Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

A Brief Review of the Essential Role of Nanovehicles for Improving the Therapeutic Efficacy of Pharmacological Agents Against Tumours

Author(s): Nitin Gupta, Virendra Yadav and Rakesh Patel*

Volume 19, Issue 3, 2022

Published on: 05 January, 2022

Page: [301 - 316] Pages: 16

DOI: 10.2174/1567201818666210813144105

Price: $65

Abstract

Cancer is the leading cause of death globally. There are several differences between cancer cells and normal cells. Of all the therapies, chemotherapy is the most prominent therapy to treat cancer. However, the conventional drug delivery system that is used to deliver poorly aqueous soluble chemotherapeutic agents has several obstacles such as whole-body distribution, rapid excretion, degradation before reaching the infected site, side effects, etc. Nanoformulation of these insoluble aqueous agents is the emerging delivery system for targeted and increasing solubility. Among all the three methods (physical, chemical and biological) chemical and biological methods are mostly used for the synthesis of Nanovehicles (NVs) of different sizes, shapes and dimensions. The passive targeting delivery system in which NVs supports the pharmacological agents (drugs/genes) is a good way for resolving the obstacles with a conventional delivery system. It enhances the therapeutic efficacy of pharmacological agents (drugs/genes). These NVs have several specific characters like small size, large surface area to volume ratio, surface functionalization, etc. However, this delivery is not able to deliver site-specific delivery of drugs. An active targeting delivery system in which pharmacological agents are loaded on NVs to attack directly on cancer cells and tissues is a superior way for delivering the pharmacological agents compared to the passive targeting delivery system. Various targeting ligands have been investigated and applied for targeting the delivery of drugs such as sugar, vitamin, antibodies, protein and peptides, etc. This targeted ligand’s support to guide the NVs, accumulated directly on the cancer cells with a higher level of cellular internalization compared to passive targeting and conventional delivery system.

Keywords: Targeted delivery system, nanovehicles, cancer cells, active targeting, passive targeting, pharmacological agents (drugs/genes).

Graphical Abstract

[1]
Raff, M. Cell suicide for beginners. Nature, 1998, 396(6707), 119-122.
[http://dx.doi.org/10.1038/24055] [PMID: 9823889]
[2]
Cancer. Available from: https://www.who.int/health-topics/cancer#tab=tab_1 [Accessed Feb 9, 2020]
[3]
The difference between normal and cancer cells - DrJockers.com. Available from: https://drjockers.com/cancer-cells/ [Accessed Mar 28, 2020]
[4]
DeBerardinis, R.J.; Lum, J.J.; Hatzivassiliou, G.; Thompson, C.B. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab., 2008, 7(1), 11-20.
[http://dx.doi.org/10.1016/j.cmet.2007.10.002] [PMID: 18177721]
[5]
Benjamin, D.J. The efficacy of surgical treatment of cancer - 20 years later. Med. Hypotheses, 2014, 82(4), 412-420.
[http://dx.doi.org/10.1016/j.mehy.2014.01.004] [PMID: 24480434]
[6]
Puppo, P.; Introini, C.; Naselli, A. Surgery insight: advantages and disadvantages of laparoscopic radical cystectomy to treat invasive bladder cancer. Nat. Clin. Pract. Urol., 2007, 4(7), 387-394.
[http://dx.doi.org/10.1038/ncpuro0840] [PMID: 17615550]
[7]
Soares, S.; Sousa, J.; Pais, A.; Vitorino, C. Nanomedicine: Principles, properties, and regulatory issues. Front Chem., 2018, 6(AUG), 360.
[http://dx.doi.org/10.3389/fchem.2018.00360] [PMID: 30177965]
[8]
Saifullah, B.; Arulselvan, P.; El Zowalaty, M.E.; Fakurazi, S.; Webster, T.J.; Geilich, B.M.; Hussein, M.Z. Development of a biocompatible nanodelivery system for tuberculosis drugs based on isoniazid-Mg/Al layered double hydroxide. Int. J. Nanomed., 2014, 9(1), 4749-4762.
[http://dx.doi.org/10.2147/IJN.S63608] [PMID: 25336952]
[9]
Saifullah, B.; Buskaran, K.; Shaikh, R.B.; Barahuie, F.; Fakurazi, S.; Mohd Moklas, M.A.; Hussein, M.Z. Graphene oxide⁻PEG⁻protocatechuic acid nanocomposite formulation with improved anticancer properties. Nanomaterials (Basel), 2018, 8(10), 820.
[http://dx.doi.org/10.3390/nano8100820] [PMID: 30314340]
[10]
Gupta, N.; Rai, D.B.; Jangid, A.K.; Pooja, D.; Kulhari, H. Nanomaterials-based siRNA delivery: routes of administration, hurdles and role of nanocarriers.Nanotechnology in modern animal biotechnology: recent trends and future perspectives; Singh, S.; Maurya, P.K., Eds.; Springer Singapore: Singapore, 2019, pp. 67-114.
[http://dx.doi.org/10.1007/978-981-13-6004-6_3]
[11]
Gupta, N.; Jangid, A.K.; Singh, M.; Pooja, D.; Kulhari, H. Designing two-dimensional nanosheets for improving drug delivery to fucose-receptor-overexpressing cancer cells. ChemMedChem, 2018, 13(24), 2644-2652.
[http://dx.doi.org/10.1002/cmdc.201800575] [PMID: 30371024]
[12]
Seleci, M.; Ag Seleci, D.; Joncyzk, R.; Stahl, F.; Blume, C.; Scheper, T. Smart multifunctional nanoparticles in nanomedicine. BioNanoMaterials, 2016, 17(1–2), 33-41.
[http://dx.doi.org/10.1515/bnm-2015-0030]
[13]
Jangid, A.K.; Agraval, H.; Gupta, N.; Yadav, U.C.S.; Sistla, R.; Pooja, D.; Kulhari, H. Designing of fatty acid-surfactant conjugate based nanomicelles of morin hydrate for simultaneously enhancing anticancer activity and oral bioavailability. Colloids Surf. B Biointerfaces, 2019, 175, 202-211.
[http://dx.doi.org/10.1016/j.colsurfb.2018.11.073] [PMID: 30530006]
[14]
Owens, D.E., III; Peppas, N.A. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm., 2006, 307(1), 93-102.
[http://dx.doi.org/10.1016/j.ijpharm.2005.10.010] [PMID: 16303268]
[15]
Moghimi, S.M.; Hunter, A.C. Poloxamers and poloxamines in nanoparticle engineering and experimental medicine. Trends Biotechnol., 2000, 18(10), 412-420.
[http://dx.doi.org/10.1016/S0167-7799(00)01485-2] [PMID: 10998507]
[16]
Gupta, N.; Bhagat, S.; Singh, M.; Jangid, A.K.; Bansal, V.; Singh, S.; Pooja, D.; Kulhari, H. Site-specific delivery of a natural chemotherapeutic agent to human lung cancer cells using biotinylated 2D rGO nanocarriers. Mater. Sci. Eng. C, 2020, 112, 110884.
[http://dx.doi.org/10.1016/j.msec.2020.110884] [PMID: 32409041]
[17]
Storm, G.; Belliot, S.O.; Daemen, T.; Lasic, D.D. Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Adv. Drug Deliv. Rev., 1995, 17(1), 31-48.
[http://dx.doi.org/10.1016/0169-409X(95)00039-A]
[18]
Sharma, M.; Sharma, R.; Jain, D.K. Nanotechnology based approaches for enhancing oral bioavailability of poorly water soluble antihypertensive drugs. Scientifica (Cairo), 2016, 2016, 8525679.
[http://dx.doi.org/10.1155/2016/8525679] [PMID: 27239378]
[19]
Schena, E.; Saccomandi, P.; Fong, Y. Laser ablation for cancer: past, present and future. J. Funct. Biomater., 2017, 8(2), 19.
[http://dx.doi.org/10.3390/jfb8020019] [PMID: 28613248]
[20]
Brewer, E.; Coleman, J.; Lowman, A. Emerging technologies of polymeric nanoparticles in cancer drug delivery. J. Nanomater., 2011, 2011, 408675.
[http://dx.doi.org/10.1155/2011/408675]
[21]
Rai, D.B.; Gupta, N.; Pooja, D.; Kulhari, H. Dendrimers for diagnostic applications. Pharm. Appl. Dendrimers, 2020, 291-324.
[http://dx.doi.org/10.1016/B978-0-12-814527-2.00013-5]
[22]
Pooja, D.; Kulhari, H.; Kuncha, M.; Rachamalla, S.S.; Adams, D.J.; Bansal, V.; Sistla, R. Improving efficacy, oral bioavailability, and delivery of paclitaxel using protein-grafted solid lipid nanoparticles. Mol. Pharm., 2016, 13(11), 3903-3912.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00691] [PMID: 27696858]
[23]
Olusanya, T.O.B.; Haj Ahmad, R.R.; Ibegbu, D.M.; Smith, J.R.; Elkordy, A.A. Liposomal drug delivery systems and anticancer drugs. Molecules, 2018, 23(4), 907.
[http://dx.doi.org/10.3390/molecules23040907] [PMID: 29662019]
[24]
Gupta, N.; Rai, D.B.; Jangid, A.K.; Kulhari, H. A review of theranostics applications and toxicities of carbon nanomaterials. Curr. Drug Metab., 2019, 20(6), 506-532.
[http://dx.doi.org/10.2174/1389200219666180925094515] [PMID: 30251600]
[25]
Grumezescu, R.C.P. A.M. Metal based frameworks for drug delivery systems. Curr. Top. Med. Chem., 2015, 1532-1542.
[http://dx.doi.org/10.2174/1568026615666150414145323]
[26]
Jain, P.; Bhagat, S.; Tunki, L.; Jangid, A.K.; Singh, S.; Pooja, D.; Kulhari, H. Serotonin-stearic acid bioconjugate-coated completely biodegradable Mn3O4 nanocuboids for hepatocellular carcinoma targeting. ACS Appl. Mater. Interfaces, 2020, 12(9), 10170-10182.
[http://dx.doi.org/10.1021/acsami.0c00331] [PMID: 32045206]
[27]
Blanco, M.D.; Teijon, C.; Olmo, R.M.; Teijo, J.M. Targeted nanoparticles for cancer therapy. Recent adv. Novel Drug Carrier Systems, 2012.
[http://dx.doi.org/10.5772/51382]
[28]
Bala, I.; Hariharan, S.; Kumar, M.N. PLGA nanoparticles in drug delivery: the state of the art. Crit. Rev. Ther. Drug Carrier Syst., 2004, 21(5), 387-422.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v21.i5.20] [PMID: 15719481]
[29]
LaVan, D.A.; McGuire, T.; Langer, R. Small-scale systems for in vivo drug delivery. Nat. Biotechnol., 2003, 21(10), 1184-1191.
[http://dx.doi.org/10.1038/nbt876] [PMID: 14520404]
[30]
Kulkarni, S.K. Nanotechnology: Principles and practices; Springer International Publishing, 2014.
[31]
Satyanarayana, T. A review on chemical and physical synthesis methods of nanomaterials. Int. J. Res. Appl. Sci. Eng. Technol., 2018, 6(1), 2885-2889.
[http://dx.doi.org/10.22214/ijraset.2018.1396]
[32]
Javanshir, A.; Karimi, E.; Maragheh, A.D.; Tabrizi, M.H. The antioxidant and anticancer potential of ricinus communis l. essential oil nanoemulsions. J. Food Meas. Charact., 2020, 14(3), 1356-1365.
[http://dx.doi.org/10.1007/s11694-020-00385-5]
[33]
Gan, Y.X.; Jayatissa, A.H.; Yu, Z.; Chen, X.; Li, M. Hydrothermal synthesis of nanomaterials. J. Nanomater., 2020, 2020, 8917013.
[http://dx.doi.org/10.1155/2020/8917013]
[34]
Cotin, G.; Kiefer, C.; Perton, F.; Ihiawakrim, D.; Blanco-Andujar, C.; Moldovan, S.; Lefevre, C.; Ersen, O.; Pichon, B.; Mertz, D.; Bégin-Colin, S. Unravelling the thermal decomposition parameters for the synthesis of anisotropic iron oxide nanoparticles. Nanomaterials (Basel), 2018, 8(11), 881.
[http://dx.doi.org/10.3390/nano8110881] [PMID: 30380607]
[35]
Bolden, N.W.; Rangari, V.K.; Jeelani, S.; Boyoglu, S.; Singh, S.R. Synthesis and evaluation of magnetic nanoparticles for biomedical applications. J. Nanoparticles, 2013, 2013, 1-9.
[http://dx.doi.org/10.1155/2013/370812]
[36]
Masjedi-Arani, M.; Ghanbari, D.; Salavati-Niasari, M.; Bagheri, S. Sonochemical synthesis of spherical silica nanoparticles and polymeric nanocomposites. J. Cluster Sci., 2016, 27(1), 39-53.
[http://dx.doi.org/10.1007/s10876-015-0897-3]
[37]
Kulkarni, S.K. Synthesis of nanomaterials—II (chemical methods). Nanotechnology: Principles and practices; Kulkarni, S.K., Ed.; Springer International Publishing: Cham, 2015, pp. 77-109.
[http://dx.doi.org/10.1007/978-3-319-09171-6_4]
[38]
Das, R.K.; Pachapur, V.L.; Lonappan, L.; Naghdi, M.; Pulicharla, R.; Maiti, S.; Cledon, M.; Dalila, L.M.A.; Sarma, S.J.; Brar, S.K. Biological synthesis of metallic nanoparticles: plants, animals and microbial aspects. Nanotechnol. Environ. Eng., 2017, 2(1), 18.
[http://dx.doi.org/10.1007/s41204-017-0029-4]
[39]
Li, X.; Xu, H.; Chen, Z.S.; Chen, G. Biosynthesis of nanoparticles by microorganisms and their applications. J. Nanomater., 2011, 2011, 270974.
[http://dx.doi.org/10.1155/2011/270974]
[40]
Gupta, N.; Rai, D.B.; Jangid, A.K.; Kulhari, H. Use of nanotechnology in antimicrobial therapy. Methods in microbiology; , 2019, 46, pp. 143-172.
[http://dx.doi.org/10.1016/bs.mim.2019.04.004]
[41]
Kumar, P.; Selvi Senthamil, S.; Prabha Lakshmi, A.; Selvaraj, M.; Rani Macklin, L.; Suganthi, P.; Devi Sarojini, B.; Govindaraju, M. Antibacterial activity and in-vitro cytotoxicity assay against brine shrimp using silver nanoparticles synthesized from sargassum ilicifolium. Dig. J. Nanomater. Biostruct., 2012, 7(4), 1447-1455.
[42]
Hamouda, R.A.; Hussein, M.H.; Abo-Elmagd, R.A.; Bawazir, S.S. Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica. Sci. Rep., 2019, 9(1), 13071.
[http://dx.doi.org/10.1038/s41598-019-49444-y] [PMID: 31506473]
[43]
Karmous, I.; Pandey, A.; Haj, K.B.; Chaoui, A. Efficiency of the green synthesized nanoparticles as new tools in cancer therapy: insights on plant-based bioengineered nanoparticles, biophysical properties, and anticancer roles. Biol. Trace Elem. Res., 2020, 196(1), 330-342.
[http://dx.doi.org/10.1007/s12011-019-01895-0] [PMID: 31512171]
[44]
Biological-methods-synthesis. Available from: https://www.nanoshel.com/biological-methods-synthesis [Accessed Aug 3, 2020].
[45]
Thangaraju, N.; Venkatalakshmi, R.P.; Chinnasamy, A.; Kannaiyan, P. Synthesis of silver nanoparticles and the antibacterial and anticancer activities of the crude extract of sargassum polycystum c. agardh. Nano Biomed. Eng., 2012, 4(2), 89-94.
[http://dx.doi.org/10.5101/nbe.v3i1.p89-94]
[46]
Saraniya Devi, J.; Valentin Bhimba, B.; Magesh Peter, D. Production of biogenic silver nanoparticles using sargassum longifolium and its applications. Indian J. Geo-Mar. Sci., 2013, 42, 125-130.
[47]
Govindaraju, K.; Krishnamoorthy, K.; Alsagaby, S.A.; Singaravelu, G.; Premanathan, M. Green synthesis of silver nanoparticles for selective toxicity towards cancer cells. IET Nanobiotechnol., 2015, 9(6), 325-330.
[http://dx.doi.org/10.1049/iet-nbt.2015.0001] [PMID: 26647807]
[48]
Nikinmaa, M. Factors affecting the bioavailability of chemicals. An introduction to aquatic toxicology; Nikinmaa, M. B. T.-A. I. to A. T., Ed.; Academic Press: Oxford, 2014, pp. 65-72.
[http://dx.doi.org/10.1016/B978-0-12-411574-3.00006-2]
[49]
Shinde, P.; Agraval, H.; Singh, A.; Yadav, U.C.S.; Kumar, U. Synthesis of luteolin loaded zein nanoparticles for targeted cancer therapy improving bioavailability and efficacy. J. Drug Deliv. Sci. Technol., 2019, 52, 369-378.
[http://dx.doi.org/10.1016/j.jddst.2019.04.044]
[50]
Jangid, A.K.; Patel, K.; Jain, P.; Patel, S.; Gupta, N.; Pooja, D.; Kulhari, H. Inulin-pluronic-stearic acid based double folded nanomicelles for pH-responsive delivery of resveratrol. Carbohydr. Polym., 2020, 247, 116730.
[http://dx.doi.org/10.1016/j.carbpol.2020.116730] [PMID: 32829852]
[51]
Jangid, A.K.; Pooja, D.; Jain, P.; Gupta, N.; Ramesan, S.; Kulhari, H. Self-assembled and ph-responsive polymeric nanomicelles impart effective delivery of paclitaxel to cancer cells. RSC Adv., 2021, 11(23), 13928-13939.
[http://dx.doi.org/10.1039/D1RA01574E]
[52]
Ginsberg, J. The discovery of fullerenes. Am. Chem. Soc., 2010.
[53]
Haley, B.; Frenkel, E. Nanoparticles for drug delivery in cancer treatment. Urol. Oncol., 2008, 26(1), 57-64.
[http://dx.doi.org/10.1016/j.urolonc.2007.03.015] [PMID: 18190833]
[54]
Prabhu, R.H.; Patravale, V.B.; Joshi, M.D. Polymeric nanoparticles for targeted treatment in oncology: current insights. Int. J. Nanomed., 2015, 10, 1001-1018.
[http://dx.doi.org/10.2147/IJN.S56932] [PMID: 25678788]
[55]
Iyer, A.K.; Khaled, G.; Fang, J.; Maeda, H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov. Today, 2006, 11(17-18), 812-818. Available from: https://doi.org/https://doi.org/10.1016/j.drudis.2006.07.005
[http://dx.doi.org/10.1016/j.drudis.2006.07.005] [PMID: 16935749]
[56]
Bae, Y.H.; Park, K. Targeted drug delivery to tumors: myths, reality and possibility. J. Control. Release, 2011, 153(3), 198-205.
[http://dx.doi.org/10.1016/j.jconrel.2011.06.001] [PMID: 21663778]
[57]
Bazak, R.; Houri, M.; Achy, S.E.; Hussein, W.; Refaat, T. Passive targeting of nanoparticles to cancer: A comprehensive review of the literature. Mol. Clin. Oncol., 2014, 2(6), 904-908.
[http://dx.doi.org/10.3892/mco.2014.356] [PMID: 25279172]
[58]
Pelicano, H.; Martin, D.S.; Xu, R.H.; Huang, P. Glycolysis inhibition for anticancer treatment. Oncogene, 2006, 25(34), 4633-4646.
[http://dx.doi.org/10.1038/sj.onc.1209597] [PMID: 16892078]
[59]
Gil, P.R.; Parak, W.J. Composite nanoparticles take aim at cancer. ACS Nano, 2008, 2(11), 2200-2205.
[http://dx.doi.org/10.1021/nn800716j] [PMID: 19206383]
[60]
Ferrari, M. Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer, 2005, 5(3), 161-171.
[http://dx.doi.org/10.1038/nrc1566] [PMID: 15738981]
[61]
Yatvin, M. B.; Kreutz, W.; Horwitz, B. A.; Shinitzky, M. PH-sensitive liposomes: possible clinical implications. Science (80-), 1980, 210(4475), 1253-1255.
[http://dx.doi.org/10.1126/science.7434025]
[62]
James, A.M.; Ambrose, E.J.; Lowick, J.H.B. Differences between the electrical charge carried by normal and homologous tumour cells. Nature, 1956, 177(4508), 576-577.
[http://dx.doi.org/10.1038/177576a0] [PMID: 13321908]
[63]
Le, W.; Chen, B.; Cui, Z.; Liu, Z.; Shi, D. Detection of cancer cells based on glycolytic-regulated surface electrical charges. Biophys. Rep., 2019, 5(1), 10-18.
[http://dx.doi.org/10.1007/s41048-018-0080-0]
[64]
Ran, S.; Downes, A.; Thorpe, P.E. Increased exposure of anionic phospholipids on the surface of tumor blood vessels. Cancer Res., 2002, 62(21), 6132-6140.
[PMID: 12414638]
[65]
Thorpe, P.E. Targeting anionic phospholipids on tumor blood vessels and tumor cells. Thromb. Res., 2010, 125(Suppl. 2), S134-S137. Available from: https://doi.org/https://doi.org/10.1016/S0049-3848(10)70031-1
[http://dx.doi.org/10.1016/S0049-3848(10)70031-1] [PMID: 20433993]
[66]
Chicheł, A.; Skowronek, J.; Kubaszewska, M.; Kanikowski, M. Hyperthermia - description of a method and a review of clinical applications. Rep. Pract. Oncol. Radiother., 2007, 12(5), 267-275.
[http://dx.doi.org/10.1016/S1507-1367(10)60065-X]
[67]
Sutradhar, K.B.; Amin, M.L. Nanotechnology in cancer drug delivery and selective targeting. ISRN Nanotechnol., 2014, 2014, 1-12.
[http://dx.doi.org/10.1155/2014/939378]
[68]
Deryugina, E.I.; Quigley, J.P. Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev., 2006, 25(1), 9-34.
[http://dx.doi.org/10.1007/s10555-006-7886-9] [PMID: 16680569]
[69]
Drummond, D.C.; Hong, K.; Park, J.W.; Benz, C.C.; Kirpgtin, D.B. Liposome targeting to tumors using vitamin and growth factor receptors. Vitamins and hormones; Academic Press, 2000, 60, pp. 285-332.
[http://dx.doi.org/10.1016/S0083-6729(00)60022-5]
[70]
Iinuma, H.; Maruyama, K.; Okinaga, K.; Sasaki, K.; Sekine, T.; Ishida, O.; Ogiwara, N.; Johkura, K.; Yonemura, Y. Intracellular targeting therapy of cisplatin-encapsulated transferrin-polyethylene glycol liposome on peritoneal dissemination of gastric cancer. Int. J. Cancer, 2002, 99(1), 130-137.
[http://dx.doi.org/10.1002/ijc.10242] [PMID: 11948504]
[71]
Ghotbi, Z.; Haddadi, A.; Hamdy, S.; Hung, R.W.; Samuel, J.; Lavasanifar, A. Active targeting of dendritic cells with mannan-decorated PLGA nanoparticles. J. Drug Target, 2011, 19(4), 281-292.
[http://dx.doi.org/10.3109/1061186X.2010.499463] [PMID: 20590403]
[72]
Mali, A.; Bathe, R. Suresh.; Patil, M. K. A review on colon targeted drug delivery system. Int. J. Pharm. Sci. Res., 2015, 1, 47-56.
[73]
Li, M.; Zhang, W.; Wang, B.; Gao, Y.; Song, Z.; Zheng, Q.C. Ligand-based targeted therapy: a novel strategy for hepatocellular carcinoma. Int. J. Nanomed., 2016, 11, 5645-5669.
[http://dx.doi.org/10.2147/IJN.S115727] [PMID: 27920520]
[74]
Overington, J.P.; Al-Lazikani, B.; Hopkins, A.L. How many drug targets are there? Nat. Rev. Drug Discov., 2006, 5(12), 993-996.
[http://dx.doi.org/10.1038/nrd2199] [PMID: 17139284]
[75]
Allen, T.M. Ligand-targeted therapeutics in anticancer therapy. Nat. Rev. Cancer, 2002, 2(10), 750-763.
[http://dx.doi.org/10.1038/nrc903] [PMID: 12360278]
[76]
Kulhari, H.; Pooja, D.; Shrivastava, S.; Kuncha, M.; Naidu, V.G.M.; Bansal, V.; Sistla, R.; Adams, D.J. Trastuzumab-grafted PAMAM dendrimers for the selective delivery of anticancer drugs to HER2-positive breast cancer. Sci. Rep., 2015, 2016(6), 1-13.
[http://dx.doi.org/10.1038/srep23179] [PMID: 27052896]
[77]
Nevala, W.K.; Butterfield, J.T.; Sutor, S.L.; Knauer, D.J.; Markovic, S.N. Antibody-targeted paclitaxel loaded nanoparticles for the treatment of CD20+ B-cell lymphoma. Sci. Rep., 2017, 7, 45682.
[http://dx.doi.org/10.1038/srep45682] [PMID: 28378801]
[78]
Krishnan, V.; Xu, X.; Kelly, D.; Snook, A.; Waldman, S.A.; Mason, R.W.; Jia, X.; Rajasekaran, A.K. CD19-targeted nanodelivery of doxorubicin enhances therapeutic efficacy in B-cell acute lymphoblastic leukemia. Mol. Pharm., 2015, 12(6), 2101-2111.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00071] [PMID: 25898125]
[79]
Smith, T.T.; Stephan, S.B.; Moffett, H.F.; McKnight, L.E.; Ji, W.; Reiman, D.; Bonagofski, E.; Wohlfahrt, M.E.; Pillai, S.P.S.; Stephan, M.T. In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers. Nat. Nanotechnol., 2017, 12(8), 813-820.
[http://dx.doi.org/10.1038/nnano.2017.57] [PMID: 28416815]
[80]
Tseng, S.H.; Chou, M.Y.; Chu, I.M. Cetuximab-conjugated iron oxide nanoparticles for cancer imaging and therapy. Int. J. Nanomedicine, 2015, 10, 3663-3685.
[http://dx.doi.org/10.2147/IJN.S80134] [PMID: 26056447]
[81]
Roncato, F.; Rruga, F.; Porcù, E.; Casarin, E.; Ronca, R.; Maccarinelli, F.; Realdon, N.; Basso, G.; Alon, R.; Viola, G.; Morpurgo, M. Improvement and extension of anti-EGFR targeting in breast cancer therapy by integration with the Avidin-Nucleic-Acid-Nano-Assemblies. Nat. Commun., 2018, 9(1), 4070.
[http://dx.doi.org/10.1038/s41467-018-06602-6] [PMID: 30287819]
[82]
Haddadi, A.; Hamdy, S.; Ghotbi, Z.; Samuel, J.; Lavasanifar, A. Immunoadjuvant activity of the nanoparticles’ surface modified with mannan. Nanotechnology, 2014, 25(35), 355101.
[http://dx.doi.org/10.1088/0957-4484/25/35/355101] [PMID: 25119543]
[83]
Zhou, F.; Kong, F.; Ge, L.; Liu, X.; Huang, N. Mannan-modified PLGA nanoparticles for targeted gene delivery. Int. J. Photoenergy, 2012, 2012
[http://dx.doi.org/10.1155/2012/926754]
[84]
Mozar, F.S.; Chowdhury, E.H. Surface-modification of carbonate apatite nanoparticles enhances delivery and cytotoxicity of gemcitabine and anastrozole in breast cancer cells. Pharmaceutics, 2017, 9(2), E21.
[http://dx.doi.org/10.3390/pharmaceutics9020021] [PMID: 28590445]
[85]
Mehdizadeh, M.; Rouhani, H.; Sepehri, N.; Varshochian, R.; Ghahremani, M.H.; Amini, M.; Gharghabi, M.; Ostad, S.N.; Atyabi, F.; Baharian, A.; Dinarvand, R. Biotin decorated PLGA nanoparticles containing SN-38 designed for cancer therapy. Artif. Cells Nanomed. Biotechnol., 2017, 45(3), 495-504.
[http://dx.doi.org/10.1080/21691401.2016.1178130] [PMID: 27137460]
[86]
Biscaglia, F.; Ripani, G.; Rajendran, S.; Benna, C.; Mocellin, S.; Bocchinfuso, G.; Meneghetti, M.; Palleschi, A.; Gobbo, M. Gold nanoparticle aggregates functionalized with cyclic RGD peptides for targeting and imaging of colorectal cancer cells. ACS Appl. Nano Mater., 2019, 2(10), 6436-6444.
[http://dx.doi.org/10.1021/acsanm.9b01392]
[87]
Gao, F.; Zhang, J.; Fu, C.; Xie, X.; Peng, F.; You, J.; Tang, H.; Wang, Z.; Li, P.; Chen, J. iRGD-modified lipid-polymer hybrid nanoparticles loaded with isoliquiritigenin to enhance anti-breast cancer effect and tumor-targeting ability. Int. J. Nanomed., 2017, 12, 4147-4162.
[http://dx.doi.org/10.2147/IJN.S134148] [PMID: 28615942]
[88]
Wei, Y.; Tang, T.; Pang, H.B. Cellular internalization of bystander nanomaterial induced by TAT-nanoparticles and regulated by extracellular cysteine. Nat. Commun., 2019, 10(1), 3646.
[http://dx.doi.org/10.1038/s41467-019-11631-w] [PMID: 31409778]
[89]
Wang, C.; Sun, X.; Wang, K.; Wang, Y.; Yang, F.; Wang, H. Breast cancer targeted chemotherapy based on doxorubicin-loaded bombesin peptide modified nanocarriers. Drug Deliv., 2016, 23(8), 2697-2702.
[http://dx.doi.org/10.3109/10717544.2015.1049721] [PMID: 26203692]
[90]
Pooja, D.; Gunukula, A.; Gupta, N.; Adams, D.J.; Kulhari, H. Bombesin receptors as potential targets for anticancer drug delivery and imaging. Int. J. Biochem. Cell Biol., 2019, 114, 105567.
[http://dx.doi.org/10.1016/j.biocel.2019.105567] [PMID: 31295552]
[91]
Kulhari, H.; Pooja, D.; Singh, M.K.; Kuncha, M.; Adams, D.J.; Sistla, R. Bombesin-conjugated nanoparticles improve the cytotoxic efficacy of docetaxel against gastrin-releasing but androgen-independent prostate cancer. Nanomedicine (Lond.), 2015, 10(18), 2847-2859.
[http://dx.doi.org/10.2217/nnm.15.107] [PMID: 26377157]
[92]
Du, J.; Li, L. Which one performs better for targeted lung cancer combination therapy: pre- or post-bombesin-decorated nanostructured lipid carriers? Drug Deliv., 2016, 23(5), 1799-1809.
[http://dx.doi.org/10.3109/10717544.2015.1099058] [PMID: 26455787]
[93]
Zhang, B.; Shen, S.; Liao, Z.; Shi, W.; Wang, Y.; Zhao, J.; Hu, Y.; Yang, J.; Chen, J.; Mei, H.; Hu, Y.; Pang, Z.; Jiang, X. Targeting fibronectins of glioma extracellular matrix by CLT1 peptide-conjugated nanoparticles. Biomaterials, 2014, 35(13), 4088-4098.
[http://dx.doi.org/10.1016/j.biomaterials.2014.01.046] [PMID: 24513320]
[94]
Kruse, A.M.; Meenach, S.A.; Anderson, K.W.; Hilt, J.Z. Synthesis and characterization of CREKA-conjugated iron oxide nanoparticles for hyperthermia applications. Acta Biomater., 2014, 10(6), 2622-2629.
[http://dx.doi.org/10.1016/j.actbio.2014.01.025] [PMID: 24486913]
[95]
Liang, D-S.; Su, H-T.; Liu, Y-J.; Wang, A-T.; Qi, X-R. Tumor-specific penetrating peptides-functionalized hyaluronic acid-d-α-tocopheryl succinate based nanoparticles for multi-task delivery to invasive cancers. Biomaterials, 2015, 71, 11-23.
[http://dx.doi.org/10.1016/j.biomaterials.2015.08.035] [PMID: 26310359]
[96]
Dixit, S.; Novak, T.; Miller, K.; Zhu, Y.; Kenney, M.E.; Broome, A-M. Transferrin receptor-targeted theranostic gold nanoparticles for photosensitizer delivery in brain tumors. Nanoscale, 2015, 7(5), 1782-1790.
[http://dx.doi.org/10.1039/C4NR04853A] [PMID: 25519743]
[97]
Dharap, S.S.; Qiu, B.; Williams, G.C.; Sinko, P.; Stein, S.; Minko, T. Molecular targeting of drug delivery systems to ovarian cancer by BH3 and LHRH peptides. J. Control. Release, 2003, 91(1-2), 61-73.
[http://dx.doi.org/10.1016/S0168-3659(03)00209-8] [PMID: 12932638]
[98]
Ben-David-Naim, M.; Dagan, A.; Grad, E.; Aizik, G.; Nordling- David, M.M.; Morss Clyne, A.; Granot, Z.; Golomb, G. Targeted siRNA nanoparticles for mammary carcinoma therapy. Cancers (Basel), 2019, 11(4), 442.
[http://dx.doi.org/10.3390/cancers11040442] [PMID: 30934857]
[99]
Shen, Z.; Wei, W.; Tanaka, H.; Kohama, K.; Ma, G.; Dobashi, T.; Maki, Y.; Wang, H.; Bi, J.; Dai, S. A galactosamine-mediated drug delivery carrier for targeted liver cancer therapy. Pharmacol. Res., 2011, 64(4), 410-419.
[http://dx.doi.org/10.1016/j.phrs.2011.06.015] [PMID: 21723392]
[100]
Heidarian, S.; Derakhshandeh, K.; Adibi, H.; Hosseinzadeh, L. Active targeted nanoparticles: Preparation, physicochemical characterization and in vitro cytotoxicity effect. Res. Pharm. Sci., 2015, 10(3), 241-251.
[PMID: 26600851]
[101]
Xia, Y.; Zhong, J.; Zhao, M.; Tang, Y.; Han, N.; Hua, L.; Xu, T.; Wang, C.; Zhu, B. Galactose-modified selenium nanoparticles for targeted delivery of doxorubicin to hepatocellular carcinoma. Drug Deliv., 2019, 26(1), 1-11.
[http://dx.doi.org/10.1080/10717544.2018.1556359] [PMID: 31928356]
[102]
Dhar, S.; Gu, F.X.; Langer, R.; Farokhzad, O.C.; Lippard, S.J. Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles. Proc. Natl. Acad. Sci. USA, 2008, 105(45), 17356-17361.
[http://dx.doi.org/10.1073/pnas.0809154105] [PMID: 18978032]
[103]
Chen, J.; Wu, H.; Han, D.; Xie, C. Using anti-VEGF McAb and magnetic nanoparticles as double-targeting vector for the radioimmunotherapy of liver cancer. Cancer Lett., 2006, 231(2), 169-175.
[http://dx.doi.org/10.1016/j.canlet.2005.01.024] [PMID: 16399221]
[104]
Cao, Z.; Tong, R.; Mishra, A.; Xu, W.; Wong, G.C.L.; Cheng, J.; Lu, Y. Reversible cell-specific drug delivery with aptamer-functionalized liposomes. Angew. Chem. Int. Ed. Engl., 2009, 48(35), 6494-6498.
[http://dx.doi.org/10.1002/anie.200901452] [PMID: 19623590]
[105]
Taghdisi, S.M.; Lavaee, P.; Ramezani, M.; Abnous, K. Reversible targeting and controlled release delivery of daunorubicin to cancer cells by aptamer-wrapped carbon nanotubes. Eur. J. Pharm. Biopharm., 2011, 77(2), 200-206.
[http://dx.doi.org/10.1016/j.ejpb.2010.12.005] [PMID: 21168488]
[106]
Cheng, J.; Teply, B.A.; Sherifi, I.; Sung, J.; Luther, G.; Gu, F.X.; Levy-Nissenbaum, E.; Radovic-Moreno, A.F.; Langer, R.; Farokhzad, O.C. Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. Biomaterials, 2007, 28(5), 869-876.
[http://dx.doi.org/10.1016/j.biomaterials.2006.09.047] [PMID: 17055572]
[107]
Fang, Y.; Lin, S.; Yang, F.; Situ, J.; Lin, S.; Luo, Y. Aptamer-conjugated multifunctional polymeric nanoparticles as cancer-targeted, MRI-ultrasensitive drug delivery systems for treatment of castration-resistant prostate cancer. BioMed Res. Int., 2020, 2020, 9186583.
[http://dx.doi.org/10.1155/2020/9186583] [PMID: 32420382]
[108]
Ghasemi, Z.; Dinarvand, R.; Mottaghitalab, F.; Esfandyari-Manesh, M.; Sayari, E.; Atyabi, F. Aptamer decorated hyaluronan/chitosan nanoparticles for targeted delivery of 5-fluorouracil to MUC1 overexpressing adenocarcinomas. Carbohydr. Polym., 2015, 121, 190-198.
[http://dx.doi.org/10.1016/j.carbpol.2014.12.025] [PMID: 25659689]
[109]
Edelman, R.; Assaraf, Y.G.; Levitzky, I.; Shahar, T.; Livney, Y.D. Hyaluronic acid-serum albumin conjugate-based nanoparticles for targeted cancer therapy. Oncotarget, 2017, 8(15), 24337-24353.
[http://dx.doi.org/10.18632/oncotarget.15363] [PMID: 28212584]
[110]
Fan, X.; Zhao, X.; Qu, X.; Fang, J. pH sensitive polymeric complex of cisplatin with hyaluronic acid exhibits tumor-targeted delivery and improved in vivo antitumor effect. Int. J. Pharm., 2015, 496(2), 644-653.
[http://dx.doi.org/10.1016/j.ijpharm.2015.10.066] [PMID: 26529576]
[111]
Deshayes, S.; Cabral, H.; Ishii, T.; Miura, Y.; Kobayashi, S.; Yamashita, T.; Matsumoto, A.; Miyahara, Y.; Nishiyama, N.; Kataoka, K. Phenylboronic acid-installed polymeric micelles for targeting sialylated epitopes in solid tumors. J. Am. Chem. Soc., 2013, 135(41), 15501-15507.
[http://dx.doi.org/10.1021/ja406406h] [PMID: 24028269]
[112]
Wilson, R. The use of gold nanoparticles in diagnostics and detection. Chem. Soc. Rev., 2008, 37(9), 2028-2045.
[http://dx.doi.org/10.1039/b712179m] [PMID: 18762845]
[113]
Li, Y.; Zhang, H. Fe3O4-based nanotheranostics for magnetic resonance imaging-synergized multifunctional cancer management. Nanomedicine (Lond.), 2019, 14(11), 1493-1512.
[http://dx.doi.org/10.2217/nnm-2018-0346] [PMID: 31215317]
[114]
Seo, W.S.; Jo, H.H.; Lee, K.; Kim, B.; Oh, S.J.; Park, J.T. Size-dependent magnetic properties of colloidal Mn(3)O(4) and MnO nanoparticles. Angew. Chem. Int. Ed. Engl., 2004, 43(9), 1115-1117.
[http://dx.doi.org/10.1002/anie.200352400] [PMID: 14983449]
[115]
Abedin, M.R.; Umapathi, S.; Mahendrakar, H.; Laemthong, T.; Coleman, H.; Muchangi, D.; Santra, S.; Nath, M.; Barua, S. Polymer coated gold-ferric oxide superparamagnetic nanoparticles for theranostic applications. J. Nanobiotechnol., 2018, 16(1), 80.
[http://dx.doi.org/10.1186/s12951-018-0405-7] [PMID: 30316298]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy