Research Article

泛素介导的17β-雌二醇对三阴性MDA-MB-231(TNBC)乳腺癌细胞系EGFR的降解

卷 22, 期 5, 2022

发表于: 29 July, 2021

页: [449 - 457] 页: 9

弟呕挨: 10.2174/1566524021666210729144713

摘要

背景:三阴性乳腺癌(TNBC)通常显示表皮生长因子受体(EGFR)。EGFR的有效降解可在各种模型中抑制肿瘤。研究表明了这一方法与TNBC治疗的相关性。在本研究中,我们检测了17β-雌二醇对MDA-MB-231(TNBC)细胞系中EGFR表达的影响,并评估了17β-雌二醇是否通过泛素化途径降解EGFR。 目的:本研究的目的是用环己酰亚胺加或不加17β-雌二醇处理MDA-MB-231细胞系,观察17β-雌二醇是否诱导EGFR降解,并用MG-132处理,以表明降解是否通过泛素化途径发生。 方法:用17β-雌二醇(E2)处理MDA-MB-231细胞,通过用环己酰亚胺追踪的蛋白质印迹法检测EGFR在不同时间间隔的表达。为了表明MDA-MB-231细胞系中EGFR降解的泛素化途径,使用MG-132。 结果:β-雌二醇可降低环己酰亚胺追踪的MDA-MB-231细胞系中EGFR的表达。在使用MG-132和E2治疗后,EGFR的表达没有减少,这表明雌激素通过泛素化途径降解EGFR。 结论:雌激素可降解MDA-MB-231细胞中的EGFR,这种降解是通过泛素化实现的。

关键词: 三阴性乳腺癌,MDA-MB-231,雌激素,表皮生长因子受体,MG-132,泛素化。

[1]
Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer. N Engl J Med 2010; 363(20): 1938-48.
[http://dx.doi.org/10.1056/NEJMra1001389] [PMID: 21067385]
[2]
Morris GJ, Naidu S, Topham AK, et al. Differences in breast carcinoma characteristics in newly diagnosed African-American and Caucasian patients: a single-institution compilation compared with the National Cancer Institute’s Surveillance, Epidemiology, and End Results database. Cancer 2007; 110(4): 876-84.
[http://dx.doi.org/10.1002/cncr.22836] [PMID: 17620276]
[3]
Bolla M, Chedin M, Souvignet C, Marron J, Arnould C, Chambaz E. Estimation of epidermal growth factor receptor in 177 breast cancers: correlation with prognostic factors. Breast Cancer Res Treat 1990; 16(2): 97-102.
[http://dx.doi.org/10.1007/BF01809293] [PMID: 2176111]
[4]
Slamon DJ, Godolphin W, Jones LA, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 1989; 244(4905): 707-12.
[http://dx.doi.org/10.1126/science.2470152] [PMID: 2470152]
[5]
Rimawi MF, Shetty PB, Weiss HL, et al. Epidermal growth factor receptor expression in breast cancer association with biologic phenotype and clinical outcomes. Cancer 2010; 116(5): 1234-42.
[http://dx.doi.org/10.1002/cncr.24816] [PMID: 20082448]
[6]
Nicholson RI, Hutcheson IR, Jones HE, et al. Growth factor signalling in endocrine and anti-growth factor resistant breast cancer. Rev Endocr Metab Disord 2007; 8(3): 241-53.
[http://dx.doi.org/10.1007/s11154-007-9033-5] [PMID: 17486454]
[7]
DeSantis CE, Fedewa SA, Goding Sauer A, Kramer JL, Smith RA, Jemal A. Breast cancer statistics, 2015: Convergence of incidence rates between black and white women. CA Cancer J Clin 2016; 66(1): 31-42.
[http://dx.doi.org/10.3322/caac.21320] [PMID: 26513636]
[8]
Brewster AM, Chavez-MacGregor M, Brown P. Epidemiology, biology, and treatment of triple-negative breast cancer in women of African ancestry. Lancet Oncol 2014; 15(13): e625-34.
[http://dx.doi.org/10.1016/S1470-2045(14)70364-X] [PMID: 25456381]
[9]
Spangler JB, Neil JR, Abramovitch S, et al. Combination antibody treatment down-regulates epidermal growth factor receptor by inhibiting endosomal recycling. Proc Natl Acad Sci USA 2010; 107(30): 13252-7.
[http://dx.doi.org/10.1073/pnas.0913476107] [PMID: 20616078]
[10]
Goh LK, Huang F, Kim W, Gygi S, Sorkin A. Multiple mechanisms collectively regulate clathrin-mediated endocytosis of the epidermal growth factor receptor. J Cell Biol 2010; 189(5): 871-83.
[http://dx.doi.org/10.1083/jcb.201001008] [PMID: 20513767]
[11]
Crowder JJ, Geigges M, Gibson RT, et al. Rkr1/Ltn1 Ubiquitin Ligase-mediated Degradation of Translationally Stalled Endoplasmic Reticulum Proteins. J Biol Chem 2015; 290(30): 18454-66.
[http://dx.doi.org/10.1074/jbc.M115.663559] [PMID: 26055716]
[12]
Tran JR, Brodsky JL. Assays to measure ER-associated degradation in yeast. Methods Mol Biol 2012; 832: 505-18.
[http://dx.doi.org/10.1007/978-1-61779-474-2_36] [PMID: 22350909]
[13]
Kao SH, Wang WL, Chen CY, et al. GSK3β controls epithelial-mesenchymal transition and tumor metastasis by CHIP-mediated degradation of Slug. Oncogene 2014; 33(24): 3172-82.
[http://dx.doi.org/10.1038/onc.2013.279] [PMID: 23851495]
[14]
Hampton RY, Rine J. Regulated degradation of HMG-CoA reductase, an integral membrane protein of the endoplasmic reticulum, in yeast. J Cell Biol 1994; 125(2): 299-312.
[http://dx.doi.org/10.1083/jcb.125.2.299] [PMID: 8163547]
[15]
Hochstrasser M, Varshavsky A. In vivo degradation of a transcriptional regulator: the yeast alpha 2 repressor. Cell 1990; 61(4): 697-708.
[http://dx.doi.org/10.1016/0092-8674(90)90481-S] [PMID: 2111732]
[16]
Hanna J, Leggett DS, Finley D. Ubiquitin depletion as a key mediator of toxicity by translational inhibitors. Mol Cell Biol 2003; 23(24): 9251-61.
[http://dx.doi.org/10.1128/MCB.23.24.9251-9261.2003] [PMID: 14645527]
[17]
Glickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 2002; 82(2): 373-428.
[http://dx.doi.org/10.1152/physrev.00027.2001] [PMID: 11917093]
[18]
Hershko A. The ubiquitin system for protein degradation and some of its roles in the control of the cell division cycle. Cell Death Differ 2005; 12(9): 1191-7.
[http://dx.doi.org/10.1038/sj.cdd.4401702] [PMID: 16094395]
[19]
Ravid T, Hochstrasser M. Diversity of degradation signals in the ubiquitin-proteasome system. Nat Rev Mol Cell Biol 2008; 9(9): 679-90.
[http://dx.doi.org/10.1038/nrm2468] [PMID: 18698327]
[20]
Gallastegui N, Groll M. The 26S proteasome: assembly and function of a destructive machine. Trends Biochem Sci 2010; 35(11): 634-42.
[http://dx.doi.org/10.1016/j.tibs.2010.05.005] [PMID: 20541423]
[21]
Hershko A, Heller H, Elias S, Ciechanover A. Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. J Biol Chem 1983; 258(13): 8206-14.
[http://dx.doi.org/10.1016/S0021-9258(20)82050-X] [PMID: 6305978]
[22]
Metzger MB, Pruneda JN, Klevit RE, Weissman AM. RING-type E3 ligases: master manipulators of E2 ubiquitin-conjugating enzymes and ubiquitination. Biochim Biophys Acta 2014; 1843(1): 47-60.
[http://dx.doi.org/10.1016/j.bbamcr.2013.05.026] [PMID: 23747565]
[23]
Finley D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 2009; 78: 477-513.
[http://dx.doi.org/10.1146/annurev.biochem.78.081507.101607] [PMID: 19489727]
[24]
Lander GC, Estrin E, Matyskiela ME, Bashore C, Nogales E, Martin A. Complete subunit architecture of the proteasome regulatory particle. Nature 2012; 482(7384): 186-91.
[http://dx.doi.org/10.1038/nature10774] [PMID: 22237024]
[25]
Das S, Roth CP, Wasson LM, Vishwanatha JK. Signal transducer and activator of transcription-6 (STAT6) is a constitutively expressed survival factor in human prostate cancer. Prostate 2007; 67(14): 1550-64.
[http://dx.doi.org/10.1002/pros.20640] [PMID: 17705178]
[26]
Amirikia KC, Mills P, Bush J, Newman LA. Higher population-based incidence rates of triple-negative breast cancer among young African-American women: Implications for breast cancer screening recommendations. Cancer 2011; 117(12): 2747-53.
[http://dx.doi.org/10.1002/cncr.25862] [PMID: 21656753]
[27]
Pietras RJ, Márquez-Garbán DC. Membrane-associated estrogen receptor signaling pathways in human cancers. Clin Cancer Res 2007; 13(16): 4672-6.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1373] [PMID: 17699844]
[28]
Hammes SR, Levin ER. Extranuclear steroid receptors: nature and actions. Endocr Rev 2007; 28(7): 726-41.
[http://dx.doi.org/10.1210/er.2007-0022] [PMID: 17916740]
[29]
Yan Y, Li X, Blanchard A, et al. Expression of both estrogen receptor-beta 1 (ER-β1) and its co-regulator steroid receptor RNA activator protein (SRAP) are predictive for benefit from tamoxifen therapy in patients with estrogen receptor-alpha (ER-α)-negative early breast cancer (EBC). Ann Oncol 2013; 24(8): 1986-93.
[http://dx.doi.org/10.1093/annonc/mdt132] [PMID: 23579816]
[30]
Pezzuto A, Carico E. Role of HIF-1 in Cancer Progression: Novel Insights. A Review. Curr Mol Med 2018; 18(6): 343-51.
[http://dx.doi.org/10.2174/1566524018666181109121849] [PMID: 30411685]
[31]
Thomas C, Rajapaksa G, Nikolos F, et al. ERbeta1 represses basal breast cancer epithelial to mesenchymal transition by destabilizing EGFR. Breast Cancer Res 2012; 14(6): R148.
[http://dx.doi.org/10.1186/bcr3358] [PMID: 23158001]
[32]
Waterman H, Levkowitz G, Alroy I, Yarden Y. The RING finger of c-Cbl mediates desensitization of the epidermal growth factor receptor. J Biol Chem 1999; 274(32): 22151-4.
[http://dx.doi.org/10.1074/jbc.274.32.22151] [PMID: 10428778]
[33]
Jiang X, Huang F, Marusyk A, Sorkin A. Grb2 regulates internalization of EGF receptors through clathrin-coated pits. Mol Biol Cell 2003; 14(3): 858-70.
[http://dx.doi.org/10.1091/mbc.e02-08-0532] [PMID: 12631709]
[34]
Confalonieri S, Salcini AE, Puri C, Tacchetti C, Di Fiore PP. Tyrosine phosphorylation of Eps15 is required for ligand-regulated, but not constitutive, endocytosis. J Cell Biol 2000; 150(4): 905-12.
[http://dx.doi.org/10.1083/jcb.150.4.905] [PMID: 10953014]
[35]
Ramaekers CH, Wouters BG. Regulatory functions of ubiquitin in diverse DNA damage responses. Curr Mol Med 2011; 11(2): 152-69.
[http://dx.doi.org/10.2174/156652411794859269] [PMID: 21342128]
[36]
Lu Q, Hope LW, Brasch M, Reinhard C, Cohen SN. TSG101 interaction with HRS mediates endosomal trafficking and receptor down-regulation. Proc Natl Acad Sci USA 2003; 100(13): 7626-31.
[http://dx.doi.org/10.1073/pnas.0932599100] [PMID: 12802020]
[37]
Bache KG, Brech A, Mehlum A, Stenmark H. Hrs regulates multivesicular body formation via ESCRT recruitment to endosomes. J Cell Biol 2003; 162(3): 435-42.
[http://dx.doi.org/10.1083/jcb.200302131] [PMID: 12900395]
[38]
Radinsky R, Risin S, Fan D, et al. Level and function of epidermal growth factor receptor predict the metastatic potential of human colon carcinoma cells. Clin Cancer Res 1995; 1(1): 19-31.
[PMID: 9815883]
[39]
Harris AL, Nicholson S, Sainsbury R, Wright C, Farndon J. Epidermal growth factor receptor and other oncogenes as prognostic markers. J Natl Cancer Inst Monogr 1992; (11): 181-7.
[PMID: 1627426]
[40]
Jain A, Jain SK. Advances in Tumor Targeted Liposomes. Curr Mol Med 2018; 18(1): 44-57.
[http://dx.doi.org/10.2174/1566524018666180416101522] [PMID: 29663884]
[41]
Price JT, Bonovich MT, Kohn EC. The biochemistry of cancer dissemination. Crit Rev Biochem Mol Biol 1997; 32(3): 175-253.
[http://dx.doi.org/10.3109/10409239709082573] [PMID: 9239493]
[42]
Reis-Filho JS, Pinheiro C, Lambros MB, et al. EGFR amplification and lack of activating mutations in metaplastic breast carcinomas. J Pathol 2006; 209(4): 445-53.
[http://dx.doi.org/10.1002/path.2004] [PMID: 16739104]
[43]
Hoadley KA, Weigman VJ, Fan C, et al. EGFR associated expression profiles vary with breast tumor subtype. BMC Genomics 2007; 8: 258.
[http://dx.doi.org/10.1186/1471-2164-8-258] [PMID: 17663798]
[44]
Burness ML, Grushko TA, Olopade OI. Epidermal growth factor receptor in triple-negative and basal-like breast cancer: promising clinical target or only a marker? Cancer J 2010; 16(1): 23-32.
[http://dx.doi.org/10.1097/PPO.0b013e3181d24fc1] [PMID: 20164687]

© 2025 Bentham Science Publishers | Privacy Policy