Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Research Article

Screening of Phytochemicals from Curcuma Longa for their Inhibitory Activity on SARS-CoV-2: An In-Silico Study

Author(s): Preeya Negi, Lalita Das, Surya Prakash and Vaishali M. Patil*

Volume 20, Issue 1, 2022

Published on: 19 July, 2021

Article ID: e190721194860 Pages: 19

DOI: 10.2174/2211352519666210719090130

Price: $65

Abstract

Introduction: Natural products or phytochemicals have always been useful as effective therapeutics providing the lead for rational drug discovery approaches in specific to anti-viral therapeutics.

Methods: The ongoing pandemic caused by novel coronavirus has created a demand for effective therapeutics. Thus, to achieve the primary objective to search for effective anti-viral therapeutics, in silico screening of phytochemicals present in the extract of Curcuma longa (ex. Curcumin) has been planned.

Results: The present work involves the evaluation of ADME properties and molecular docking studies.

Conclusion: The application of rationalized drug discovery approaches to screen the diverse natural resources will speed up the anti-COVID drug discovery efforts and benefit the global community.

Keywords: Cefoxitin, CoNS, disc, methicillin resistance, microdilution, VITEK 2.

Graphical Abstract

[2]
Mousavizadeh, L.; Ghasemi, S. Genotype and phenotype of COVID-19: Their roles in pathogenesis. J. Microbiol. Immunol. Infect., 2020, 1684-1182.
[http://dx.doi.org/10.1016/j.jmii.2020.03.022] [PMID: 32265180]
[3]
Tahir Ul Qamar, M.; Alqahtani, S.M.; Alamri, M.A.; Chen, L.L. Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. J. Pharm. Anal., 2020, 10(4), 313-319.
[http://dx.doi.org/10.1016/j.jpha.2020.03.009] [PMID: 32296570]
[4]
Patil, V.M.; Masand, N.; Gupta, S.P. HCV inhibitors: Role of compounds from botanical sources. Curr. Top. Med. Chem., 2016, 16(12), 1402-1409.
[http://dx.doi.org/10.2174/1568026616666151120112802] [PMID: 26585934]
[5]
Narkhede, R.R.; Pise, A.V.; Cheke, R.S.; Shinde, S.D. Recognition of natural products as potential inhibitors of COVID-19 main protease (Mpro): In silico evidences. Nat. Prod. Bioprospect., 2020, 10(5), 297-306.
[http://dx.doi.org/10.1007/s13659-020-00253-1] [PMID: 32557405]
[6]
Peele, K.A.; Potla Durthi, C.; Srihansa, T.; Krupanidhi, S.; Ayyagari, V.S.; Babu, D.J.; Indira, M.; Reddy, A.R.; Venkateswarulu, T.C. Molecular docking and dynamic simulations for antiviral compounds against SARS-CoV-2: A computational study. Inform. Med. Unlocked, 2020, 19, 100345.
[http://dx.doi.org/10.1016/j.imu.2020.100345] [PMID: 32395606]
[7]
Ragunathan, V.; Tiwari, P, A S, P. Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease. J. Biomol. Struct. Dyn., 2020, 8, 1-27.
[8]
Priyadarsini, K.I. The chemistry of curcumin: From extraction to therapeutic agent. Molecules, 2014, 19(12), 20091-20112.
[http://dx.doi.org/10.3390/molecules191220091] [PMID: 25470276]
[9]
Mathew, D.; Hsu, W.L. Antiviral potential of curcumin. J. Funct. Foods, 2018, 40, 692-699.
[http://dx.doi.org/10.1016/j.jff.2017.12.017]
[10]
Mounce, B.C.; Cesaro, T.; Carrau, L.; Vallet, T.; Vignuzzi, M. Curcumin inhibits Zika and chikungunya virus infection by inhibiting cell binding. Antiviral Res., 2017, 142, 148-157.
[http://dx.doi.org/10.1016/j.antiviral.2017.03.014] [PMID: 28343845]
[11]
Li, Y.; Wang, J.; Liu, Y.; Luo, X.; Lei, W.; Xie, L. Antiviral and virucidal effects of curcumin on transmissible gastroenteritis virus in vitro. J. Gen. Virol., 2020, 101(10), 1079-1084.
[http://dx.doi.org/10.1099/jgv.0.001466] [PMID: 32677610]
[12]
Manoharan, Y.; Haridas, V.; Vasanthakumar, K.C.; Muthu, S.; Thavoorullah, F.F.; Shetty, P. Curcumin: A Wonder Drug as a Preventive Measure for COVID19 Management. Indian J. Clin. Biochem., 2020, 35(3), 373-375.
[http://dx.doi.org/10.1007/s12291-020-00902-9] [PMID: 32641876]
[13]
Advanced Chemistry Development, Inc. Toronto, ON, Canada, 2020. www.acdlabs.com
[14]
Kulkarni, S.K.; Bhutani, M.K.; Bishnoi, M. Antidepressant activity of curcumin: involvement of serotonin and dopamine system. Psychopharmacology (Berl.), 2008, 201(3), 435-442.
[http://dx.doi.org/10.1007/s00213-008-1300-y] [PMID: 18766332]
[15]
Ferreira, V.H.; Nazli, A.; Dizzell, S.E.; Mueller, K.; Kaushic, C. The anti-inflammatory activity of curcumin protects the genital mucosal epithelial barrier from disruption and blocks replication of HIV-1 and HSV-2. PLoS One, 2015, 10(4), e0124903.
[http://dx.doi.org/10.1371/journal.pone.0124903] [PMID: 25856395]
[16]
Sornpet, B.; Potha, T.; Tragoolpua, Y.; Pringproa, K. Antiviral activity of five Asian medicinal pant crude extracts against highly pathogenic H5N1 avian influenza virus. Asian Pac. J. Trop. Med., 2017, 10(9), 871-876.
[http://dx.doi.org/10.1016/j.apjtm.2017.08.010] [PMID: 29080615]
[17]
Ukwubile, C.A.; Malgwi, T.S.; Angyu, A.E.; Otalu, O.; Bingari, M.S. Review of Antiviral Medicinal Plants used in Taraba State Nigeria: A Possible Source for COVID-19 Drug Discovery. Jour. of Sci. Res. in Med. and Bio. Sci.., 2020, 1(2), 1-23.
[http://dx.doi.org/10.47631/jsrmbs.v1i2.50]
[18]
Sandur, S.K.; Pandey, M.K.; Sung, B.; Ahn, K.S.; Murakami, A.; Sethi, G.; Limtrakul, P.; Badmaev, V.; Aggarwal, B.B. Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin and turmerones differentially regulate anti-inflammatory and anti-proliferative responses through a ROS-independent mechanism. Carcinogenesis, 2007, 28(8), 1765-1773.
[http://dx.doi.org/10.1093/carcin/bgm123] [PMID: 17522064]
[19]
Baikerikar, S. Curcumin and natural derivatives inhibit ebola viral proteins: An in silico approach. Pharmacognosy Res., 2017, 9(1)(Suppl. 1), S15-S22.
[http://dx.doi.org/10.4103/pr.pr_30_17] [PMID: 29333037]
[20]
Francis, A.P.; Murthy, P.B.; Devas, T. Bis-demethoxy curcumin analog nanoparticles: synthesis, characterization, and anticancer activity in vitro. J. Nanosci. Nanotechnol., 2014, 14(7), 4865-4873.
[http://dx.doi.org/10.1166/jnn.2014.9219] [PMID: 24757955]
[21]
Vuuren, S.F.V.; Viljoen, A.M. Antimicrobial activity of limonene enantiomers and 1,8-cineole alone and in combination. Flavour Fragrance J., 2007, 22, 540-544.
[http://dx.doi.org/10.1002/ffj.1843]
[22]
Li, Y.; Lai, Y.; Wang, Y.; Liu, N.; Zhang, F.; Xu, P. 1, 8-cineol protect against influenza-virus-induced pneumonia in mice. Inflammation, 2016, 39(4), 1582-1593.
[http://dx.doi.org/10.1007/s10753-016-0394-3] [PMID: 27351430]
[23]
Astani, A.; Reichling, J.; Schnitzler, P. Comparative study on the antiviral activity of selected monoterpenes derived from essential oils. Phytother. Res., 2010, 24(5), 673-679.
[http://dx.doi.org/10.1002/ptr.2955] [PMID: 19653195]
[24]
Yang, Z.; Wu, N.; Fu, Y.; Yang, G.; Wang, W.; Zu, Y.; Efferth, T. Anti-infectious bronchitis virus (IBV) activity of 1,8-cineole: effect on nucleocapsid (N) protein. J. Biomol. Struct. Dyn., 2010, 28(3), 323-330.
[http://dx.doi.org/10.1080/07391102.2010.10507362] [PMID: 20919748]
[25]
Silva, J.K.R.D.; Figueiredo, P.L.B.; Byler, K.G.; Setzer, W.N. Essential oils as antiviral agents. Potential of essential oils to treat SARS-CoV-2 infection: An in silico investigation. Int. J. Mol. Sci., 2020, 21(10), 3426.
[http://dx.doi.org/10.3390/ijms21103426] [PMID: 32408699]
[26]
Giraudrobert, A. The role of aromatherapy in the treatment of viral hepatitis. Int. Jou. of Aromather.., 2005, 15(4), 183-192.
[http://dx.doi.org/10.1016/j.ijat.2005.10.005]
[27]
Ferreira, L.A.; Henriques, O.B.; Andreoni, A.A.; Vital, G.R.; Campos, M.M.; Habermehl, G.G.; de Moraes, V.L. Antivenom and biological effects of ar-turmerone isolated from Curcuma longa (Zingiberaceae). Toxicon, 1992, 30(10), 1211-1218.
[http://dx.doi.org/10.1016/0041-0101(92)90437-A] [PMID: 1440627]
[28]
Zubair, M.S.; Khairunisa, S.Q.; Widodo, A.; Nasronudin, ; Pitopang, R. Antiviral screening on Alpinia eremochlamys, Etlingera flexuosa, and Etlingera acanthoides extracts against HIV-infected MT-4 cells. Heliyon, 2021, 7(4), e06710.
[http://dx.doi.org/10.1016/j.heliyon.2021.e06710] [PMID: 33869876]
[29]
Jurenka, J.S. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research. Altern. Med. Rev., 2009, 14(2), 141-153.
[PMID: 19594223]
[30]
Orellana-Paucar, A.M.; Serruys, A.S.; Afrikanova, T.; Maes, J.; De Borggraeve, W.; Alen, J.; León-Tamariz, F.; Wilches-Arizábala, I.M.; Crawford, A.D.; de Witte, P.A.; Esguerra, C.V. Anticonvulsant activity of bisabolene sesquiterpenoids of Curcuma longa in zebrafish and mouse seizure models. Epilepsy Behav., 2012, 24(1), 14-22.
[http://dx.doi.org/10.1016/j.yebeh.2012.02.020] [PMID: 22483646]
[31]
Allahverdiyev, A.; Duran, N.; Ozguven, M.; Koltas, S. Antiviral activity of the volatile oils of Melissa officinalis L. against Herpes simplex virus type-2. Phytomedicine, 2004, 11(7-8), 657-661.
[http://dx.doi.org/10.1016/j.phymed.2003.07.014] [PMID: 15636181]
[32]
Ibrahim, N.A.; El-Hawary, S.S.; Mohammed, M.M.D.; Farid, M.A.; Abdel-Wahed, N.A.M.; Ali, M.A.; El-Abd, E.A.W Chemical Composition, antiviral against avian influenza (H5N1) virus and antimicrobial activities of the essential oils of the leaves and fruits of fortunella margarita, lour. Swingle, growing in Egypt. J App. Pharm. Sci., 2015, 5(01), 006-012.
[33]
Amalraj, A.; Pius, A.; Gopi, S.; Gopi, S. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives - A review. J. Tradit. Complement. Med., 2016, 7(2), 205-233.
[http://dx.doi.org/10.1016/j.jtcme.2016.05.005] [PMID: 28417091]
[34]
Adebisi, O.; Dolma, S.K.; Verma, P.K.; Singh, B.; Reddy, S.G.E. Volatile, non-volatile composition and insecticidal activity of Eupatorium adenophorum Spreng against diamondback moth, Plutella xylostella (L.), and aphid, Aphis craccivora Koch. Toxin Rev., 2018, 143-150.
[35]
Koo, H.J.; Gang, D.R. Suites of terpene synthases explain differential terpenoid production in ginger and turmeric tissues. PLoS One, 2012, 7(12), e51481.
[http://dx.doi.org/10.1371/journal.pone.0051481] [PMID: 23272109]
[36]
Schlumpf, M.; Jarry, H.; Wuttke, W.; Ma, R.; Lichtensteiger, W. Estrogenic activity and estrogen receptor beta binding of the UV filter 3-benzylidene camphor. Comparison with 4-methylbenzylidene camphor. Toxicology, 2004, 199(2-3), 109-120.
[http://dx.doi.org/10.1016/j.tox.2004.02.015] [PMID: 15147785]
[37]
Baker, D.H.A.; Amarowicz, R.; Kandeil, A.; Ali, M.A.; Ibrahim, E.A. Antiviral activity of Lavandula angustifolia L. and Salvia officinalis L. Essential oils against avian influenza H5N1 virus. Jou. of Agri. and Food Res.., 2021, 4, 100135.
[http://dx.doi.org/10.1016/j.jafr.2021.100135]
[38]
Awasthi, P.K.; Dixit, S.C. Chemical composition of curcuma longa leaves and rhizome oil from the plains of northern India. J. Young Pharm., 2009, 1(4), 312-316.
[http://dx.doi.org/10.4103/0975-1483.59319]
[39]
Siveen, K.S.; Kuttan, G. Modulation of humoral immune responses and inhibition of proinflammatory cytokines and nitric oxide production by 10-methoxycanthin-6-one. Immunopharmacol. Immunotoxicol., 2012, 34(1), 116-125.
[http://dx.doi.org/10.3109/08923973.2011.586703] [PMID: 22176677]
[40]
Dosoky, N.S.; Setzer, W.N. Chemical composition and biological activities of essential oils of Curcuma species. Nutrients, 2018, 10(9), 1196.
[http://dx.doi.org/10.3390/nu10091196] [PMID: 30200410]
[41]
Chavan, M.J.; Wakte, P.S.; Shinde, D.B. Analgesic and anti-inflammatory activity of Caryophyllene oxide from Annona squamosa L. bark. Phytomedicine, 2010, 17(2), 149-151.
[http://dx.doi.org/10.1016/j.phymed.2009.05.016] [PMID: 19576741]
[42]
Sobrinho, A.C.N.; de Morais, S.M.M.; Marinho, M.M.; de Souza, N.V.; Lima, D.M. Antiviral activity on the Zika virus and larvicidal activity on the Aedes spp. of Lippia alba essential oil and β-caryophyllene. Ind. Crops Prod., 2021, 162, 113281.
[http://dx.doi.org/10.1016/j.indcrop.2021.113281]
[43]
Samra, R.M.; Soliman, A.F.; Zaki, A.A.; El-Gendy, A.N.; Hassan, M.A.; Zaghloul, A.M. Chemical Composition, Antiviral and Cytotoxic activities of essential oil from cyperus rotundus growing in Egypt: evidence from chemometrics analysis. Jou. of Essent. Oil Bear. Plan.., 2020, 23(4), 648-659.
[http://dx.doi.org/10.1080/0972060X.2020.1823892]
[44]
Cheng, S.S.; Liu, J.Y.; Chang, E.H.; Chang, S.T. Antifungal activity of cinnamaldehyde and eugenol congeners against wood-rot fungi. Bioresour. Technol., 2008, 99(11), 5145-5149.
[http://dx.doi.org/10.1016/j.biortech.2007.09.013] [PMID: 17945485]
[45]
Rodrigo, G.; Almanza, G.R.; Cheng, Y.; Peng, J.; Hamann, M.; Duan, R.D.; Åkesson, B. Antiproliferative effects of curcuphenol, a sesquiterpene phenol. Fitoterapia, 2010, 81(7), 762-766.
[http://dx.doi.org/10.1016/j.fitote.2010.04.001] [PMID: 20385210]
[46]
El Sayed, K.A.; Yousaf, M.; Hamann, M.T.; Avery, M.A.; Kelly, M.; Wipf, P. Microbial and chemical transformation studies of the bioactive marine sesquiterpenes (S)-(+)-curcuphenol and -curcudiol isolated from a deep reef collection of the Jamaican sponge Didiscus oxeata. J. Nat. Prod., 2002, 65(11), 1547-1553.
[http://dx.doi.org/10.1021/np020213x] [PMID: 12444675]
[47]
Yang, H.; Wang, X.; Yu, L. The antitumor activity of elemene is associated with apoptosis. Zhonghua Zhong Liu Za Zhi, 1996, 18(3), 169-172.
[PMID: 9387246]
[48]
Rossi, P.G.; Bao, L.; Luciani, A.; Panighi, J.; Desjobert, J.M.; Costa, J.; Casanova, J.; Bolla, J.M.; Berti, L. (E)-Methylisoeugenol and elemicin: antibacterial components of Daucus carota L. essential oil against Campylobacter jejuni. J. Agric. Food Chem., 2007, 55(18), 7332-7336.
[http://dx.doi.org/10.1021/jf070674u] [PMID: 17685629]
[49]
Eyer, L.; Hruska, K. Antiviral agents targeting the influenza virus: a review and publication analysis. Vet. Med. (Praha), 2013, 58, 113-185.
[http://dx.doi.org/10.17221/6746-VETMED]
[50]
Abu-Rizq, H.A.; Mansour, M.H.; Afzal, M. Curcuma longa attenuates carbon tetrachloride-induced oxidative stress in T-lymphocyte subpopulations. Methods Mol. Biol., 2015, 1208, 159-170.
[http://dx.doi.org/10.1007/978-1-4939-1441-8_12] [PMID: 25323506]
[51]
Lynsey, A.H.; Elizabeth, L.S.C.; Brian, O.P.; Brian, R.J. The synthesis, structural characterization, and in vitro anti-cancer activity of chloro(p-cymene) complexes of ruthenium(II) containing a disulfoxide ligand. Inorg. Chim. Acta, 2003, 352, 238-246.
[http://dx.doi.org/10.1016/S0020-1693(03)00155-5]
[52]
Gavanji, S.; Sayedipour, S.S.; Larki, B.; Bakhtari, A. Antiviral activity of some plant oils against herpes simplex virus type 1 in Vero cell culture. Jou. of Acute Med.., 2015, 5(3), 62-68.
[http://dx.doi.org/10.1016/j.jacme.2015.07.001]
[53]
Kurzwernhart, A.; Kandioller, W.; Bächler, S.; Bartel, C.; Martic, S.; Buczkowska, M.; Mühlgassner, G.; Jakupec, M.A.; Kraatz, H.B.; Bednarski, P.J.; Arion, V.B.; Marko, D.; Keppler, B.K.; Hartinger, C.G. Structure-activity relationships of targeted RuII(η6-p-cymene) anticancer complexes with flavonol-derived ligands. J. Med. Chem., 2012, 55(23), 10512-10522.
[http://dx.doi.org/10.1021/jm301376a] [PMID: 23134291]
[54]
Raphael, T.J.; Kuttan, G. Immunomodulatory activity of naturally occurring monoterpenes carvone, limonene, and perillic acid. Immunopharmacol. Immunotoxicol., 2003, 25(2), 285-294.
[http://dx.doi.org/10.1081/IPH-120020476] [PMID: 12784919]
[55]
Costa, T.R.; Fernandes, O.F.; Santos, S.C.; Oliveira, C.M.; Lião, L.M.; Ferri, P.H.; Paula, J.R.; Ferreira, H.D.; Sales, B.H.; Silva M do, R. Antifungal activity of volatile constituents of Eugenia dysenterica leaf oil. J. Ethnopharmacol., 2000, 72(1-2), 111-117.
[http://dx.doi.org/10.1016/S0378-8741(00)00214-2] [PMID: 10967461]
[56]
Rivera-Yañez, C.R.; Terrazas, L.I.; Jimenez-Estrada, M.; Campos, J.E.; Flores-Ortiz, C.M.; Hernandez, L.B.; Cruz-Sanchez, T.; Garrido-Fariña, G.I.; Rodriguez-Monroy, M.A.; Canales-Martinez, M.M. Anti-Candida Activity of Bursera morelensis ramirez essential oil and two compounds, α-Pinene and γ-terpinene-qn in vitro study. Molecules, 2017, 22(12), 2095.
[http://dx.doi.org/10.3390/molecules22122095] [PMID: 29206158]
[57]
Rufino, A.T.; Ribeiro, M.; Judas, F.; Salgueiro, L.; Lopes, M.C.; Cavaleiro, C.; Mendes, A.F. Anti-inflammatory and chondroprotective activity of (+)-α-pinene: structural and enantiomeric selectivity. J. Nat. Prod., 2014, 77(2), 264-269.
[http://dx.doi.org/10.1021/np400828x] [PMID: 24455984]
[58]
de Christo Scherer, M.M.; Marques, F.M.; Figueira, M.M.; Peisino, M.C.O.; Schmitt, E.F.P.; Kondratyuk, T.P.; Endringer, D.C.; Scherer, R.; Fronza, M. Wound healing activity of terpinolene and α-phellandrene by attenuating inflammation and oxidative stress in vitro. J. Tissue Viability, 2019, 28(2), 94-99.
[http://dx.doi.org/10.1016/j.jtv.2019.02.003] [PMID: 30792116]
[59]
Guarda, A.; Rubilar, J.F.; Miltz, J.; Galotto, M.J. The antimicrobial activity of microencapsulated thymol and carvacrol. Int. J. Food Microbiol., 2011, 146(2), 144-150.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2011.02.011] [PMID: 21411168]
[60]
Kaufmann, D.; Dogra, A.K.; Wink, M. Myrtenal inhibits acetylcholinesterase, a known Alzheimer target. J. Pharm. Pharmacol., 2011, 63(10), 1368-1371.
[http://dx.doi.org/10.1111/j.2042-7158.2011.01344.x] [PMID: 21899553]
[61]
Chinsembu, K.C. Chemical diversity and activity profiles of HIV-1 reverse transcriptase inhibitors from plants. Rev. Bras. Farmacogn., 2019, 29(4), 504-528.
[http://dx.doi.org/10.1016/j.bjp.2018.10.006]
[62]
Cordeiro, L.; Figueiredo, P.; Souza, H.; Sousa, A.; Andrade-Júnior, F.; Barbosa-Filho, J.; Lima, E. Antibacterial and antibiofilm activity of myrtenol against Staphylococcus aureus. Pharmaceuticals (Basel), 2020, 13(6), 133.
[http://dx.doi.org/10.3390/ph13060133] [PMID: 32630561]
[63]
Khomenko, T.M.; Zarubaev, V.V.; Orshanskaya, I.R.; Kadyrova, R.A.; Sannikova, V.A.; Korchagina, D.V.; Volcho, K.P.; Salakhutdinov, N.F. Anti-influenza activity of monoterpene-containing substituted coumarins. Bioorg. Med. Chem. Lett., 2017, 27(13), 2920-2925.
[http://dx.doi.org/10.1016/j.bmcl.2017.04.091] [PMID: 28501512]
[64]
Liao, PC; Yang, TS; Chou, JC; Chen, J; Lee, SC; Kuo, YH; Ho, CL; Chao, LKP Anti-inflammatory activity of neral and geranial isolated from fruits of Litsea cubeba Lour. Journal of Functional Foods, 2015, 19, 248-258.
[http://dx.doi.org/10.1016/j.jff.2015.09.034]
[65]
Liang, J.; Dou, Y.; Wu, X.; Li, H.; Wu, J.; Huang, Q.; Luo, D.; Yi, T.; Liu, Y.; Su, Z.; Chen, J. Prophylactic efficacy of patchoulene epoxide against ethanol-induced gastric ulcer in rats: Influence on oxidative stress, inflammation and apoptosis. Chem. Biol. Interact., 2018, 283, 30-37.
[http://dx.doi.org/10.1016/j.cbi.2018.01.014] [PMID: 29339218]
[66]
Lee, J.; Jung, Y.; Shin, J.H.; Kim, H.K.; Moon, B.C.; Ryu, D.H.; Hwang, G.S. Secondary metabolite profiling of Curcuma species grown at different locations using GC/TOF and UPLC/Q-TOF MS. Molecules, 2014, 19(7), 9535-9551.
[http://dx.doi.org/10.3390/molecules19079535] [PMID: 25000465]
[67]
You, C.X.; Yang, K.; Wu, Y.; Zhang, W.J.; Wang, Y.; Geng, Z.F.; Chen, H.P.; Jiang, H.Y.; Du, S.S.; Deng, Z.W.; Liu, Z.L. Chemical composition and insecticidal activities of the essential oil of Perilla frutescens (L.) Britt. aerial parts against two stored product insects. Eur. Food Res. Technol., 2014, 239(3), 481-490.
[http://dx.doi.org/10.1007/s00217-014-2242-8]
[68]
Mahboubi, M.; Haghi, G. Antimicrobial activity and chemical composition of Mentha pulegium L. essential oil. J. Ethnopharmacol., 2008, 119(2), 325-327.
[http://dx.doi.org/10.1016/j.jep.2008.07.023] [PMID: 18703127]
[69]
Li, S.; Yuan, W.; Deng, G.; Wang, P.; Yang, P.; Aggarwal, B. Chemical composition and product quality control of turmeric (Curcuma longa> L.). Pharmaceutical Crops., 2011, 2, 28-54.
[http://dx.doi.org/10.2174/2210290601102010028]
[70]
Oyemitan, I.A.; Elusiyan, C.A.; Onifade, A.O.; Akanmu, M.A.; Oyedeji, A.O.; McDonald, A.G. Neuropharmacological profile and chemical analysis of fresh rhizome essential oil of Curcuma longa (turmeric) cultivated in Southwest Nigeria. Toxicol. Rep., 2017, 4, 391-398.
[http://dx.doi.org/10.1016/j.toxrep.2017.07.001] [PMID: 28959664]
[71]
Monzote, L.; Piñón, A.; Sculli, R.; Setzer, W.N. Chemistry and leishmanicidal activity of the essential oil from Artemisia absinthium from Cuba. Nat. Prod. Commun., 2014, 9(12), 1799-1804.
[http://dx.doi.org/10.1177/1934578X1400901236] [PMID: 25632489]
[72]
Yang, A.H.; Zhang, L.; Zhi, D.X.; Liu, W.L.; Gao, X.; He, X. Identification and analysis of the reactive metabolites related to the hepatotoxicity of safrole. Xenobiotica, 2018, 48(11), 1164-1172.
[http://dx.doi.org/10.1080/00498254.2017.1399227] [PMID: 29082813]
[73]
Fukuma, M.; Seto, Y.; Fukushima, K.; Sakurai, T.; Dan, K.; Fujita, H.; Toyoshima, S. The effect of food dye and other environmental substances on the host defense reaction in mice in relation to virus infection. J. Toxicol. Sci., 1986, 11(3), 169-177.
[http://dx.doi.org/10.2131/jts.11.169] [PMID: 2432279]
[74]
Chandra, M.; Prakash, O.; Kumar, R.; Bachheti, R.K.; Bhushan, B.; Kumar, M.; Pant, A.K. β-Selinene-Rich Essential oils from the Parts and Their Antioxidant and Pharmacological Activities. Medicines (Basel), 2017, 4(3), 52.
[http://dx.doi.org/10.3390/medicines4030052] [PMID: 28930267]
[75]
Kharisma, V.D.; Probojati, R.T.; Murtadlo, A.A.A.; Ansori, A.N.M.; Antonius, Y.; Tamam, M.B. Revealing potency of bioactive compounds as inhibitor of dengue virus (DENV) NS2B/NS3 Protease from Sweet Potato (Ipomoea batatas L.) Leaves. Indi. Jou. of Foren. Med. & Toxic.., 2021, 15(1), 1627-1632.
[76]
Singh, G.; Kapoor, I.P.; Singh, P.; de Heluani, C.S.; de Lampasona, M.P.; Catalan, C.A. Comparative study of chemical composition and antioxidant activity of fresh and dry rhizomes of turmeric (Curcuma longa Linn.). Food Chem. Toxicol., 2010, 48(4), 1026-1031.
[http://dx.doi.org/10.1016/j.fct.2010.01.015] [PMID: 20096323]
[77]
Tyagi, A.K.; Prasad, S.; Yuan, W.; Li, S.; Aggarwal, B.B. Identification of a novel compound (β-sesquiphellandrene) from turmeric (Curcuma longa) with anticancer potential: comparison with curcumin. Invest. New Drugs, 2015, 33(6), 1175-1186.
[http://dx.doi.org/10.1007/s10637-015-0296-5] [PMID: 26521943]
[78]
Mostajeran, A.; Gholaminejad, A.; Asghari, G. Salinity alters curcumin, essential oil and chlorophyll of turmeric (Curcuma longa L.). Res. Pharm. Sci., 2014, 9(1), 49-57.
[PMID: 25598799]
[79]
Bou, D.D.; Lago, J.H.; Figueiredo, C.R.; Matsuo, A.L.; Guadagnin, R.C.; Soares, M.G.; Sartorelli, P. Chemical composition and cytotoxicity evaluation of essential oil from leaves of Casearia sylvestris, its main compound α-zingiberene and derivatives. Molecules, 2013, 18(8), 9477-9487.
[http://dx.doi.org/10.3390/molecules18089477] [PMID: 23966073]
[80]
Koch, C.; Reichling, J.; Schneele, J.; Schnitzler, P. Inhibitory effect of essential oils against herpes simplex virus type 2. Phytomedicine, 2008, 15(1-2), 71-78.
[http://dx.doi.org/10.1016/j.phymed.2007.09.003] [PMID: 17976968]
[81]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7, 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[82]
Praditya, D.; Kirchhoff, L.; Brüning, J.; Rachmawati, H.; Steinmann, J.; Steinmann, E. Anti-infective properties of the golden spice curcumin. Front. Microbiol., 2019, 10, 912.
[http://dx.doi.org/10.3389/fmicb.2019.00912] [PMID: 31130924]
[83]
Hitchcock, S.A.; Pennington, L.D. Structure-brain exposure relationships. J. Med. Chem., 2006, 49(26), 7559-7583.
[http://dx.doi.org/10.1021/jm060642i] [PMID: 17181137]
[84]
Havranek, B.; Islam, S.M. An in silico approach for identification of novel inhibitors as potential therapeutics targeting COVID-19 main protease. J. Biomol. Struct. Dyn., 2020, 16, 1-12.
[http://dx.doi.org/10.1080/07391102.2020.1776158] [PMID: 32544024]
[85]
Ivanov, S.M.; Lagunin, A.A.; Rudik, A.V.; Filimonov, D.A.; Poroikov, V.V. ADVERPred-Web service for prediction of adverse effects of drugs. J. Chem. Inf. Model., 2018, 58(1), 8-11.
[http://dx.doi.org/10.1021/acs.jcim.7b00568] [PMID: 29206457]
[86]
Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; Duan, Y.; Yu, J.; Wang, L.; Yang, K.; Liu, F.; Jiang, R.; Yang, X.; You, T.; Liu, X.; Yang, X.; Bai, F.; Liu, H.; Liu, X.; Guddat, L.W.; Xu, W.; Xiao, G.; Qin, C.; Shi, Z.; Jiang, H.; Rao, Z.; Yang, H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 2020, 582(7811), 289-293.
[http://dx.doi.org/10.1038/s41586-020-2223-y] [PMID: 32272481]
[87]
Dallakyan, S.; Olson, A.J. Small-molecule library screening by docking with PyRx. Methods Mol. Biol., 2015, 1263, 243-250.
[http://dx.doi.org/10.1007/978-1-4939-2269-7_19] [PMID: 25618350]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy