Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

General Research Article

Direct Synthesis of Formic Acid from Carbon Dioxide by Hydrogenation Over Ruthenium Metal Doped Titanium Dioxide Nanoparticles in Functionalized Ionic Liquid

Author(s): Vivek Srivastava*

Volume 9, Issue 1, 2022

Published on: 19 July, 2021

Page: [73 - 79] Pages: 7

DOI: 10.2174/2213337208666210719093403

Price: $65

Abstract

Background: Presently worldwide manufacturing of formic acid follows the permutation of methanol and carbon monoxide in presence of a strong base. But due to the use of toxic CO molecule and easy availability of CO2 molecule in the atmosphere, most of the research has been shifted from the conventional method of formic acid synthesis to direct hydrogenation of CO2 gas using different homogenous and heterogeneous catalysts.

Objective: To develop reaction protocol to achieve easy CO2 hydrogenation to formic acid using Ionic liquid reaction medium.

Methods: We used the sol-gel method followed by calcination (over 250°C for 5 hours) to synthesize two types of ruthenium metal-doped TiO2 nanoparticles (with and without ionic liquids), namely Ru@TiO2@IL and Ru@TiO2. We are reporting the application NR2 (R= CH3) containing imidazolium- based ionic liquids not only to achieve a good reaction rate but also to get agglomeration free ruthenium metal-doped TiO2 nanoparticles along with easy product isolation due to the presence of NR2 (R= CH3) functionality in ionic liquid structure. We synthesized various NR2 (R= CH3) functionalized ionic liquids such as 1-Butyl-3-methylimidazolium Chloride, 1,3-di(N,Ndimethylaminoethyl)- 2-methylimidazolium trifluoromethanesulfonate ([DAMI][TfO]), 1,3-di(N,Ndimethylaminoethyl)- 2-methylimidazolium bis (trifluoromethylsulfonyl) imide ([DAMI][NTf2]) and 1-butyl-3-methylimidazolium chloride ionic liquids which were synthesized as per the reported procedure.

Results: We easily developed two types of Ru metal-doped TiO2 nanoparticles using the sol-gel method. After calcination, both Ru@TiO2@IL (3.2 wt% Ru), and Ru@TiO2 (1.7 wt% Ru) materials were characterized by XRD, FTIR, TEM, ICP-AES, EDS, and XANES analysis. After understanding the correct structural arrangement of Ru metal over TiO2 support, we utilized both Ru@TiO2@IL (3.2 wt% Ru) and Ru@TiO2 (1.7 wt% Ru) the materials as a catalyst for direct hydrogenation of CO2 in the presence of water and functionalized [DAMI] [TfO] ionic liquid.

Conclusion: Here we demonstrated the preparation and characterization of TiO2 supported Ru nanoparticles with and without ionic liquid. After understanding the correct morphology and physiochemical analysis of Ru@TiO2@IL (3.2 wt% Ru), and Ru@TiO2 (1.7 wt% Ru) catalysts, we examined their application in CO2 reduction and formic acid synthesis. During the optimization, we also noticed the significant effect of functionalized [DAMI] [TfO] ionic liquid and water to improve the formic acid yield. Lastly, we also checked the stability of the catalyst by recycling the same till the 7th run.

Keywords: Ruthenium nanometal, titanium dioxide, nanoparticles, hydrogenation, carbon sequestration, formic acid.

Graphical Abstract

[1]
Bulushev, D.A.; Ross, J.R.H. Towards sustainable production of formic acid. ChemSusChem, 2018, 11(5), 821-836.
[http://dx.doi.org/10.1002/cssc.201702075] [PMID: 29316342]
[2]
Hietala, J.; Vuori, A.; Johnsson, P.; Pollari, I.; Reutemann, W.; Kieczka, H. Formic acid. In: Ullmann’s encyclopedia of industrial chemistry; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2016; pp. 1-22.
[http://dx.doi.org/10.1002/14356007.a12_013.pub3]
[3]
Rumayor, M.; Dominguez-Ramos, A.; Irabien, A. Formic acid manufacture: Carbon dioxide utilization alternatives. Appl. Sci. (Basel), 2018, 8, 914.
[http://dx.doi.org/10.3390/app8060914]
[4]
Sharma, S.; Patle, D.S.; Gadhamsetti, A.P.; Pandit, S.; Manca, D.; Nirmala, G.S. Intensification and performance assessment of the formic acid production process through a dividing wall reactive distillation column with vapor recompression. Chem. Eng. Process. Process Intensif, 2018, 123, 204-213.
[http://dx.doi.org/10.1016/j.cep.2017.11.016]
[5]
Supronowicz, W.; Ignatyev, I.A.; Lolli, G.; Wolf, A.; Zhao, L.; Mleczko, L. Formic acid: A future bridge between the power and chemical industries. Green Chem., 2015, 17, 2904-2911.
[http://dx.doi.org/10.1039/C5GC00249D]
[6]
Balaraman, E.; Gunanathan, C.; Zhang, J.; Shimon, L.J.W.; Milstein, D. Efficient hydrogenation of organic carbonates, carbamates and formates indicates alternative routes to methanol based on CO2 and CO. Nat. Chem., 2011, 3(8), 609-614.
[http://dx.doi.org/10.1038/nchem.1089] [PMID: 21778980]
[7]
Schlapbach, L.; Züttel, A. Hydrogen-storage materials for mobile applications. Nature, 2001, 414(6861), 353-358.
[http://dx.doi.org/10.1038/35104634] [PMID: 11713542]
[8]
Moret, S.; Dyson, P.J.; Laurenczy, G. Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media. Nat. Commun., 2014, 5, 4017.
[http://dx.doi.org/10.1038/ncomms5017] [PMID: 24886955]
[9]
Centi, G.; Perathoner, S. Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catal. Today, 2009, 148, 191-205.
[http://dx.doi.org/10.1016/j.cattod.2009.07.075]
[10]
Mellmann, D.; Sponholz, P.; Junge, H.; Beller, M. Formic acid as a hydrogen storage material - development of homogeneous catalysts for selective hydrogen release. Chem. Soc. Rev., 2016, 45(14), 3954-3988.
[http://dx.doi.org/10.1039/C5CS00618J] [PMID: 27119123]
[11]
Álvarez, A.; Bansode, A.; Urakawa, A.; Bavykina, A.V.; Wezendonk, T.A.; Makkee, M.; Gascon, J.; Kapteijn, F. Challenges in the greener production of formates/formic acid, methanol, and dme by heterogeneously catalyzed CO2 hydrogenation processes. Chem. Rev., 2017, 117(14), 9804-9838.
[http://dx.doi.org/10.1021/acs.chemrev.6b00816] [PMID: 28656757]
[12]
Lu, S.M.; Wang, Z.; Li, J.; Xiao, J.; Li, C. Base-free hydrogenation of CO2 to formic acid in water with an iridium complex bearing a: N, N ′-diimine ligand. Green Chem., 2016, 18, 4553-4558.
[http://dx.doi.org/10.1039/C6GC00856A]
[13]
Gautam, P.; Upadhyay, P.R.; Srivastava, V. Selective hydrogenation of CO2 to formic acid over alumina-supported Ru nanoparticles with multifunctional ionic liquid. Catal. Lett., 2019, 149, 1464-1475.
[http://dx.doi.org/10.1007/s10562-019-02773-z]
[14]
Leitner, W. Carbon dioxide as a raw material: The synthesis of formic acid and its derivatives from CO2. Angew. Chem. Int. Ed. Engl., 1995, 34, 2207-2221.
[http://dx.doi.org/10.1002/anie.199522071]
[15]
Thongnuam, W.; Maihom, T.; Choomwattana, S.; Injongkol, Y.; Boekfa, B.; Treesukol, P.; Limtrakul, J. Theoretical study of CO2 hydrogenation into formic acid on Lewis acid zeolites. Phys. Chem. Chem. Phys., 2018, 20(39), 25179-25185.
[http://dx.doi.org/10.1039/C8CP03146K] [PMID: 29992213]
[16]
Maru, M.S.; Patel, P.; Khan, N.H.; Shukla, R.S. Copper hydrotalcite (Cu-HT) as an efficient catalyst for the hydrogenation of CO2 to formic acid. Curr. Catal., 2020, 9, 59-71.
[http://dx.doi.org/10.2174/2211544709999200413110411]
[17]
Pandey, P.H.; Pawar, H.S. Cu dispersed TiO2 catalyst for direct hydrogenation of carbon dioxide into formic acid. J. CO2 Util., 2020, 41, 101267.
[18]
Liu, X. Hydrogenation of CO2 promoted by silicon-activated H2S: Origin and implications. Molecules, 2020, 26(1), 1-9.
[http://dx.doi.org/10.3390/molecules26010050] [PMID: 33374285]
[19]
Müller, K.; Brooks, K.; Autrey, T. Hydrogen storage in formic acid: A comparison of process options. Energy Fuels, 2017, 31, 12603-12611.
[http://dx.doi.org/10.1021/acs.energyfuels.7b02997]
[20]
Zhang, Y.; Zhang, T.; Das, S. Catalytic transformation of CO2 into C1 chemicals using hydrosilanes as a reducing agent. Green Chem., 2020, 22, 1800-1820.
[http://dx.doi.org/10.1039/C9GC04342J]
[21]
Alper, E.; Yuksel Orhan, O. CO2 utilization: Developments in conversion processes. Petroleum, 2017, 3, 109-126.
[http://dx.doi.org/10.1016/j.petlm.2016.11.003]
[22]
Martin, N.M.; Velin, P.; Skoglundh, M.; Bauer, M.; Carlsson, P.A. Catalytic hydrogenation of CO2 to methane over supported Pd, Rh and Ni catalysts. Catal. Sci. Technol., 2017, 7, 1086-1094.
[http://dx.doi.org/10.1039/C6CY02536F]
[23]
Ye, R.P.; Ding, J.; Gong, W.; Argyle, M.D.; Zhong, Q.; Wang, Y.; Russell, C.K.; Xu, Z.; Russell, A.G.; Li, Q.; Fan, M.; Yao, Y.G. CO2 hydrogenation to high-value products via heterogeneous catalysis. Nat. Commun., 2019, 10(1), 5698.
[http://dx.doi.org/10.1038/s41467-019-13638-9] [PMID: 31836709]
[24]
Jo, D.Y.; Ham, H.C.; Lee, K.Y. Facet-dependent electrocatalysis in the hcooh synthesis from CO2 reduction on Cu catalyst: A density functional theory study. Appl. Surf. Sci., 2020, 527.
[25]
Winter, F.; Agarwal, R.A.; Hrdlicka, J.; Varjani, S. Introduction to CO2 separation, purification and conversion to chemicals and fuels. 2019, 1-3.
[26]
Song, C. Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catal. Today, 2006, 115, 2-32.
[http://dx.doi.org/10.1016/j.cattod.2006.02.029]
[27]
Srivastava, V. Active heterogeneous Ru nanocatalysts for CO2 hydrogenation reaction. Catal. Lett., 2016, 146, 2630-2640.
[http://dx.doi.org/10.1007/s10562-016-1882-7]
[28]
Upadhyay, P.R.; Srivastava, V. Ionic liquid mediated in situ synthesis of ru nanoparticles for CO2 hydrogenation reaction. Catal. Lett., 2017, 147, 1051-1060.
[http://dx.doi.org/10.1007/s10562-017-1995-7]
[29]
Weilhard, A.; Qadir, M.I.; Sans, V.; Dupont, J. Selective CO2 hydrogenation to formic acid with multifunctional ionic liquids. ACS Catal., 2018, 8, 1628-1634.
[http://dx.doi.org/10.1021/acscatal.7b03931]
[30]
Gunasekar, G.H.; Park, K.; Jung, K.D.; Yoon, S. Recent developments in the catalytic hydrogenation of CO2 to formic acid/formate using heterogeneous catalysts. Inorg. Chem. Front., 2016, 3, 882-895.
[http://dx.doi.org/10.1039/C5QI00231A]
[31]
Maihom, T.; Wannakao, S.; Boekfa, B.; Limtrakul, J. Production of formic acid via hydrogenation of CO2 over a copper-alkoxide- functionalized MOF: A mechanistic study. J. Phys. Chem. C, 2013, 117, 17650-17658.
[http://dx.doi.org/10.1021/jp405178p]
[32]
Ertl, G.; Kniizinger, H.; Schüth, F.; Weitkamp, J., Eds.; Handbook of heterogeneous catalysis; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2008.
[33]
Van Santen, R.A. Modern heterogeneous catalysis. Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2017.
[http://dx.doi.org/10.1002/9783527810253]
[34]
Preti, D.; Resta, C.; Squarcialupi, S.; Fachinetti, G. Carbon dioxide hydrogenation to formic acid by using a heterogeneous gold catalyst. Angew. Chem. Int. Ed. Engl., 2011, 50(52), 12551-12554.
[http://dx.doi.org/10.1002/anie.201105481] [PMID: 22057843]
[35]
Su, J.; Yang, L.; Lu, M.; Lin, H. Highly efficient hydrogen storage system based on ammonium bicarbonate/formate redox equilibrium over palladium nanocatalysts. ChemSusChem, 2015, 8(5), 813-816.
[http://dx.doi.org/10.1002/cssc.201403251] [PMID: 25663262]
[36]
Ying-min, Y.U.; Jin-hua, F.E.I.; Yi-ping, Z.; Xiao-ming, Z. Carbon dioxide hydrogenation catalyzed by ruthenium complexes immobilized on MCM-41. J. Fuel Chem. Technol., 2006, 34(6), 700-705.
[http://dx.doi.org/10.1016/S1872-5813(07)60005-X]
[37]
Yu, Y-M.; Fei, J-H.; Zhang, Y-P.; Zheng, X-M. MCM-41 bound ruthenium complex as heterogeneous catalyst for hydrogenation I: Effect of Support, Ligand and Solvent on the Catalyst Performance. Chin. J. Chem., 2006, 24, 840-844.
[http://dx.doi.org/10.1002/cjoc.200690160]
[38]
Zhang, Y.; Fei, J.; Yu, Y.; Zheng, X. Silica immobilized ruthenium catalyst used for carbon dioxide hydrogenation to formic acid (I): The effect of functionalizing group and additive on the catalyst performance. Catal. Commun., 2004, 5, 643-646.
[http://dx.doi.org/10.1016/j.catcom.2004.08.001]
[39]
Gunasekar, G.; Park, K.; Jung, K-D.; Yoon, S. Recent developments in the catalytic hydrogenation of CO2 to formic acid/formate using heterogeneous catalysts. Inorg. Chem. Front., 2016, 3, 882-895.
[40]
Jiang, H. yan.; Zhang, S. shi.; Sun, B. Highly selective hydrogenation with ionic liquid stabilized nickel nanoparticles. Catal. Lett., 2018, 148, 1336-1344.
[http://dx.doi.org/10.1007/s10562-018-2361-0]
[41]
Prechtl, M.H.G. Nanocatalysis in ionic liquids. Wiley, 2016.
[http://dx.doi.org/10.1002/9783527693283]
[42]
Singh, R.; Sharma, M.; Mamgain, R.; Rawat, D.S. Ionic liquids: A versatile medium for palladium-catalyzed reactions. J. Braz. Chem. Soc., 2008, 19, 357-379.
[http://dx.doi.org/10.1590/S0103-50532008000300002]
[43]
Tanner, E.E.L.; Batchelor-McAuley, C.; Compton, R.G. Single nanoparticle detection in ionic liquids. J. Phys. Chem. C, 2016, 120, 1959-1965.
[http://dx.doi.org/10.1021/acs.jpcc.5b10745]
[44]
Prechtl, M.H.G.; Scholten, J.D.; Dupont, J. Carbon-carbon cross coupling reactions in ionic liquids catalysed by palladium metal nanoparticles. Molecules, 2010, 15(5), 3441-3461.
[http://dx.doi.org/10.3390/molecules15053441] [PMID: 20657493]
[45]
Guo, X.; Peng, Z.; Traitangwong, A.; Wang, G.; Xu, H.; Meeyoo, V.; Li, C.; Zhang, S. Ru nanoparticles stabilized by ionic liquids supported onto silica: Highly active catalysts for low-temperature CO2 methanation. Green Chem., 2018, 20, 4932-4945.
[http://dx.doi.org/10.1039/C8GC02337A]
[46]
Gaikwad, D.S.; Undale, K.A.; Patil, D.B.; Pore, D.M. Multi-functionalized ionic liquid with in situ-generated palladium nanoparticles for suzuki, heck coupling reaction: A comparison with deep eutectic solvents. J. Iran. Chem. Soc., 2019, 16, 253-261.
[http://dx.doi.org/10.1007/s13738-018-1503-z]
[47]
Migowski, P.; Dupont, J. Catalytic applications of metal nanoparticles in imidazolium ionic liquids. Chemistry, 2007, 13(1), 32-39.
[http://dx.doi.org/10.1002/chem.200601438] [PMID: 17115465]
[48]
Zhang, Z.; Xie, Y.; Li, W.; Hu, S.; Song, J.; Jiang, T.; Han, B. Hydrogenation of carbon dioxide is promoted by a task-specific ionic liquid. Angew. Chem. Int. Ed. Engl., 2008, 47(6), 1127-1129.
[http://dx.doi.org/10.1002/anie.200704487] [PMID: 18092313]
[49]
Gautam, P.; Srivastava, V. Active γ -alumina -supported ru nanoparticles for CO2 hydrogenation reaction. Lett. Org. Chem., 2020, 17, 603-612.
[http://dx.doi.org/10.2174/1570178617666191107112429]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy