Generic placeholder image

Current Nutraceuticals

Editor-in-Chief

ISSN (Print): 2665-9786
ISSN (Online): 2665-9794

Research Article

Optimising Conditions for Encapsulation of Salacia chinensis Root Extract enriched with Phenolic Compounds

Author(s): Thanh V. Ngo*, Christopher J. Scarlett, Michael C. Bowyer , Rebecca McCullum and Quan V. Vuong*

Volume 2, Issue 4, 2021

Published on: 04 August, 2021

Article ID: e050821195283 Pages: 6

DOI: 10.2174/2665978602666210805094012

Price: $65

Abstract

Background: S. chinensis extract contains bioactive compounds, which exhibit high antioxidant activities. However, for commercial uses, it is necessary to encapsulate the extract to protect it from degradation.

Objective: This study aimed to optimise spray-drying conditions and then compare spray-drying with freeze-drying to identify the most suitable conditions for the encapsulation of Salacia chinensis L. root extract.

Method: Three factors of spray-drying encapsulation, including maltodextrin concentration, inlet temperature, and feed rate, have been tested for the impacts on the physical and phytochemical properties of S. chinensis root extract. Based on the optimal conditions, the spray-drying was then compared with freeze-drying.

Results: The results showed that maltodextrin concentration, inlet temperature, and feed rate had significant impacts on recovery yield, phenolics, mangiferin, and antioxidant activity of the spraydried extract. The optimal spray-drying encapsulation conditions were maltodextrin concentration of 20%, inlet temperature of 130ºC, and a feed rate of 9 mL/min. Under these optimal conditions, the encapsulated extract had comparable solubility, total phenolics, mangiferin, antioxidant activity, lower bulk density, moisture content, and water activity as compared to encapsulated extract made using the freeze-drying technique. These optimal spray-drying conditions are recommended to encapsulate the extract of S. chinensis root.

Conclusion: Spray-drying was found to be more effective for the encapsulation of S. chinensis root extract than freeze-drying. Therefore, spray-drying is recommended for further applications.

Keywords: Salacia chinensis. encapsulation, spray-drying, freeze-drying, phenolics, mangiferin.

Graphical Abstract

[1]
Ngo, T.V.; Scarlett, C.J.; Bowyer, M.C.; Ngo, P.D.; Vuong, Q.V. Impact of different extraction solvents on bioactive compounds and antioxidant capacity from the root of salacia chinensis L. J. Food Qual., 2017, 2017, 1-8.
[http://dx.doi.org/10.1155/2017/9305047]
[2]
Chavan, J.J.; Jagtap, U.B.; Gaikwad, N.B.; Dixit, G.B.; Bapat, V.A. Total phenolics, flavonoids and antioxidant activity of Saptarangi (Salacia chinensis L.) fruit pulp. J. Plant Biochem. Biotechnol., 2012, 22(4), 409-413.
[http://dx.doi.org/10.1007/s13562-012-0169-3]
[3]
Ngo, TV; Scarlett, CJ; Bowyer, MC; Vuong, QV Phytochemical and antioxidant properties from different parts of Salacia chinensis L. J. Biol. Act. Prod. Nat., 2017, 7(5), 401-410.
[4]
Munin, A.; Edwards-Lévy, F. Encapsulation of natural polyphenolic compounds; a review. Pharmaceutics, 2011, 3(4), 793-829.
[http://dx.doi.org/10.3390/pharmaceutics3040793] [PMID: 24309309]
[5]
Papoutsis, K.; Golding, J.B.; Vuong, Q.; Pristijono, P.; Stathopoulos, C.E.; Scarlett, C.J.; Bowyer, M. Encapsulation of citrus by-product extracts by spray-drying and freeze-drying using combinations of maltodextrin with soybean protein and ι-carrageenan. Foods, 2018, 7(7), 1-12.
[http://dx.doi.org/10.3390/foods7070115] [PMID: 30029543]
[6]
Ballesteros, L.F.; Ramirez, M.J.; Orrego, C.E.; Teixeira, J.A.; Mussatto, S.I. Encapsulation of antioxidant phenolic compounds extracted from spent coffee grounds by freeze-drying and spray-drying using different coating materials. Food Chem., 2017, 237, 623-631.
[http://dx.doi.org/10.1016/j.foodchem.2017.05.142] [PMID: 28764044]
[7]
Fang, Z.; Bhandari, B. Encapsulation of polyphenols – a review. Trends Food Sci. Technol., 2010, 21(10), 510-523.
[http://dx.doi.org/10.1016/j.tifs.2010.08.003]
[8]
Patil, V.; Chauhan, A.K.; Singh, R.P. Optimization of the spray-drying process for developing guava powder using response surface methodology. Powder Technol., 2014, 253, 230-236.
[http://dx.doi.org/10.1016/j.powtec.2013.11.033]
[9]
Madene, A.; Jacquot, M.; Scher, J.; Desobry, S. Flavour encapsulation and controlled release – a review. Int. J. Food Sci. Technol., 2006, 41(1), 1-21.
[http://dx.doi.org/10.1111/j.1365-2621.2005.00980.x]
[10]
Punathil, L.; Basak, T. Microwave processing of frozen and packaged food materials: experimental.Reference Module in Food Science; Elsevier, 2016.
[http://dx.doi.org/10.1016/B978-0-08-100596-5.21009-3]
[11]
Ngo, V.T.; Scarlett, C.J.; Bowyer, M.C.; Vuong, Q.V. Isolation and maximisation of extraction of mangiferin from the root of Salacia chinensis L. Separations, 2019, 6(3), 44.
[http://dx.doi.org/10.3390/separations6030044]
[12]
Tan, S.P.; Kha, T.C.; Parks, S.E.; Stathopoulos, C.E.; Roach, P.D. Effects of the spray-drying temperatures on the physiochemical properties of an encapsulated bitter melon aqueous extract powder. Powder Technol., 2015, 281, 65-75.
[http://dx.doi.org/10.1016/j.powtec.2015.04.074]
[13]
Şahin Nadeem, H.; Torun, M.; Özdemir, F. Spray drying of the mountain tea (Sideritis stricta) water extract by using different hydrocolloid carriers. Lebensm. Wiss. Technol., 2011, 44(7), 1626-1635.
[http://dx.doi.org/10.1016/j.lwt.2011.02.009]
[14]
Beristain, C.I.; García, H.S.; Vernon-Carter, E.J. Spray-dried encapsulation of cardamom (Elettaria cardamomum) essential oil with mesquite (Prosopis juliflora) Gum. Lebensm. Wiss. Technol., 2001, 34(6), 398-401.
[http://dx.doi.org/10.1006/fstl.2001.0779]
[15]
Vuong, Q.V.; Golding, J.B.; Nguyen, M.H.; Roach, P.D. Production of caffeinated and decaffeinated green tea catechin powders from underutilised old tea leaves. J. Food Eng., 2012, 110, 1-8.
[http://dx.doi.org/10.1016/j.jfoodeng.2011.12.026]
[16]
Asif, A.; Farooq, U.; Akram, K.; Hayat, Z.; Shafi, A.; Sarfraz, F. Therapeutic potentials of bioactive compounds from mango fruit wastes. Trends Food Sci. Technol., 2016, 53, 102-112.
[http://dx.doi.org/10.1016/j.tifs.2016.05.004]
[17]
Tontul, I.; Topuz, A. Spray-drying of fruit and vegetable juices: Effect of drying conditions on the product yield and physical properties. Trends Food Sci. Technol., 2017, 63, 91-102.
[http://dx.doi.org/10.1016/j.tifs.2017.03.009]
[18]
Ho, L.P.; Pham, A.H.; Le, V.V.M. Effects of core/wall ratio and inlet temperature on the retention of antioxidant compounds during the spray drying of sim (rhodomyrtus tomentosa) Juice. J. Food Process. Preserv., 2015, 39(6), 2088-2095.
[http://dx.doi.org/10.1111/jfpp.12452]
[19]
Chong, S.Y.; Wong, C.W. Production of spray-dried sapodilla (manilkara zapota) powder from enzyme-aided liquefied puree. J. Food Process. Preserv., 2015, 39(6), 2604-2611.
[http://dx.doi.org/10.1111/jfpp.12510]
[20]
Tonon, R.V.; Brabet, C.; Hubinger, M.D. Influence of process conditions on the physicochemical properties of açai (Euterpe oleraceae Mart.) powder produced by spray drying. J. Food Eng., 2008, 88(3), 411-418.
[http://dx.doi.org/10.1016/j.jfoodeng.2008.02.029]
[21]
Can Karaca, A.; Guzel, O.; Ak, M.M. Effects of processing conditions and formulation on spray drying of sour cherry juice concentrate. J. Sci. Food Agric., 2016, 96(2), 449-455.
[http://dx.doi.org/10.1002/jsfa.7110] [PMID: 25641719]
[22]
Murugesan, R.; Orsat, V. Spray drying of elderberry (sambucus nigra l.) juice to maintain its phenolic content. Dry. Technol., 2011, 29(14), 1729-1740.
[http://dx.doi.org/10.1080/07373937.2011.602485]
[23]
Kuck, L.S.; Noreña, C.P.Z. Microencapsulation of grape (Vitis labrusca var. Bordo) skin phenolic extract using gum Arabic, polydextrose, and partially hydrolyzed guar gum as encapsulating agents. Food Chem., 2016, 194, 569-576.
[http://dx.doi.org/10.1016/j.foodchem.2015.08.066] [PMID: 26471594]
[24]
Kha, T.C.; Nguyen, M.H.; Roach, P.D.; Stathopoulos, C.E. Microencapsulation of gac oil by spray drying: Optimization of wall material concentration and oil load using response surface methodology. Dry. Technol., 2014, 32(4), 385-397.
[http://dx.doi.org/10.1080/07373937.2013.829854]
[25]
Kurozawa, L.E.; Morassi, A.G.; Vanzo, A.A.; Park, K.J.; Hubinger, M.D. Influence of spray drying conditions on physicochemical properties of chicken meat powder. Dry. Technol., 2009, 27(11), 1248-1257.
[http://dx.doi.org/10.1080/07373930903267187]
[26]
Goula, A.M.; Adamopoulos, K.G. Effect of maltodextrin addition during spray drying of tomato pulp in dehumidified air: I drying kinetics and product recovery. Dry. Technol., 2008, 26(6), 714-725.
[http://dx.doi.org/10.1080/07373930802046369]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy