, M. Absence of intestinal microbiota does not protect mice from diet-induced obesity. Br. J. Nutr., 2010, 104(6), 919-929.
[http://dx.doi.org/10.1017/S0007114510001303] [PMID: 20441670]
[48]
Arora, T.; Sharma, R. Fermentation potential of the gut microbiome: implications for energy homeostasis and weight management. Nutr. Rev., 2011, 69(2), 99-106.
[http://dx.doi.org/10.1111/j.1753-4887.2010.00365.x] [PMID: 21294743]
[49]
Caricilli, A.M.; Picardi, P.K.; de Abreu, L.L.; Ueno, M.; Prada, P.O.; Ropelle, E.R.; Hirabara, S.M.; Castoldi, Â.; Vieira, P.; Camara, N.O.; Curi, R.; Carvalheira, J.B.; Saad, M.J. Gut microbiota is a key modulator of insulin resistance in TLR 2 knockout mice. PLoS Biol., 2011, 9(12), e1001212.
[http://dx.doi.org/10.1371/journal.pbio.1001212] [PMID: 22162948]
[50]
Alang, N.; Kelly, C.R. Weight gain after fecal microbiota transplantation. Open Forum Infect. Dis., 2015, 2(1), ofv004.
[http://dx.doi.org/10.1093/ofid/ofv004] [PMID: 26034755]
[51]
Drucker, D.J.; Nauck, M.A. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet, 2006, 368(9548), 1696-1705.
[http://dx.doi.org/10.1016/S0140-6736(06)69705-5] [PMID: 17098089]
[52]
Lee, H.Y.; Park, J.H.; Seok, S.H.; Baek, M.W.; Kim, D.J.; Lee, K.E.; Paek, K.S.; Lee, Y.; Park, J.H. Human originated bacteria, Lactobacillus rhamnosus PL60, produce conjugated linoleic acid and show anti-obesity effects in diet-induced obese mice. Biochim. Biophys. Acta, 2006, 1761(7), 736-744.
[http://dx.doi.org/10.1016/j.bbalip.2006.05.007] [PMID: 16807088]
[53]
Kim, S.W.; Park, K.Y.; Kim, B.; Kim, E.; Hyun, C.K. Lactobacillus rhamnosus GG improves insulin sensitivity and reduces adiposity in high-fat diet-fed mice through enhancement of adiponectin production. Biochem. Biophys. Res. Commun., 2013, 431(2), 258-263.
[http://dx.doi.org/10.1016/j.bbrc.2012.12.121] [PMID: 23313485]
[54]
Aronsson, L.; Huang, Y.; Parini, P.; Korach-André, M.; Håkansson, J.; Gustafsson, J.A.; Pettersson, S.; Arulampalam, V.; Rafter, J. Decreased fat storage by Lactobacillus paracasei is associated with increased levels of angiopoietin-like 4 protein (ANGPTL4). PLoS One, 2010, 5(9), e13087.
[http://dx.doi.org/10.1371/journal.pone.0013087] [PMID: 20927337]
[55]
Cario, E.; Gerken, G.; Podolsky, D.K. Toll-like receptor 2 controls mucosal inflammation by regulating epithelial barrier function. Gastroenterology, 2007, 132(4), 1359-1374.
[http://dx.doi.org/10.1053/j.gastro.2007.02.056] [PMID: 17408640]
[56]
Cani, P.D.; Amar, J.; Iglesias, M.A.; Poggi, M.; Knauf, C.; Bastelica, D.; Neyrinck, A.M.; Fava, F.; Tuohy, K.M.; Chabo, C.; Waget, A.; Delmée, E.; Cousin, B.; Sulpice, T.; Chamontin, B.; Ferrières, J.; Tanti, J.F.; Gibson, G.R.; Casteilla, L.; Delzenne, N.M.; Alessi, M.C.; Burcelin, R. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 2007, 56(7), 1761-1772.
[http://dx.doi.org/10.2337/db06-1491] [PMID: 17456850]
[57]
de La Serre, C.B.; Ellis, C.L.; Lee, J.; Hartman, A.L.; Rutledge, J.C.; Raybould, H.E. Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. Am. J. Physiol. Gastrointest. Liver Physiol., 2010, 299(2), G440-G448.
[http://dx.doi.org/10.1152/ajpgi.00098.2010] [PMID: 20508158]
[58]
Fei, N.; Zhao, L. An opportunistic pathogen isolated from the gut of an obese human causes obesity in germfree mice. ISME J., 2013, 7(4), 880-884.
[http://dx.doi.org/10.1038/ismej.2012.153] [PMID: 23235292]
[59]
Amar, J.; Chabo, C.; Waget, A.; Klopp, P.; Vachoux, C.; Bermúdez-Humarán, L.G.; Smirnova, N.; Bergé, M.; Sulpice, T.; Lahtinen, S.; Ouwehand, A.; Langella, P.; Rautonen, N.; Sansonetti, P.J.; Burcelin, R. Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Mol. Med., 2011, 3(9), 559-572.
[http://dx.doi.org/10.1002/emmm.201100159] [PMID: 21735552]
[60]
Gioannini, T.L.; Teghanemt, A.; Zhang, D.; Coussens, N.P.; Dockstader, W.; Ramaswamy, S.; Weiss, J.P. Isolation of an endotoxin-MD-2 complex that produces Toll-like receptor 4-dependent cell activation at picomolar concentrations. Proc. Natl. Acad. Sci. USA, 2004, 101(12), 4186-4191.
[http://dx.doi.org/10.1073/pnas.0306906101] [PMID: 15010525]
[61]
Kagan, J.C.; Medzhitov, R. Phosphoinositide-mediated adaptor recruitment controls Toll-like receptor signaling. Cell, 2006, 125(5), 943-955.
[http://dx.doi.org/10.1016/j.cell.2006.03.047] [PMID: 16751103]
[62]
Wong, T.P.; Debnam, E.S.; Leung, P.S. Involvement of an enterocyte renin-angiotensin system in the local control of SGLT1-dependent glucose uptake across the rat small intestinal brush border membrane. J. Physiol., 2007, 584(Pt 2), 613-623.
[http://dx.doi.org/10.1113/jphysiol.2007.138578] [PMID: 17702818]
[63]
Camargo, S.M.; Singer, D.; Makrides, V.; Huggel, K.; Pos, K.M.; Wagner, C.A.; Kuba, K.; Danilczyk, U.; Skovby, F.; Kleta, R.; Penninger, J.M.; Verrey, F. Tissue-specific amino acid transporter partners ACE2 and collectrin differentially interact with hartnup mutations. Gastroenterology, 2009, 136(3), 872-882.
[http://dx.doi.org/10.1053/j.gastro.2008.10.055] [PMID: 19185582]
[64]
Zhang, H.; Wada, J.; Hida, K.; Tsuchiyama, Y.; Hiragushi, K.; Shikata, K.; Wang, H.; Lin, S.; Kanwar, Y.S.; Makino, H. Collectrin, a collecting duct-specific transmembrane glycoprotein, is a novel homolog of ACE2 and is developmentally regulated in embryonic kidneys. J. Biol. Chem., 2001, 276(20), 17132-17139.
[http://dx.doi.org/10.1074/jbc.M006723200] [PMID: 11278314]
[65]
Borges, E.L.; Lima, P.B.; Peluso, A.A.B.; Sampaio, W.O.; Oliveira, J.S.d.; Oliveira, M.L.d.; Etelvino, G.M.; Ruoccolo, R.T.; Ferreira, A.J.; Santos, R.A.S. Angiotensin-(1-7) influences tryptophan absorption in the rat and mouse intestine. Br. J. Med. Med. Res., 2017, 4(19), 1-9.
[http://dx.doi.org/10.9734/BJMMR/2017/30329]
[66]
Lee, S.J.; Bose, S.; Seo, J.G.; Chung, W.S.; Lim, C.Y.; Kim, H. The effects of co-administration of probiotics with herbal medicine on obesity, metabolic endotoxemia and dysbiosis: A randomized double-blind controlled clinical trial. Clin. Nutr., 2014, 33(6), 973-981.
[67]
Anbazhagan, D.; Kathirvalu, G.G.; Mansor, M.; Yan, G.O.S.; Yusof, M.Y.; Sekaran, s.D. Multiplex polymerase chain reaction (PCR) assays for the detection of Enterobacteriaceae in clinical samples. Afr. J. Microbiol. Res., 2010, 4(11), 1186-1191.
[68]
Qin, Z.; Bagley, J.; Sukhova, G.; Baur, W.E.; Park, H.J.; Beasley, D.; Libby, P.; Zhang, Y.; Galper, J.B. Angiotensin II-induced TLR4 mediated abdominal aortic aneurysm in apolipoprotein E knockout mice is dependent on STAT3. J Mol Cell Cardiol., 2015, 87, 160-170.
[69]
Bhutia, Y.D.; Babu, E.; Ganapathy, V. Interferon-gamma induces a tryptophan-selective amino acid transporter in human colonic epithelial cells and mouse dendritic cells. Biochim Biophys Acta., 2015, 1848(2), 453-462.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy