Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

General Research Article

Ionic Liquid Mediated Graphene-based Pd Nanocomposites for Coupling Reactions

Author(s): Vivek Srivastava*

Volume 9, Issue 1, 2022

Published on: 23 April, 2021

Page: [62 - 72] Pages: 11

DOI: 10.2174/2213337208666210423130548

Price: $65

Abstract

Aims: In search of a ligand-free, recyclable, selective, and stable catalytic system, we engineered both Pd/GO and Pd/rGO composites and tested them as catalysts for Heck and Suzuki reactions in [bmim] NTf2 ionic liquid medium.

Background: Various reports and reviews have been published on exploring the application of ionic liquids as a reaction medium for different organic transformations. Recently, graphene-supported Pt nanoparticles have immobilized with the 7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene bis(trifluoromethylsulfonyl) imide ionic liquid [MTBD][bmsi] and further tested to study the oxygen reduction reaction. Surprisingly, [MTBD][bmsi] immobilized system was found highly active towards electrocatalytic reaction.

Objective: In various reports, palladium nanoparticles were immobilized with Graphene Oxide (GO) or with reduced graphene oxide (rGO), and these two types of graphene were further tested as a catalyst for different coupling reactions such as Suzuki-Miyaura, Heck, and Suzuki reaction. Both Pd/GO and Pd/rGO were found attractive concerning catalyst specific property, i.e., high surface area, and because of that, graphene immobilized palladium was found to be similar to other commercially available palladium catalysts (e.g., Pd on charcoal), but collectively, both hybrid materials (Pd/GO and Pd/rGO) possess various drawbacks, like high catalyst loading, catalyst leaching (via agglomeration of Pd metals into the clusters) during the recycling test (especially in case of Pd/GO), limited substrate scope, and the requirement of polar solvents, etc.

Methods: All the chemicals were purchased from Sigma Aldrich, Acros, or Fluka. NMR spectra were recorded on a standard Bruker 300WB spectrometer with an Avance console at 300 and 75 MHz for 1H and 13C NMR, respectively. Pd/O and Pd/rGO were synthesized as per the reported procedure. The residue was purified by Flash Chromatography (FC) with hexane/ethyl acetate. The detailed 1H and 13C NMR of each Heck and Suzuki reaction product were found similar to the reported analytical data. 1-butyl-3-methylimidazolium bis (trifluoromethyl sulfonyl) imide ([bmim]NTf2) was synthesized as per the reported procedure.

Results and Conclusion: We have successfully developed a highly efficient ligand-free method for Heck and Suzuki reaction, using Pd/rGO catalysts in an ionic liquid medium which afforded the coupling products with excellent yield. One of the major advantages of the proposed protocol is that the catalyst system can be easily re-usable without the loss of catalytic activity, thereby multiplying catalyst turnover. Another advantage is that the reaction proceeds without phosphine ligands, which are expensive, toxic, and contaminants of the product. The green nature of ionic liquid and the simplicity of its operation make the present Heck and Suzuki reactions more attractive.

Keywords: C-C coupling reaction, heck reaction, suzuki reaction, ionic liquid, graphene, palladium nanoparticle.

Graphical Abstract

[1]
Yu, I.K.M.; Xiong, X.; Tsang, D.C.W.; Ng, Y.H.; Clark, J.H.; Fan, J.; Zhang, S.; Hu, C.; Ok, Y.S. Graphite oxide- and graphene oxide-supported catalysts for microwave-assisted glucose isomerisation in water. Green Chem., 2019, 21, 4341-4353.
[http://dx.doi.org/10.1039/C9GC00734B]
[2]
Samiee-Zafarghandi, R.; Hadi, A.; Karimi-Sabet, J. Graphene-supported metal nanoparticles as novel catalysts for syngas production using supercritical water gasification of microalgae. Biomass Bioenergy, 2019, 121, 13-21.
[http://dx.doi.org/10.1016/j.biombioe.2018.11.035]
[3]
Julkapli, N.M.; Bagheri, S. Graphene supported heterogeneous catalysts: An overview. Int. J. Hydrogen Energy, 2015, 40, 948-979.
[http://dx.doi.org/10.1016/j.ijhydene.2014.10.129]
[4]
Yam, K.M.; Guo, N.; Jiang, Z.; Li, S.; Zhang, C. Graphene-based heterogeneous catalysis: Role of graphene. Catalysts, 2020, 10, 53.
[http://dx.doi.org/10.3390/catal10010053]
[5]
Ren, S.; Yu, Q.; Yu, X.; Rong, P.; Jiang, L.; Jiang, J. Graphene-supported metal single-atom catalysts: A concise review. Sci. China Mater., 2020, 63, 903-920.
[http://dx.doi.org/10.1007/s40843-019-1286-1]
[6]
Haag, D.; Kung, H.H. Metal free graphene based catalysts: A review. Topics in Catalysis; Springer, 2014, Vol. 57, pp. 762-773.
[http://dx.doi.org/10.1007/s11244-013-0233-9]
[7]
Cheng, Y.; Fan, Y.; Pei, Y.; Qiao, M. Graphene-supported metal/metal oxide nanohybrids: Synthesis and applications in heterogeneous catalysis. Catal. Sci. Technol., 2015, 5, 3903-3916.
[http://dx.doi.org/10.1039/C5CY00630A]
[8]
Blanita, G.; Lazar, M.D. Review of graphene-supported metal nanoparticles as new and efficient heterogeneous catalysts. Micro Nanosyst., 2013, 5, 138-146.
[http://dx.doi.org/10.2174/1876402911305020009]
[9]
Vu, T.H.T.; Nguyen, M.H.; Nguyen, M.D. Synthesis of acidic heterogeneous catalysts with high stability based on grapheme oxide/activated carbon composites for the esterification of lactic acid. J. Chem., 2019, 2019(2), 1-7.
[10]
Verma, S.; Mungse, H.P.; Kumar, N.; Choudhary, S.; Jain, S.L.; Sain, B.; Khatri, O.P. Graphene oxide: An efficient and reusable carbocatalyst for aza-Michael addition of amines to activated alkenes. Chem. Commun. (Camb.), 2011, 47(47), 12673-12675.
[http://dx.doi.org/10.1039/c1cc15230k] [PMID: 22039588]
[11]
Samiei, Z.; Soleimani-Amiri, S.; Azizi, Z. Fe3O4@C@OSO3H as an efficient, recyclable magnetic nanocatalyst in pechmann condensation: Green synthesis, characterization, and theoretical study. Mol. Divers., 2021, 23(15), 1-20.
[http://dx.doi.org/10.1007/s11030-019-10025-w] [PMID: 31927717]
[12]
Zhu, J.; Ding, X.; Li, D.; Dou, M.; Lu, M.; Li, Y.; Luo, F. Graphene oxide-supported catalyst with thermoresponsive smart surface for selective hydrogenation of cinnamaldehyde. ACS Appl. Mater. Interfaces, 2019, 11(18), 16443-16451.
[http://dx.doi.org/10.1021/acsami.8b19594] [PMID: 30990017]
[13]
Liu, J.; Yue, Y.; Liu, H.; Da, Z.; Liu, C.; Ma, A.; Rong, J.; Su, D.; Bao, X.; Zheng, H. Origin of the robust catalytic performance of nanodiamond-graphene-supported pt nanoparticles used in the propane dehydrogenation reaction. ACS Catal., 2017, 7, 3349-3355.
[http://dx.doi.org/10.1021/acscatal.6b03452]
[14]
Hu, F.; Patel, M.; Luo, F.; Flach, C.; Mendelsohn, R.; Garfunkel, E.; He, H.; Szostak, M. Graphene-catalyzed direct friedel-crafts alkylation reactions: Mechanism, selectivity, and synthetic utility. J. Am. Chem. Soc., 2015, 137(45), 14473-14480.
[http://dx.doi.org/10.1021/jacs.5b09636] [PMID: 26496423]
[15]
Wang, Y.; Chen, Z.H.; Huang, J.; Li, G.J.; Cao, J.L.; Zhang, B.; Chen, X.Y.; Zhang, H.L.; Jia, L. Preparation and catalytic behavior of reduced graphene oxide supported cobalt oxide hybrid nanocatalysts for CO oxidation. Trans. Nonferrous Met. Soc. China, 2018, 28, 2265-2273.
[16]
Nishihara, Y. A historic overview of the metal-catalyzed cross-coupling reactions. ChemInform, 2013, 46(50), 3-15.
[http://dx.doi.org/10.1007/978-3-642-32368-3_1]
[17]
Kohei, T.; Miyaura, N. Introduction to cross-coupling reactions. ChemInform, 2002, 34(12), 1-9.
[http://dx.doi.org/10.1007/3-540-45313-X_1]
[18]
Palladium-Catalyzed Coupling Reactions: Practical Aspects and Future Developments | Wiley. Available from: https://www.wiley.com/en-us/Palladium+Catalyzed+Coupling+Reactions%3A+Practical+Aspects+and+Future+Developments-p-9783527332540accessed Feb 25, 2021
[19]
Jiao, J.; Nishihara, Y. Alkynylboron compounds in organic synthesis. J. Organometal. Chem., 2012, 721–722, 3-16.
[http://dx.doi.org/10.1016/j.jorganchem.2012.05.027]
[20]
de Meijere, A.; Bräse, S.; Oestreich, M. Metal-catalyzed cross-coupling reactions and more; de Meijere, A.; Bräse, S.; Oestreich, M., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2014.
[21]
Kusumawati, E.N.; Sasaki, T. Highly active and stable supported Pd catalysts on ionic liquid-functionalized SBA-15 for suzuki–miyaura cross-coupling and transfer hydrogenation reactions. Green Energy Environ., 2019, 4, 180-189.
[http://dx.doi.org/10.1016/j.gee.2019.02.003]
[22]
Hanley, R. Palladium-catalyzed coupling reactions: Practical aspects and future developments. Platin. Met. Rev., 2014, 58, 93-98.
[http://dx.doi.org/10.1595/147106714X679458]
[23]
Hattori, T.; Tsubone, A.; Sawama, Y.; Monguchi, Y.; Sajiki, H. Palladium on carbon-catalyzed suzuki-miyaura coupling reaction using an efficient and continuous flow system. Catalysts, 2015, 5, 18-25.
[http://dx.doi.org/10.3390/catal5010018]
[24]
Manabe, K. Palladium catalysts for cross-coupling reaction. Catalysts, 2015, 5, 38-39.
[http://dx.doi.org/10.3390/catal5010038]
[25]
Naik, P.J.; Chatterjee, P.; Chen, S.; Huang, W.; Slowing, I.I. Regulating the catalytic activity of pd nanoparticles by confinement in ordered mesoporous supports. ChemCatChem, 2020, 13(2)
[http://dx.doi.org/10.1002/cctc.202001594]
[26]
Mao, S.; Shi, X.; Soulé, J.F.; Doucet, H. Direct arylations of heteroarenes with benzenesulfonyl chlorides using Pd/C catalyst. Eur. J. Org. Chem., 2020, 2020, 91-97.
[http://dx.doi.org/10.1002/ejoc.201901561]
[27]
Bennett, J.A.; Davis, B.A.; Efimenko, K.; Genzer, J.; Abolhasani, M. Network-supported, metal-mediated catalysis: Progress and perspective. React. Chem. Eng., 2020, 5, 1892-1902.
[http://dx.doi.org/10.1039/D0RE00229A]
[28]
Xiao, P.; Schlinquer, C.; Pannecoucke, X.; Couve-Bonnaire, S.; Bouillon, J.P. Ligand-free palladium-catalyzed mizoroki-heck reaction to synthesize valuable α-trifluoromethylacrylates. J. Fluor. Chem., 2020, 233, 109483.
[http://dx.doi.org/10.1016/j.jfluchem.2020.109483]
[29]
Nazari, B.; Mousavi, S.; Keshavarz, M.H.; Bordbar, A. Fabrication of high-performance palladium supported on activated charcoal nanocatalyst for synthesis of morphine opioid analgesics. ChemistrySelect, 2020, 5, 4278-4284.
[http://dx.doi.org/10.1002/slct.202000337]
[30]
Felpin, F.X.; Ayad, T.; Mitra, S. Pd/C: An old catalyst for new applications - Its use for the suzuki-miyaura reaction. Eur. J. Org. Chem., 2006, 2006, 2679-2690.
[http://dx.doi.org/10.1002/ejoc.200501004]
[31]
Biffis, A.; Centomo, P.; Del Zotto, A.; Zecca, M. Pd Metal catalysts for cross-couplings and related reactions in the 21st century: A critical review. Chem. Rev., 2018, 118(4), 2249-2295.
[http://dx.doi.org/10.1021/acs.chemrev.7b00443] [PMID: 29460627]
[32]
Supriya, S.; Ananthnag, G.S.; Shetti, V.S.; Nagaraja, B.M.; Hegde, G. Cost-effective bio-derived mesoporous carbon nanoparticles-supported palladium catalyst for nitroarene reduction and suzuki–miyaura coupling by microwave approach. Appl. Organomet. Chem., 2020, 34 (3).
[http://dx.doi.org/10.1002/aoc.5384]
[33]
Supported Catalysts and Their Applications Sherrington, D.C.; Kybett, A.P., Eds.; Special Publications; Royal Society of Chemistry Cambridge , 2007.
[34]
Tsuji, J. Palladium Reagents and Catalysts; John Wiley & Sons, Ltd: Chichester, UK, 2004.
[http://dx.doi.org/10.1002/0470021209]
[35]
Mironenko, R.M.; Belskaya, O.B.; Likholobov, V.A. Carbon black as a support in palladium catalysts for hydrogenation of organic compounds. Solid Fuel Chem., 2020, 54, 362-367.
[http://dx.doi.org/10.3103/S0361521920060087]
[36]
Wang, J.; Chen, H.; Hu, Z.; Yao, M.; Li, Y. A review on the Pd-based three-way catalyst. Catal. Rev., Sci. Eng., 2015, 57, 79-144.
[http://dx.doi.org/10.1080/01614940.2014.977059]
[37]
Webb, J.D.; MacQuarrie, S.; McEleney, K.; Crudden, C.M. Mesoporous silica-supported pd catalysts: An investigation into structure, activity, leaching and heterogeneity. J. Catal., 2007, 252, 97-109.
[http://dx.doi.org/10.1016/j.jcat.2007.09.007]
[38]
Sawisai, R.; Wanchanthuek, R.; Radchatawedchakoon, W.; Sakee, U. Synthesis, characterization, and catalytic activity of Pd(II) salen-functionalized mesoporous silica. J. Chem., 2017, (1), 1-12.
[39]
Nishina, Y.; Miyata, J.; Kawai, R.; Gotoh, K. Recyclable pd-graphene catalyst: Mechanistic insights into heterogeneous and homogeneous catalysis. RSC Adv, 2012, 2, 9380-9382.
[http://dx.doi.org/10.1039/c2ra21185h]
[40]
Miyaura, N.; Yanagi, T.; Suzuki, A. The palladium-catalyzed cross-coupling reaction of phenylboronic acid with haloarenes in the presence of bases. Synth. Commun., 1981, 11, 513-519.
[http://dx.doi.org/10.1080/00397918108063618]
[41]
Kulkarni, P.A.; Shendage, S.S.; Awale, A.G. Carbon-carbon bond formation reaction with pd/reduced graphene oxide composite. Orient. J. Chem., 2018, 34, 881-886.
[http://dx.doi.org/10.13005/ojc/340236]
[42]
Jiang, W.; Xiang, Z.; Xu, B.; Li, X.; Liu, F.; Fan, G. Convenient preparation of Pd/RGO catalyst for the efficient hydrodechlorination of various chlorophenols. New J. Chem., 2016, 40, 372-376.
[http://dx.doi.org/10.1039/C5NJ02349A]
[43]
Wang, G.; Wu, Z.; Liang, Y.; Liu, W.; Zhan, H.; Song, M.; Sun, Y. Exploring the coordination confinement effect of divalent palladium/zero palladium doped polyaniline-networking: As an excellent-performance nanocomposite catalyst for C-C coupling reactions. J. Catal., 2020, 384, 177-188.
[http://dx.doi.org/10.1016/j.jcat.2020.02.021]
[44]
Nasrollahzadeh, M.; Issaabadi, Z.; Tohidi, M.M.; Mohammad Sajadi, S. Recent progress in application of graphene supported metal nanoparticles in C-C and C-X coupling reactions. Chem. Rec., 2018, 18(2), 165-229.
[http://dx.doi.org/10.1002/tcr.201700022] [PMID: 28745452]
[45]
Kitamura, Y.; Sako, S.; Udzu, T.; Tsutsui, A.; Maegawa, T.; Monguchi, Y.; Sajiki, H. Ligand-free Pd/C-catalyzed Suzuki-Miyaura coupling reaction for the synthesis of heterobiaryl derivatives. Chem. Commun. (Camb.), 2007, (47), 5069-5071.
[http://dx.doi.org/10.1039/b712207a] [PMID: 18049756]
[46]
Singh, A.S.; Patil, U.B.; Nagarkar, J.M. Palladium supported on zinc ferrite: A highly active, magnetically separable catalyst for ligand free suzuki and heck coupling. Catal. Commun., 2013, 35, 11-16.
[http://dx.doi.org/10.1016/j.catcom.2013.02.003]
[47]
Nakayama, Y.; Yokoyama, N.; Nara, H.; Kobayashi, T.; Fujiwhara, M. An efficient synthesis of N-(hetero)arylcarbazoles: Palladium-catalyzed coupling reaction between (hetero)aryl chlorides and N-carbazolylmagnesium chloride. Adv. Synth. Catal., 2015, 357, 2322-2330.
[http://dx.doi.org/10.1002/adsc.201500301]
[48]
Sun, R.; Liu, B.; Li, B.G.; Jie, S. Palladium(II)@Zirconium-based mixed-linker metal–organic frameworks as highly efficient and recyclable catalysts for suzuki and heck cross-coupling reactions. ChemCatChem, 2016, 8, 3261-3271.
[http://dx.doi.org/10.1002/cctc.201600774]
[49]
Fan, H.; Qi, Z.; Sui, D.; Mao, F.; Chen, R.; Huang, J. Palladium nanoparticles in cross-linked polyaniline as highly efficient catalysts for suzuki-miyaura reactions. Cuihua Xuebao. Chin. J. Catal., 2017, 38, 589-596.
[http://dx.doi.org/10.1016/S1872-2067(17)62772-4]
[50]
Dehury, N.; Maity, N.; Tripathy, S.K.; Basset, J.M.; Patra, S. Dinuclear tetrapyrazolyl palladium complexes exhibiting facile tandem transfer hydrogenation/suzuki coupling reaction of fluoroarylketone. ACS Catal., 2016, 6, 5535-5540.
[http://dx.doi.org/10.1021/acscatal.6b01421]
[51]
Qureshi, Z.S.; Deshmukh, K.M.; Bhanage, B.M. Applications of ionic liquids in organic synthesis and catalysis. Clean Technol. Environ. Policy, 2014, 16, 1487-1513.
[http://dx.doi.org/10.1007/s10098-013-0660-0]
[52]
Pollet, P.; Davey, E.A.; Ureña-Benavides, E.E.; Eckert, C.A.; Liotta, C.L. Solvents for sustainable chemical processes. Green Chem., 2014, 16, 1034-1055.
[http://dx.doi.org/10.1039/C3GC42302F]
[53]
Schenzel, A.; Hufendiek, A.; Barner-Kowollik, C.; Meier, M.A.R. Catalytic transesterification of cellulose in ionic liquids: Sustainable access to cellulose esters. Green Chem., 2014, 16, 3266-3271.
[http://dx.doi.org/10.1039/c4gc00312h]
[54]
Ratti, R. Ionic liquids: Synthesis and applications in catalysis. Adv. Chem., 2014, 2014, 1-16.
[http://dx.doi.org/10.1155/2014/729842]
[55]
Welton, T. Room-temperature ionic liquids. solvents for synthesis and catalysis. Chem. Rev., 1999, 99(8), 2071-2084.
[http://dx.doi.org/10.1021/cr980032t] [PMID: 11849019]
[56]
Tan, Y.; Xu, C.; Chen, G.; Zheng, N.; Xie, Q. A graphene-platinum nanoparticles-ionic liquid composite catalyst for methanol-tolerant oxygen reduction reaction. Energy Environ. Sci., 2012, 5, 6923-6927.
[http://dx.doi.org/10.1039/c2ee21411c]
[57]
Srivastava, V. Ionic liquid immobilized palladium nanoparticle - Graphene hybrid as active catalyst for heck reaction. Lett. Org. Chem., 2015, 12, 67-72.
[http://dx.doi.org/10.2174/1570178611666141201223344]
[58]
Srivastava, V. Synthesis and characterization of Pd exchanged MMT clay for Mizoroki-Heck reaction. Open Chem., 2018, 16, 605-613.
[http://dx.doi.org/10.1515/chem-2018-0065]
[59]
Upadhyay, P.R.; Srivastava, V. Recyclable graphene-supported palladium nanocomposites for suzuki coupling reaction. Green Process. Synth., 2016, 5, 123-129.
[http://dx.doi.org/10.1515/gps-2015-0112]
[60]
Dunn, M.H.; Cole, M.L.; Harper, J.B. Effects of an ionic liquid solvent on the synthesis of γ- butyrolactones by conjugate addition using NHC organocatalysts. RSC Adv., 2012, 2, 10160-10162.
[http://dx.doi.org/10.1039/c2ra21889e]
[61]
Gilliland, S.E.; Tengco, J.M.M.; Yang, Y.; Regalbuto, J.R.; Castano, C.E.; Gupton, B.F. Electrostatic adsorption-microwave synthesis of palladium nanoparticles on graphene for improved cross-coupling activity. Appl. Catal. A Gen., 2018, 550, 168-175.
[http://dx.doi.org/10.1016/j.apcata.2017.11.007]
[62]
Li, Z.; Liu, J.; Huang, Z.; Yang, Y.; Xia, C.; Li, F. One-pot synthesis of Pd nanoparticle catalysts supported on N-doped carbon and application in the domino carbonylation. ACS Catal., 2013, 3, 839-845.
[http://dx.doi.org/10.1021/cs400077r]
[63]
Obuya, E.A.; Harrigan, W.; Andala, D.M.; Lippens, J.; Keane, T.C.; Jones, W.E. Photodeposited Pd nanoparticle catalysts supported on photoactivated TiO2 nanofibers. J. Mol. Catal. Chem., 2011, 340, 89-98.
[http://dx.doi.org/10.1016/j.molcata.2011.03.016]
[64]
Tauster, S.J.; Fung, S.C.; Baker, R.T.K.; Horsley, J.A. Strong interactions in supported-metal catalysts. Science, 1981, 211, 1121-1125.
[65]
Taheri Kal Koshvandi, A.; Heravi, M.M.; Momeni, T. Current applications of suzuki–miyaura coupling reaction in the total synthesis of natural products: An update. Appl. Organomet. Chem., 2018, 32, e4210.
[http://dx.doi.org/10.1002/aoc.4210]
[66]
Hooshmand, S.E.; Heidari, B.; Sedghi, R.; Varma, R.S. Recent advances in the suzuki-miyaura cross-coupling reaction using efficient catalysts in eco-friendly media. Green Chem., 2019, 21, 381-405.
[http://dx.doi.org/10.1039/C8GC02860E]
[67]
Heravi, M.M.; Hashemi, E. Recent advances in application of intramolecular suzuki cross-coupling in cyclization and heterocyclization. Monatsh. Chem., 2012, 143, 861-880.
[http://dx.doi.org/10.1007/s00706-012-0746-0]
[68]
Jana, R.; Pathak, T.P.; Sigman, M.S. Advances in transition metal (Pd, Ni, Fe)-catalyzed cross-coupling reactions using alkyl-organometallics as reaction partners. Chem. Rev., 2011, 111(3), 1417-1492.
[http://dx.doi.org/10.1021/cr100327p] [PMID: 21319862]
[69]
Colacot, T.J.; Matthey, J. The 2010 noble prize in chemistry: Palladium-catalysed cross-coupling the importance of carbon-carbon coupling for real world applications. Platin. Met. Rev., 2011, 55, 84-90.
[http://dx.doi.org/10.1595/147106711X558301]
[70]
Tran, T.P.N.; Thakur, A.; Trinh, D.X.; Dao, A.T.N.; Taniike, T. Design of Pd@graphene oxide framework nanocatalyst with improved activity and recyclability in suzuki-Miyaura cross-coupling reaction. Appl. Catal. A Gen., 2018, 549, 60-67.
[http://dx.doi.org/10.1016/j.apcata.2017.09.026]
[71]
Khan, M.; Shaik, M.R.; Adil, S.F.; Kuniyil, M.; Ashraf, M.; Frerichs, H.; Sarif, M.A.; Siddiqui, M.R.H.; Al-Warthan, A.; Labis, J.P.; Islam, M.S.; Tremel, W.; Tahir, M.N. Facile synthesis of Pd@graphene nanocomposites with enhanced catalytic activity towards Suzuki coupling reaction. Sci. Rep., 2020, 10(1), 11728.
[http://dx.doi.org/10.1038/s41598-020-68124-w] [PMID: 32678111]
[72]
Martin, R.; Buchwald, S.L. Palladium-catalyzed Suzuki-Miyaura cross-coupling reactions employing dialkylbiaryl phosphine ligands. Acc. Chem. Res., 2008, 41(11), 1461-1473.
[http://dx.doi.org/10.1021/ar800036s] [PMID: 18620434]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy