Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Changes in the Expression Pattern of DUSP1-7 and miRNA Regulating their Expression in the Keratinocytes Treated with LPS and Adalimumab

Author(s): Beniamin Oskar Grabarek*, Maciej Dąbala, Tomasz Kasela, Marcin Gralewski and Dorian Gładysz

Volume 23, Issue 6, 2022

Published on: 02 August, 2021

Page: [873 - 881] Pages: 9

DOI: 10.2174/1389201022666210802102508

Price: $65

Abstract

Background: Increased levels of phosphorylated ERK and p38 MAPK proteins have been observed in psoriatic skin biopsies compared to controls, which may be associated with an impaired expression pattern of dual activity protein phosphatase (DUSP).

Objective: The purpose of this study was to assessment changes in expression profile of mRNA DUSP 1-7 and miRNA regulating their expression in human keratinocyte cells (HaCaT) had exposed to the liposaccharide A (LPS).

Methods: HaCaT was exposed to 1 μg/ml LPS and next adalimumab by 2,8,24h compared to untreated cells. The microarray method was used to analyze expression pattern of mRNAs, miRNAs, and ELISA to evaluate changes in the level of the proteins. RTqPCR was used to validate the microarray data. Transcriptome Analysis Console and Statistica Software 13 PL were used in statistical analysis (p<0.05).

Results: The highest changes in expression was observed for DUSP2 (FC +11.12) and DUSP5 (FC +5.53) in HaCaT culture after 2 hours exposition on adalimumab. It was observed that miR- 1275 (FC -2.39) and miR-34a (FC +6.52) might regulate level of DUSP2, and miR-27a (FC +3.55), miR-27b (FC +2.87) are involved in DUSP5 expression.

Conclusion: The results obtained suggest that DUSP2 and DUSP5 may be considered as complementary molecular markers in the diagnosis and monitoring of the effectiveness of psoriasis therapy. It was confirmed that hsa-miR-34a, hsa-miR-1275, hsa-miR-3188, hsa-miR-382, hsa-miR- 27a, hsa-miR-27b, hsa-miR-16 have the highest influence on the expression pattern of DUSP1-7.

Keywords: Dual-specificity phosphatase, miRNA, HaCaT, LPS, adalimumab, expression.

Graphical Abstract

[1]
Bai, F.; Zheng, W.; Dong, Y.; Wang, J.; Garstka, M.A.; Li, R.; An, J.; Ma, H. Serum levels of adipokines and cytokines in psoriasis patients: A systematic review and meta-analysis. Oncotarget, 2017, 9(1), 1266-1278.
[http://dx.doi.org/10.18632/oncotarget.22260] [PMID: 29416693]
[2]
Khandpur, S.; Gupta, V.; Das, D.; Sharma, A. Is there a correlation of serum and tissue T helper-1 and-2 cytokine profiles with psoriasis activity and severity? A cross-sectional study. Indian J Dermatol Venereol Leprol, 2018, 84(4), 414.
[http://dx.doi.org/10.4103/ijdvl.ijdvl_471_17]
[3]
Sakurai, K.; Dainichi, T. Activation of p38 MAPK mediates the induction of murine psoriatic dermatitis. J. Dermatol. Sci., 2016, 84(1), e94.
[4]
Lin, X.; Huang, T. Oxidative stress in psoriasis and potential therapeutic use of antioxidants. Free Radic. Res., 2016, 50(6), 585-595.
[http://dx.doi.org/10.3109/10715762.2016.1162301] [PMID: 27098416]
[5]
Gaestel, M. MAPK-activated protein kinases (MKs): Novel insights and challenges. Front. Cell Dev. Biol., 2016, 3, 88.
[http://dx.doi.org/10.3389/fcell.2015.00088] [PMID: 26779481]
[6]
Sun, J.; Nan, G. The mitogen-activated protein kinase (MAPK) signaling pathway as a discovery target in stroke. J. Mol. Neurosci., 2016, 59(1), 90-98.
[http://dx.doi.org/10.1007/s12031-016-0717-8] [PMID: 26842916]
[7]
Johansen, C.; Kragballe, K.; Westergaard, M.; Henningsen, J.; Kristiansen, K.; Iversen, L. The mitogen-activated protein kinases p38 and ERK1/2 are increased in lesional psoriatic skin. Br. J. Dermatol., 2005, 152(1), 37-42.
[http://dx.doi.org/10.1111/j.1365-2133.2004.06304.x] [PMID: 15656798]
[8]
Seternes, O.M.; Kidger, A.M.; Keyse, S.M. Dual-specificity MAP kinase phosphatases in health and disease. Biochim. Biophys. Acta Mol. Cell Res., 2019, 1866(1), 124-143.
[http://dx.doi.org/10.1016/j.bbamcr.2018.09.002] [PMID: 30401534]
[9]
Zhao, W.; Xiao, S.; Li, H.; Zheng, T.; Huang, J.; Hu, R.; Zhang, B.; Liu, X.; Huang, G. MAPK phosphatase-1 deficiency exacerbates the severity of imiquimod-induced psoriasiform skin disease. Front. Immunol., 2018, 9, 569.
[http://dx.doi.org/10.3389/fimmu.2018.00569] [PMID: 29619028]
[10]
Pulido, R.; Lang, R. Dual specificity phosphatases: From molecular mechanisms to biological function; IJMS, 2019, p. 4372.
[11]
Owens, D.M.; Keyse, S.M. Differential regulation of MAP kinase signalling by dual-specificity protein phosphatases. Oncogene, 2007, 26(2), 3203.
[http://dx.doi.org/10.1038/sj.onc.1210412]
[12]
Subbannayya, Y.; Pinto, S.M.; Bösl, K.; Prasad, T.S.; Kandasamy, R.K. Dynamics of dual-specificity phosphatases and their interplay with protein kinases in immune signaling. IJMS., 2019, 20(9), 2086.
[13]
Turchinovich, A.; Tonevitsky, A.G.; Burwinkel, B. Extracellular miRNA: A collision of two paradigms. Trends Biochem. Sci., 2016, 41(10), 883-892.
[http://dx.doi.org/10.1016/j.tibs.2016.08.004] [PMID: 27597517]
[14]
Kørner, C.J.; Pitzalis, N.; Peña, E.J.; Erhardt, M.; Vazquez, F.; Heinlein, M. Crosstalk between PTGS and TGS pathways in natural antiviral immunity and disease recovery. Nat. Plants, 2018, 4(3), 157.
[http://dx.doi.org/10.1038/s41477-018-0117-x]
[15]
Kyuno, D.; Zhao, K.; Bauer, N.; Ryschich, E.; Zöller, M. Therapeutic targeting cancer-initiating cell markers by exosome miRNA: Efficacy and functional consequences exemplified for claudin7 and EpCAM. Transl. Oncol., 2019, 12(2), 191-199.
[http://dx.doi.org/10.1016/j.tranon.2018.08.021] [PMID: 30393102]
[16]
Koenig, I.R.; Fuchs, O.; Hansen, G.; von Mutius, E.; Kopp, M.V. What is precision medicine? Eur. Respir. J., 2017, 50(4), 1700391.
[http://dx.doi.org/10.1183/13993003.00391-2017]
[17]
Dziobek, K.; Opławski, M.; Grabarek, B.O.; Zmarzły, N.; Tomala, B.; Halski, T.; Kiełbasiński, R.; Boroń, D. Changes in the expression profile expression Profile of VEGF-A VEGF-B VEGFR-1 VEGFR-2 in different grades of endometrial cancer. Curr. Pharm. Biotechnol., 2019, 20, 955.
[http://dx.doi.org/10.2174/1389201020666190717092448] [PMID: 31322068]
[18]
Grabarek, B.; Wcisło-Dziadecka, D.; Strzałka-Mrozik, B.; Adamska, J.; Mazurek, U.; Brzezińska-Wcisło, L. The capability to forecast response to therapy with regard to the time and intensity of the inflammatory process in vitro in dermal fibroblasts induced by IL-12. Curr. Pharm. Biotechnol., 2018, 19(15), 1232-1240.
[http://dx.doi.org/10.2174/1389201020666190111163312] [PMID: 30636601]
[19]
Goeree, R.; Chiva-Razavi, S.; Gunda, P.; Graham, C.N.; Miles, L.; Nikoglou, E.; Jugl, S.M.; Gladman, D.D. Cost-effectiveness analysis of secukinumab for the treatment of active psoriatic arthritis: A Canadian perspective. J. Med. Econ., 2018, 21(2), 163-173.
[http://dx.doi.org/10.1080/13696998.2017.1384737] [PMID: 28945143]
[20]
Grabarek, B.O.; Kasela, T; Adwent, I.; Zawidlak-Węgrzyńska, B.; Brus, R. Evaluation of the influence of adalimumab on the expression profile of leptin-related genes and proteins in keratinocytes treated with lipopolysaccharide A. IJMS., 2021, 22(4), 1595.
[http://dx.doi.org/10.3390/ijms22041595]
[21]
Grabarek, B.; Wcislo-Dziadecka, D.; Gola, J.; Kruszniewska-Rajs, C.; Brzezinska-Wcislo, L.; Zmarzly, N.; Mazurek, U. Changes in the expression profile of Jak/Stat signaling pathway genes and miRNAs regulating their expression under the adalimumab therapy. Curr. Pharm. Biotechnol., 2018, 19(7), 556-565.
[http://dx.doi.org/10.2174/1389201019666180730094046] [PMID: 30058482]
[22]
Zhao, Y.; Jhamb, D.; Shu, L.; Arneson, D.; Rajpal, D.K.; Yang, X. Multi-omics integration reveals molecular networks and regulators of psoriasis. BMC Syst. Biol., 2018, 13(1), 8.
[23]
Vamanu, E. Polyphenolic nutraceuticals to combat oxidative stress through microbiota modulation. Front. Pharmacol., 2019, 10, 492.
[http://dx.doi.org/10.3389/fphar.2019.00492] [PMID: 31130865]
[24]
Vamanu, E.; Gatea, F.; Sârbu, I. in vitro ecological response of the human gut microbiome to bioactive extracts from edible wild mushrooms. Molecules, 2018, 23(9), 2128.
[http://dx.doi.org/10.3390/molecules23092128] [PMID: 30142972]
[25]
Bhattacharyya, A.; Chattopadhyay, R.; Mitra, S.; Crowe, S.E. Oxidative stress: An essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol. Rev., 2014, 94(2), 329-354.
[http://dx.doi.org/10.1152/physrev.00040.2012] [PMID: 24692350]
[26]
Wang, B.; Yao, M.; Lv, L.; Ling, Z.; Li, L. The human microbiota in health and disease. Engineering., 2017, 3, 71-82.
[http://dx.doi.org/10.1016/J.ENG.2017.01.008]
[27]
Vamanu, E.; Gatea, F. Correlations between microbiota bioactivity and bioavailability of functional compounds: A mini-review. Biomedicines, 2020, 8(2), 39.
[http://dx.doi.org/10.3390/biomedicines8020039]
[28]
Wu, S.; Hu, R.; Nakano, H.; Chen, K.; Liu, M.; He, X.; Zhang, H.; He, J.; Hou, D.X. Modulation of gut microbiota by lonicera caeruleal. Berry polyphenols in a mouse model of fatty liver induced by high fat diet. Molecules, 2018, 23, 3213.
[http://dx.doi.org/10.3390/molecules23123213]
[29]
Vamanu, E. Complementary Functional Strategy for Modulation of Human Gut Microbiota. Curr. Pharm. Des., 2018, 24(35), 4144-4149.
[http://dx.doi.org/10.2174/1381612824666181001154242] [PMID: 30277147]
[30]
Visvanathan, S.; Baum, P.; Vinisko, R.; Schmid, R.; Flack, M.; Lalovic, B.; Kleiner, O.; Fuentes-Duculan, J.; Garcet, S.; Davis, J.W.; Grebe, K.M.; Fine, J.S.; Padula, S.J.; Krueger, J.G. Psoriatic skin molecular and histopathologic profiles after treatment with risankizumab versus ustekinumab. J. Allergy Clin. Immunol., 2019, 143(6), 2158-2169.
[http://dx.doi.org/10.1016/j.jaci.2018.11.042] [PMID: 30578873]
[31]
Lu, D.; Liu, L.; Ji, X.; Gao, Y.; Chen, X.; Liu, Y.; Jin, Y. The phosphatase DUSP2 controls the activity of the transcription activator STAT3 and regulates T H 17 differentiation. Nat. Immun., 2015, 16(12), 1263.
[32]
Lambert, S.; Hambro, C.A.; Johnston, A.; Stuart, P.E.; Tsoi, L.C.; Nair, R.P.; Elder, J.T. Neutrophil extracellular traps induce human Th17 cells: Effect of psoriasis-associated TRAF3IP2 genotype. J. Invest. Dermatol., 2019, 139(6), 1245-1253.
[http://dx.doi.org/10.1016/j.jid.2018.11.021] [PMID: 30528823]
[33]
Kanemaru, H.; Yamane, F.; Tanaka, H.; Maeda, K.; Satoh, T.; Akira, S. BATF2 activates DUSP2 gene expression and up-regulates NF-κB activity via phospho-STAT3 dephosphorylation. Int. Immunol., 2018, 30(6), 255-265.
[http://dx.doi.org/10.1093/intimm/dxy023] [PMID: 29534174]
[34]
Hamamura, K.; Nishimura, A.; Chen, A.; Takigawa, S.; Sudo, A.; Yokota, H. Salubrinal acts as a Dusp2 inhibitor and suppresses inflammation in anti-collagen antibody-induced arthritis. Cell. Signal., 2015, 27(4), 828-835.
[http://dx.doi.org/10.1016/j.cellsig.2015.01.010] [PMID: 25619567]
[35]
Treiber, T.; Treiber, N.; Meister, G. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat. Rev. Mol., 2019, 20(1), 5-20.
[http://dx.doi.org/10.1038/s41580-018-0059-1]
[36]
Betel, D.; Wilson, M.; Gabow, A.; Marks, D.S.; Sander, C. The microRNA.org resource: Targets and expression. Nucleic Acids Res., 2008, 36(Database issue)(Suppl. 1), D149-D153.
[PMID: 18158296]
[37]
Reich, A.; Adamski, Z. Psoriasis Diagnostic and therapeutic recommendations of the Polish Dermatological Society Part I: Mild psoriasis. Derm Rev., 2018, 105(2), 225.
[38]
Reich, A.; Szepietowski, J.; Adamski, Z.; Chodorowska, G.; Kaszuba, A.; Krasowska, D.; Rudnicka, L. Psoriasis diagnostic and therapeutic recommendations of the Polish Dermatological Society Part II: Moderate to severe psoriasis. Derm Rev., 2018, 105(3), 329-357.
[39]
Yin, Y.; Liu, Y.X.; Jin, Y.J.; Hall, E.J.; Barrett, J.C. PAC1 phosphatase is a transcription target of p53 in signalling apoptosis and growth suppression. Nature, 2003, 422(6931), 527-531.
[http://dx.doi.org/10.1038/nature01519] [PMID: 12673251]
[40]
Liu, T.; Sun, H.; Liu, S.; Yang, Z.; Li, L.; Yao, N.; Cheng, S.; Dong, X.; Liang, X.; Chen, C.; Wang, Y.; Zhao, X. The suppression of DUSP5 expression correlates with paclitaxel resistance and poor prognosis in basal-like breast cancer. Int. J. Med. Sci., 2018, 15(7), 738-747.
[http://dx.doi.org/10.7150/ijms.24981] [PMID: 29910679]
[41]
Yan, X.; Liu, L.; Li, H.; Huang, L.; Yin, M.; Pan, C.; Qin, H.; Jin, Z. Dual specificity phosphatase 5 is a novel prognostic indicator for patients with advanced colorectal cancer. Am. J. Cancer Res., 2016, 6(10), 2323-2333.
[PMID: 27822421]
[42]
Hughes, J.T.; Long, M.D. Tumor necrosis factor-alpha inhibitors and risks of malignancy. Treatment of Inflammatory Bowel Disease with Biologics; Springer: Cham, 2018, pp. 213-229.
[http://dx.doi.org/10.1007/978-3-319-60276-9_13]
[43]
Wang, Z.; Han, Y.; Zhang, Z.; Jia, C.; Zhao, Q.; Song, W.; Chen, T.; Zhang, Y.; Wang, X. Identification of genes and signaling pathways associated with the pathogenesis of juvenile spondyloarthritis. Mol. Med. Rep., 2018, 18(2), 1263-1270.
[http://dx.doi.org/10.3892/mmr.2018.9136] [PMID: 29901120]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy