Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Inhibition of Liver Cancer HepG2 Cell Proliferation by Enzymatically Prepared Low-molecular Citrus Pectin

Author(s): Xiao-Qian Wu, Jia-Ying Fu, Ru-Yi Mei, Xian-Jun Dai, Jun-Hui Li, Xiao-Feng Zhao* and Ming-Qi Liu*

Volume 23, Issue 6, 2022

Published on: 11 August, 2021

Page: [861 - 872] Pages: 12

DOI: 10.2174/1389201022666210729122631

Price: $65

Abstract

Background: Low-molecular citrus pectin (LCP) is a pectin polysaccharide with low molec-ular weight, low degree of crux, and no branching. It is obtained by degrading natural citrus pectin (CP) through physical, chemical and enzymatic methods. LCP has received considerable attention in recent years due to its potential applications in the medical and biological fields.

Methods: In our previous study, LCP was prepared from CP by using recombinant Bacillus subtilis pectate lyase B. Monosaccharide comparative analysis revealed that the galacturonic acid content of LCP was higher than that of CP. The cell viability effect of LCP was elucidated by using HepG2 cells and the Cell Counting Kit-8 (CCK-8) assay. Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining, Annexin V-FITC/PI staining, and flow cytometer propidium iodide stain-ing were performed to detect the effects of LCP on apoptosis and cell cycle arrest in HepG2 cells. Mi-tochondrial membrane potential (MMP) was observed through 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethyl-imidacarbocyanine assay.

Results & Discussion: The Mw of the prepared LCP was 7.6 kDa, which was significantly lower than that of CP (140 kDa). Cell viability decreased with the increase in the concentration of LCP. The half-inhibitory concentration of 1.46 ± 0.02 mg/mL was determined. Treatment with 1.6 mg/mL LCP in-duced the apoptosis of HepG2 cells with the inhibition rate of 83.10% ± 4.72%, and the cell cycle was arrested in the S phase. Furthermore, the MMP of HepG2 cells decreased with the increase in LCP concentration.

Conclusion: The enzymatically prepared LCP could inhibit the proliferation of HepG2 cells. This study provided a partial experimental basis and reference for LCP to become a potential functional food for anti-liver cancer.

Keywords: Low-molecular citrus pectin, cell viability, HepG2, Liver cancer, cell apoptosis, cell cycle, mitochondrial mem-brane potential.

Graphical Abstract

[1]
Jin, J.; Fu, B.; Mei, X.; Yue, T.; Sun, R.; Tian, Z.; Wei, H. CD11b(-)CD27(-) NK cells are associated with the progression of lung carcinoma. PLoS One, 2013, 8(4), e61024.
[http://dx.doi.org/10.1371/journal.pone.0061024] [PMID: 23565296]
[2]
Heron, M.; Anderson, R.N. Changes in the leading cause of death: recent patterns in heart disease and cancer mortality. NCHS Data Brief, 2016, 254(254), 1-8.
[PMID: 27598767]
[3]
Yuan, S.L.; Wei, Y.Q.; Wang, X.J.; Xiao, F.; Li, S.F.; Zhang, J. Growth inhibition and apoptosis induction of tanshinone II-A on human hepatocellular carcinoma cells. World J. Gastroenterol., 2004, 10(14), 2024-2028.
[http://dx.doi.org/10.3748/wjg.v10.i14.2024] [PMID: 15237427]
[4]
Chen, X.W.; Sun, J.G.; Zhang, L.P.; Liao, X.Y.; Liao, R.X. Recruitment of CD11b+Ly6C+ monocytes in non-small cell lung cancer xenografts challenged by anti-VEGF antibody. Oncol. Lett., 2017, 14(1), 615-622.
[http://dx.doi.org/10.3892/ol.2017.6236] [PMID: 28693213]
[5]
Freddie; Bray; Jacques; Ferlay; Isabelle; Soerjomataram; Rebecca; Siegel; Lindsey. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68, 394-424.
[http://dx.doi.org/10.3322/caac.21492]
[6]
Jindal, A.; Thadi, A.; Shailubhai, K. Hepatocellular carcinoma: Etiology and current and future drugs. J. Clin. Exp. Hepatol., 2019, 9(2), 221-232.
[http://dx.doi.org/10.1016/j.jceh.2019.01.004] [PMID: 31024205]
[7]
Sahu, S.K.; Chawla, Y.K.; Dhiman, R.K.; Singh, V.; Duseja, A.; Taneja, S.; Kalra, N.; Gorsi, U. Rupture of hepatocellular carcinoma: A review of literature. J. Clin. Exp. Hepatol., 2019, 9(2), 245-256.
[http://dx.doi.org/10.1016/j.jceh.2018.04.002] [PMID: 31024207]
[8]
Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin., 2011, 61(2), 69-90.
[http://dx.doi.org/10.3322/caac.20107] [PMID: 21296855]
[9]
Bruix, J.; Llovet, J.M. Major achievements in hepatocellular carcinoma. Lancet, 2009, 373(9664), 614-616.
[http://dx.doi.org/10.1016/S0140-6736(09)60381-0] [PMID: 19231618]
[10]
Abdel, B. Advances in pectin and pectinase research. Plant. ence., 2003, 165, 1169-1169.
[11]
Voragen, A.G.J.; Coenen, G.J.; Verhoef, R.P.; Schols, H.A. Pectin, a versatile polysaccharide present in plant cell walls. Struct. Chem., 2009, 20, 263-275.
[http://dx.doi.org/10.1007/s11224-009-9442-z]
[12]
Ridley, B.L.; O’Neill, M.A.; Mohnen, D. Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry, 2001, 57(6), 929-967.
[http://dx.doi.org/10.1016/S0031-9422(01)00113-3] [PMID: 11423142]
[13]
Caffall, K.H.; Mohnen, D. The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr. Res., 2009, 344(14), 1879-1900.
[http://dx.doi.org/10.1016/j.carres.2009.05.021] [PMID: 19616198]
[14]
Koriem, K.M.M.; Arbid, M.S.; Emam, K.R. Therapeutic effect of pectin on octylphenol induced kidney dysfunction, oxidative stress and apoptosis in rats. Environ. Toxicol. Pharmacol., 2014, 38(1), 14-23.
[http://dx.doi.org/10.1016/j.etap.2014.04.029] [PMID: 24860957]
[15]
Popov, S.V.; Markov, P.A.; Popova, G.Y.; Nikitina, I.R.; Efimova, L.; Ovodov, Y.S. Anti-inflammatory activity of low and high methoxylated citrus pectins. Biomed. & Prev. Nutr., 2013, 3, 59-63.
[http://dx.doi.org/10.1016/j.bionut.2012.10.008]
[16]
Leclere, L.; Cutsem, P.V.; Michiels, C. Anti-cancer activities of pH- or heat-modified pectin. Front. Pharmacol., 2013, 4, 128.
[http://dx.doi.org/10.3389/fphar.2013.00128] [PMID: 24115933]
[17]
Wikiera, A.; Irla, M.; Mika, M. Health-promoting properties of pectin. Postepy Hig. Med. Dosw., 2014, 68, 590-596.
[http://dx.doi.org/10.5604/17322693.1102342] [PMID: 24864109]
[18]
Vilhena, C.; Gonçalves, M.L.; Mota, A.M. Binding of copper (II) to pectins by electrochemical methods. Electroanalysis, 2004, 16, 2065-2072.
[http://dx.doi.org/10.1002/elan.200303047]
[19]
Munarin, F.; Petrini, P.; Tanzi, M.C.; Barbosa, M.A.; Granja, P.L. Biofunctional chemically modified pectin for cell delivery. Soft Matter, 2012, 8, 4731-4739.
[http://dx.doi.org/10.1039/c2sm07260b]
[20]
Jung, J.; Arnold, R.D.; Wicker, L. Pectin and charge modified pectin hydrogel beads as a colon-targeted drug delivery carrier. Colloids Surf. B Biointerfaces, 2013, 104, 116-121.
[http://dx.doi.org/10.1016/j.colsurfb.2012.11.042] [PMID: 23298595]
[21]
Kaya, M.; Sousa, A.G.; Crépeau, M.J.; Sørensen, S.O.; Ralet, M.C. Characterization of citrus pectin samples extracted under different conditions: influence of acid type and pH of extraction. Ann. Bot., 2014, 114(6), 1319-1326.
[http://dx.doi.org/10.1093/aob/mcu150] [PMID: 25081519]
[22]
Maxwell, E.G.; Belshaw, J.N.; Waldron, W. K.; J.Morris, V. Pectin – An emerging new bioactive food polysaccharide. Trends Food. Sci. Tech. (Paris), 2012, 24, 64-73.
[23]
Ciriminna, R.; Chavarría‐Hernández, N.; Hernández, A.I.R.; Pagliaro, M. Pectin: A new perspective from the biorefinery standpoint. Biofuels Bioprod. Biorefin., 2015, 9, 368-377.
[http://dx.doi.org/10.1002/bbb.1551]
[24]
Toyoda, A.; Sato, M.; Muto, M.; Goto, T.; Miyaguchi, Y.; Inoue, E. Metabolomic analyses of plasma and liver of mice fed with immature Citrus tumida peel. Biosci. Biotechnol. Biochem., 2020, 84(6), 1098-1104.
[http://dx.doi.org/10.1080/09168451.2020.1719821] [PMID: 32019425]
[25]
White, G.W.; Katona, T.; Zodda, J.P. The use of high-performance size exclusion chromatography (HPSEC) as a molecular weight screening technique for polygalacturonic acid for use in pharmaceutical applications. J. Pharm. Biomed. Anal., 1999, 20(6), 905-912.
[http://dx.doi.org/10.1016/S0731-7085(99)00083-7] [PMID: 10746959]
[26]
Nikolic, M.V.; Mojovic, L. Hydrolysis of apple pectin by the coordinated activity of pectic enzymes. Food Chem., 2007, 101, 1-9.
[http://dx.doi.org/10.1016/j.foodchem.2005.12.053]
[27]
Yadav, S.; Yadav, P.K.; Yadav, D.; Yadav, K.D.S. Pectin lyase: A review. Process Biochem., 2009, 44, 1-10.
[http://dx.doi.org/10.1016/j.procbio.2008.09.012]
[28]
Maesen; Miranda; Babbar; Neha; Baldassarre; Stefania; Prandi; Barbara; Elst; Kathy. Enzymatic production of pectic oligosaccharides from onion skins. Carbohydr. Polym., 2016, 146, 245-252.
[http://dx.doi.org/10.1016/j.carbpol.2016.03.011]
[29]
van Alebeek, G.J.W.M.; Christensen, T.M.I.E.; Schols, H.A.; Mikkelsen, J.D.; Voragen, A.G.J. Mode of action of pectin lyase A of Aspergillus niger on differently C(6)-substituted oligogalacturonides. J. Biol. Chem., 2002, 277(29), 25929-25936.
[http://dx.doi.org/10.1074/jbc.M202250200] [PMID: 12000753]
[30]
Elboutachfaiti, R.; Delattre, C.; Michaud, P.; Courtois, B.; Courtois, J. Oligogalacturonans production by free radical depolymerization of polygalacturonan. Int. J. Biol. Macromol., 2008, 43(3), 257-261.
[http://dx.doi.org/10.1016/j.ijbiomac.2008.06.003] [PMID: 18601947]
[31]
Zhang, S.; Hu, H.; Wang, L.; Liu, F.; Pan, S. Preparation and prebiotic potential of pectin oligosaccharides obtained from citrus peel pectin. Food Chem., 2018, 244, 232-237.
[http://dx.doi.org/10.1016/j.foodchem.2017.10.071] [PMID: 29120775]
[32]
Gómez, B.; Yáñez, R.; Parajó, J.C. Production of pectin-derived oligosaccharides from lemon peels by extraction, enzymatic hydrolysis and membrane filtration. J. Chem. Technolo. Biot., 2014, 91, 234-247.
[http://dx.doi.org/10.1002/jctb.4569]
[33]
Morris, J.V.J.; Belshaw, N.W.; Waldron, K.G.; Maxwell, E. The bioactivity of modified pectin fragments. Bioactive Carbohydrates and Dietary Fibre, 2013, 1, 21-37.
[http://dx.doi.org/10.1016/j.bcdf.2013.02.001]
[34]
Wong, C.K.; Leung, K.N.; Fung, K.P.; Choy, Y.M. Immunomodulatory and anti-tumour polysaccharides from medicinal plants. J. Int. Med. Res., 1994, 22(6), 299-312.
[http://dx.doi.org/10.1177/030006059402200601] [PMID: 7895893]
[35]
Nangia-Makker, P.; Hogan, V.; Honjo, Y.; Baccarini, S.; Tait, L.; Bresalier, R.; Raz, A. Inhibition of human cancer cell growth and metastasis in nude mice by oral intake of modified citrus pectin. J. Natl. Cancer Inst., 2002, 94(24), 1854-1862.
[http://dx.doi.org/10.1093/jnci/94.24.1854] [PMID: 12488479]
[36]
Parris, M. Kidd. A new approach to metastatic cancer prevention: Modified Citrus Pectin (MCP), a unique pectin that blocks cell surface lectins. Altern. Med. Rev., 1996, 1, 4-10.
[37]
Olano-Martin, E.; Rimbach, G.H.; Gibson, G.R.; Rastall, R.A. Pectin and pectic-oligosaccharides induce apoptosis in in vitro human colonic adenocarcinoma cells. Anticancer Res., 2003, 23(1A), 341-346.
[PMID: 12680234]
[38]
Sakurai, M.H.; Matsumoto, T.; Kiyohara, H.; Yamada, H. Detection and tissue distribution of anti-ulcer pectic polysaccharides from Bupleurum falcatum by polyclonal antibody. Planta Med., 1996, 62(4), 341-346.
[http://dx.doi.org/10.1055/s-2006-957898] [PMID: 8792667]
[39]
Eliaz, I.; Hotchkiss, A.T.; Fishman, M.L.; Rode, D. The effect of modified citrus pectin on urinary excretion of toxic elements. Phytother. Res., 2006, 20(10), 859-864.
[http://dx.doi.org/10.1002/ptr.1953] [PMID: 16835878]
[40]
Maxwell, E.G.; Belshaw, N.J.; Waldron, K.W.; Morris, V.J. Pectin e An emerging new bioactive food polysaccharide. Trends Food Sci. Technol., 2012, 24, 64-73.
[http://dx.doi.org/10.1016/j.tifs.2011.11.002]
[41]
Niture, S.K.; Refai, L. Plant pectin: A potential source for cancer suppression. J. Pharmacol. Tox. Met., 2013, 8, 9-19.
[http://dx.doi.org/10.3844/ajptsp.2013.9.19]
[42]
Yan, J.; Katz, A. PectaSol-C modified citrus pectin induces apoptosis and inhibition of proliferation in human and mouse androgen-dependent and- independent prostate cancer cells. Integr. Cancer Ther., 2010, 9(2), 197-203.
[http://dx.doi.org/10.1177/1534735410369672] [PMID: 20462856]
[43]
Jiang, J.; Eliaz, I.; Sliva, D. Synergistic and additive effects of modified citrus pectin with two polybotanical compounds, in the suppression of invasive behavior of human breast and prostate cancer cells. Integr. Cancer Ther., 2013, 12(2), 145-152.
[http://dx.doi.org/10.1177/1534735412442369] [PMID: 22532035]
[44]
Liu, H.Y.; Huang, Z.L.; Yang, G.H.; Lu, W.Q.; Yu, N.R. Inhibitory effect of modified citrus pectin on liver metastases in a mouse colon cancer model. World J. Gastroenterol., 2008, 14(48), 7386-7391.
[http://dx.doi.org/10.3748/wjg.14.7386] [PMID: 19109874]
[45]
Wang, S.; Li, P.; Lu, S.M.; Ling, Z.Q. Chemoprevention of low-molecular-weight citrus pectin (LCP) in gastrointestinal cancer cells. Int. J. Biol. Sci., 2016, 12(6), 746-756.
[http://dx.doi.org/10.7150/ijbs.13988] [PMID: 27194951]
[46]
Hamai-Amara, H.; Abdoun-Ouallouche, K.; Nacer-Khodja, A.; Abdelhafid, K.; Benmouloud, A.; Djefal-Kerrar, A. Optimization of the extraction of orange peel pectin and evaluation of its antiproliferative activity towards HEp2 cancer cells. Euro-Mediterranean Journal for Environmental Integration, 2020, 5, 43.
[http://dx.doi.org/10.1007/s41207-020-00179-7]
[47]
Abu-Elsaad, N.M.; Elkashef, W.F. Modified citrus pectin stops progression of liver fibrosis by inhibiting galectin-3 and inducing apoptosis of stellate cells. Can. J. Physiol. Pharmacol., 2016, 94(5), 554-562.
[http://dx.doi.org/10.1139/cjpp-2015-0284] [PMID: 27010252]
[48]
Leclere, L.; Fransolet, M.; Cote, F.; Cambier, P.; Arnould, T.; Van Cutsem, P.; Michiels, C.; Tang, D. Heat-modified citrus pectin induces apoptosis-like cell death and autophagy in HepG2 and A549 cancer cells. PLoS One, 2015, 10(3), e0115831.
[http://dx.doi.org/10.1371/journal.pone.0115831] [PMID: 25794149]
[49]
Huang, Z.L.; Liu, H.Y. Expression of galectin-3 in liver metastasis of colon cancer and the inhibitory effect of modified citrus pectin. Nan Fang Yi Ke Da Xue Xue Bao, 2008, 28(8), 1358-1361.
[PMID: 18753060]
[50]
Liu, M.Q.; Huo, W.K.; Dai, X.; Dang, Y.H. Preparation of low-molecular-weight citrus pectin by recombinant Bacillus subtilis pectate lyase and promotion of growth of Bifidobacterium longum. Catal. Commun., 2018, 107, 39-42.
[http://dx.doi.org/10.1016/j.catcom.2018.01.017]
[51]
Li, J.; Li, S.; Zheng, Y.; Zhang, H.; Chen, J.; Yan, L.; Ding, T.; Linhardt, R.J.; Orfila, C.; Liu, D.; Ye, X.; Chen, S. Fast preparation of rhamnogalacturonan I enriched low molecular weight pectic polysaccharide by ultrasonically accelerated metal-free Fenton reaction. Food Hydrocoll., 2019, 95, 551-561.
[http://dx.doi.org/10.1016/j.foodhyd.2018.05.025]
[52]
Deng, X.; Zhang, J.; Liu, Y.; Chen, L.; Yu, C. TNF-α regulates the proteolytic degradation of ST6Gal-1 and endothelial cell-cell junctions through upregulating expression of BACE1. Sci. Rep., 2017, 7, 40256.
[http://dx.doi.org/10.1038/srep40256] [PMID: 28091531]
[53]
Kawahata, I.; Bousset, L.; Melki, R.; Fukunaga, K. Fatty acid-binding protein 3 is critical for α-synuclein uptake and MPP(+)-induced mitochondrial dysfunction in cultured dopaminergic neurons. Int. J. Mol. Sci., 2019, 20(21), 5358.
[http://dx.doi.org/10.3390/ijms20215358] [PMID: 31661838]
[54]
Omura, T.; Sasaoka, M.; Hashimoto, G.; Imai, S.; Yamamoto, J.; Sato, Y.; Nakagawa, S.; Yonezawa, A.; Nakagawa, T.; Yano, I.; Tasaki, Y.; Matsubara, K. Oxicam-derived non-steroidal anti-inflammatory drugs suppress 1-methyl-4-phenyl pyridinium-induced cell death via repression of endoplasmic reticulum stress response and mitochondrial dysfunction in SH-SY5Y cells. Biochem. Biophys. Res. Commun., 2018, 503(4), 2963-2969.
[http://dx.doi.org/10.1016/j.bbrc.2018.08.078] [PMID: 30107908]
[55]
Qingming, Y.; Xianhui, P.; Weibao, K.; Hong, Y.; Yidan, S.; Li, Z.; Yanan, Z.; Yuling, Y.; Lan, D.; Guoan, L. Antioxidant activities of malt extract from barley (Hordeum vulgare L.) toward various oxidative stress in vitro and in vivo. Food Chem., 2010, 118, 84-89.
[http://dx.doi.org/10.1016/j.foodchem.2009.04.094]
[56]
Chen, Y.; Mao, W.; Yang, Y.; Teng, X.; Zhu, W.; Qi, X.; Chen, Y.; Zhao, C.; Hou, Y.; Wang, C.; Li, N. Structure and antioxidant activity of an extracellular polysaccharide from coral-associated fungus, Aspergillus versicolor LCJ-5-4. Carbohydr. Polym., 2012, 87, 218-226.
[http://dx.doi.org/10.1016/j.carbpol.2011.07.042]
[57]
He, Y.; Zhu, Q.; Chen, M.; Huang, Q.; Wang, W.; Li, Q.; Huang, Y.; Di, W. The changing 50% inhibitory concentration (IC50) of cisplatin: a pilot study on the artifacts of the MTT assay and the precise measurement of density-dependent chemoresistance in ovarian cancer. Oncotarget, 2016, 7(43), 70803-70821.
[http://dx.doi.org/10.18632/oncotarget.12223] [PMID: 27683123]
[58]
Hazra, B.; Ghosh, S.; Kumar, A.; Pandey, B.N. The prospective role of plant products in radiotherapy of cancer: A current overview. Front. Pharmacol., 2012, 2, 94-94.
[http://dx.doi.org/10.3389/fphar.2011.00094] [PMID: 22291649]
[59]
Azemar, M.; Bernd, H.; Brigitte, H.; Heim, M.; Clemens, U. Clinical benefit in patients with advanced solid tumors treated with modified citrus pectin: a prospective pilot study. Clin. Med. Oncol., 2007, 1, 73-80.
[http://dx.doi.org/10.4137/CMO.S285]
[60]
Hayashi, A.; Gillen, A.C.; Lott, J.R. Effects of daily oral administration of quercetin chalcone and modified citrus pectin on implanted colon-25 tumor growth in Balb-c mice. Altern. Med. Rev., 2000, 5(6), 546-552.
[PMID: 11134977]
[61]
Johnson, K.D.; Glinskii, O.V.; Mossine, V.V.; Turk, J.R.; Mawhinney, T.P.; Anthony, D.C.; Henry, C.J.; Huxley, V.H.; Glinsky, G.V.; Pienta, K.J.; Raz, A.; Glinsky, V.V. Galectin-3 as a potential therapeutic target in tumors arising from malignant endothelia. Neoplasia, 2007, 9(8), 662-670.
[http://dx.doi.org/10.1593/neo.07433] [PMID: 17786185]
[62]
Pienta, K.J.; Naik, H.; Akhtar, A.; Yamazaki, K.; Replogle, T.S.; Lehr, J.; Donat, T.L.; Tait, L.; Hogan, V.; Raz, A. Inhibition of spontaneous metastasis in a rat prostate cancer model by oral administration of modified citrus pectin. J. Natl. Cancer Inst., 1995, 87(5), 348-353.
[http://dx.doi.org/10.1093/jnci/87.5.348] [PMID: 7853416]
[63]
Guess, B.W.; Scholz, M.C.; Strum, S.B.; Lam, R.Y.; Johnson, H.J.; Jennrich, R.I. Modified citrus pectin (MCP) increases the prostate-specific antigen doubling time in men with prostate cancer: a phase II pilot study. Prostate Cancer Prostatic Dis., 2003, 6(4), 301-304.
[http://dx.doi.org/10.1038/sj.pcan.4500679] [PMID: 14663471]
[64]
Platt, D.; Raz, A. Modulation of the lung colonization of B16-F1 melanoma cells by citrus pectin. J. Natl. Cancer Inst., 1992, 84(6), 438-442.
[http://dx.doi.org/10.1093/jnci/84.6.438] [PMID: 1538421]
[65]
Gunning, A.P.; Bongaerts, R.J.M.; Morris, V.J. Recognition of galactan components of pectin by galectin-3. FASEB J., 2009, 23(2), 415-424.
[http://dx.doi.org/10.1096/fj.08-106617] [PMID: 18832596]
[66]
Ahmed, H.; AlSadek, D.M.M. Galectin-3 as a potential target to prevent cancermetastasis. Clin. Med. Insights Oncol., 2015, 9, 113-121.
[http://dx.doi.org/10.4137/CMO.S29462] [PMID: 26640395]
[67]
Vayssade, M.; Sengkhamparn, N.; Verhoef, R.; Delaigue, C.; Goundiam, O.; Vigneron, P.; Voragen, A.G.; Schols, H.A.; Nagel, M.D. Antiproliferative and proapoptotic actions of okra pectin on B16F10 melanoma cells. Phytother. Res., 2010, 24(7), 982-989.
[http://dx.doi.org/10.1002/ptr.3040] [PMID: 20013817]
[68]
Chauhan, D.; Li, G.; Podar, K.; Hideshima, T.; Neri, P.; He, D.; Mitsiades, N.; Richardson, P.; Chang, Y.; Schindler, J.; Carver, B.; Anderson, K.C. A novel carbohydrate-based therapeutic GCS-100 overcomes bortezomib resistance and enhances dexamethasone-induced apoptosis in multiple myeloma cells. Cancer Res., 2005, 65(18), 8350-8358.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-0163] [PMID: 16166312]
[69]
Gao, X.; Liu, J.; Liu, X.; Li, L.; Zheng, J. Cleavage and phosphorylation: important post-translational modifications of galectin-3. Cancer Metastasis Rev., 2017, 36(2), 367-374.
[http://dx.doi.org/10.1007/s10555-017-9666-0] [PMID: 28378189]
[70]
Thijssen, V.L.; Heusschen, R.; Caers, J.; Griffioen, A.W. Galectin expression in cancer diagnosis and prognosis: A systematic review. Biochim. Biophys. Acta, 2015, 1855(2), 235-247.
[PMID: 25819524]
[71]
Schöll-Naderer, M.; Helm, O.; Spencker, J.; Pfeifer, L.; Rätsch, T.; Sebens, S.; Classen, B. Plant-derived saccharides and their inhibitory potential on metastasis associated cellular processes of pancreatic ductal adenocarcinoma cells. Carbohydr. Res., 2020, 490, 107903.
[http://dx.doi.org/10.1016/j.carres.2019.107903] [PMID: 32171073]
[72]
Qi, Q.M.; Xue, Y.C.; Lv, J.; Sun, D.; Du, J.X.; Cai, S.Q.; Li, Y.H.; Gu, T.C.; Wang, M.B. Ginkgolic acids induce HepG2 cell death via a combination of apoptosis, autophagy and the mitochondrial pathway. Oncol. Lett., 2018, 15(5), 6400-6408.
[http://dx.doi.org/10.3892/ol.2018.8177] [PMID: 29725398]
[73]
P, A.; K, A.; L, S.; M, M.; K, M. Anticancer effect of fucoidan on cell proliferation, cell cycle progression, genetic damage and apoptotic cell death in HepG2 cancer cells. Toxicol. Rep., 2019, 6, 556-563.
[http://dx.doi.org/10.1016/j.toxrep.2019.06.005] [PMID: 31249789]
[74]
Zhou, L.; Wang, S.; Cao, L.; Ren, X.; Li, Y.; Shao, J.; Xu, L. Lead acetate induces apoptosis in Leydig cells by activating PPARγ/caspase-3/PARP pathway. Int. J. Environ. Health Res., 2021, 31(1), 34-44.
[http://dx.doi.org/10.1080/09603123.2019.1625034] [PMID: 31145012]
[75]
Vanwalscappel, B.; Haddad, J.G.; Almokdad, R.; Decotter, J.; Gadea, G.; Desprès, P. Zika M oligopeptide ZAMP confers cell death-promoting capability to a soluble tumor-associated antigen through caspase-3/7 activation. Int. J. Mol. Sci., 2020, 21(24), 9578.
[http://dx.doi.org/10.3390/ijms21249578] [PMID: 33339164]
[76]
Li, C.J.; Tsang, S.F.; Tsai, C.H.; Tsai, H.Y.; Chyuan, J.H.; Hsu, H.Y. Momordica charantia extract induces apoptosis in human cancer cells through caspase- and mitochondria-dependent pathways. Evid. Based Complement. Alternat. Med., 2012, 2012, 261971.
[http://dx.doi.org/10.1155/2012/261971] [PMID: 23091557]
[77]
Siriwarin, B.; Weerapreeyakul, N. Sesamol induced apoptotic effect in lung adenocarcinoma cells through both intrinsic and extrinsic pathways. Chem. Biol. Interact., 2016, 254, 109-116.
[http://dx.doi.org/10.1016/j.cbi.2016.06.001] [PMID: 27270451]
[78]
Nechiporuk, T.; Kurtz, S.E.; Nikolova, O.; Liu, T.; Jones, C.L.; D’Alessandro, A.; Culp-Hill, R.; d’Almeida, A.; Joshi, S.K.; Rosenberg, M.; Tognon, C.E.; Danilov, A.V.; Druker, B.J.; Chang, B.H.; McWeeney, S.K.; Tyner, J.W. The TP53 apoptotic network Is a primary mediator of resistance to BCL2 inhibition in AML cells. Cancer Discov., 2019, 9(7), 910-925.
[http://dx.doi.org/10.1158/2159-8290.CD-19-0125] [PMID: 31048320]
[79]
Namba, T. BAP31 regulates mitochondrial function via interaction with Tom40 within ER-mitochondria contact sites. Sci. Adv., 2019, 5(6), eaaw1386.
[http://dx.doi.org/10.1126/sciadv.aaw1386] [PMID: 31206022]
[80]
Park, H.Y.; Kim, G.Y.; Moon, S.K.; Kim, W.J.; Yoo, Y.H.; Choi, Y.H. Fucoidan inhibits the proliferation of human urinary bladder cancer T24 cells by blocking cell cycle progression and inducing apoptosis. Molecules, 2014, 19(5), 5981-5998.
[http://dx.doi.org/10.3390/molecules19055981] [PMID: 24818577]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy