Abstract
Objective: The emergence of the concepts like Big Data, Data Science, Machine Learning (ML), and the Internet of Things (IoT) in recent years has added the potential of research in today's world. The continuous use of IoT devices, sensors, etc. that collect data continuously is putting tremendous pressure on the existing IoT network.
Materials and Methods: This resource-constrained IoT environment is flooded with data acquired from millions of IoT nodes deployed at the device level. The limited resources of the IoT Network have driven the researchers towards data Management. This paper focuses on data classification at the device level, edge/fog level, and cloud level using machine learning techniques.
Results: The data coming from different devices is vast and is of variety. Therefore, it becomes essential to choose the right approach for classification and analysis. This will help in optimizing the data at the device, edge/fog level for better performance of the network in the future.
Conclusion: This paper presents data classification, machine learning approaches, and a proposed mathematical model for the IoT environment.
Keywords: Data analytics, data classification, IoT-data, fog, machine learning sensors, machine learning (ML).
Graphical Abstract
[http://dx.doi.org/10.1109/ACCESS.2017.2689040]
[http://dx.doi.org/10.1016/j.dcan.2017.10.002]
[http://dx.doi.org/10.1016/j.jksuci.2018.08.014]
[http://dx.doi.org/10.1016/j.procs.2015.05.095]
[http://dx.doi.org/10.1089/big.2013.0006] [PMID: 27447253]
[http://dx.doi.org/10.1109/TIT.1967.1053964]
[http://dx.doi.org/10.1016/j.jii.2018.01.005]
[http://dx.doi.org/10.1016/j.comnet.2018.07.017]
[http://dx.doi.org/10.1109/COMST.2018.2844341]
[http://dx.doi.org/10.1007/978-3-030-38445-6]
[http://dx.doi.org/10.1007/BF00994018]
[http://dx.doi.org/10.1007/s10994-013-5425-9]
[http://dx.doi.org/10.1109/ACCESS.2020.3029847]
[http://dx.doi.org/10.1109/ISS1.2017.8389344]
[http://dx.doi.org/10.1016/j.ssci.2019.09.015]
[http://dx.doi.org/10.1109/TSC.2010.3]
[http://dx.doi.org/10.1109/ACCESS.2016.2585468]
[http://dx.doi.org/10.1016/S0031-3203(02)00060-2]
[http://dx.doi.org/10.1186/s40537-014-0008-6] [PMID: 26191487]
[http://dx.doi.org/10.1039/C3AY41907J]
[http://dx.doi.org/10.1109/5.726791]
[http://dx.doi.org/10.1016/j.jnca.2015.12.016]
[http://dx.doi.org/10.22214/ijraset.2019.3302]
[http://dx.doi.org/10.1109/FSKD.2014.6980862]
[http://dx.doi.org/10.1016/j.trc.2013.07.010]
[http://dx.doi.org/10.1109/UIC-ATC-ScalCom.2014.137]
[http://dx.doi.org/10.1080/14697688.2012.672762]
[http://dx.doi.org/10.1109/IOT.2014.7030111]
[http://dx.doi.org/10.1109/ICTON.2016.7550517]
[http://dx.doi.org/10.1109/ICIIECS.2017.8276028]
[http://dx.doi.org/10.1109/TBME.2016.2573285] [PMID: 27740470]
[IJRTER] [http://dx.doi.org/10.23883/IJRTER.2018.4125.GLLAF]
[http://dx.doi.org/10.1109/ACCESS.2020.3003652]
[http://dx.doi.org/10.1109/ACCESS.2020.3016255]
[http://dx.doi.org/10.1007/s10776-019-00447-6]
[http://dx.doi.org/10.1007/s11036-020-01566-8]
[http://dx.doi.org/10.1007/s10586-018-2171-6]
[http://dx.doi.org/10.1007/s10586-020-03126-x]
[http://dx.doi.org/10.1016/j.comnet.2020.107213]
[http://dx.doi.org/10.1016/j.adhoc.2020.102154]
[http://dx.doi.org/10.1109/JIOT.2017.2722358]
[http://dx.doi.org/10.1016/j.phycom.2020.101184]
[http://dx.doi.org/10.1016/j.comcom.2020.05.015]
[http://dx.doi.org/10.1016/j.procs.2020.09.009]
[http://dx.doi.org/10.1016/j.compag.2020.105614]
[http://dx.doi.org/10.1016/j.jksuci.2020.08.016]
[http://dx.doi.org/10.1016/j.procs.2020.06.113]
[http://dx.doi.org/10.1016/j.foodcont.2019.107016]
[http://dx.doi.org/10.1016/j.compind.2019.01.004]
[http://dx.doi.org/10.1007/s11042-020-09740-6]
[http://dx.doi.org/10.1109/ACCESS.2019.2953772]
[http://dx.doi.org/10.1109/Deep-ML.2019.00011]
[http://dx.doi.org/10.1109/JIOT.2017.2720855]
[http://dx.doi.org/10.1007/s12083-019-00800-9]
[http://dx.doi.org/10.1007/s00500-018-03722-5]
[http://dx.doi.org/10.1109/JIOT.2018.2840129]
[http://dx.doi.org/10.1109/TASE.2019.2950958]
[http://dx.doi.org/10.1109/TPDS.2018.2879950]
[http://dx.doi.org/10.1111/coin.12319]
[http://dx.doi.org/10.1016/j.procs.2020.01.076]
[http://dx.doi.org/10.1109/ACCESS.2019.2959739]
[http://dx.doi.org/10.1109/ACCESS.2018.2830651]
[http://dx.doi.org/10.1109/ACCESS.2020.2976851]
[http://dx.doi.org/10.1109/TII.2019.2941142]
[http://dx.doi.org/10.1109/JIOT.2019.2901348]
[http://dx.doi.org/10.1109/ACCESS.2019.2950989]
[http://dx.doi.org/10.1109/JIOT.2017.2787959]
[http://dx.doi.org/10.1109/TMC.2018.2866249]
[http://dx.doi.org/10.1109/ACCESS.2020.2983383]
[http://dx.doi.org/10.1109/ACCESS.2018.2881199]
[http://dx.doi.org/10.1007/s00530-020-00673-6]
[http://dx.doi.org/10.1002/dac.4269]
[http://dx.doi.org/10.1109/ACCESS.2018.2879652]
[http://dx.doi.org/10.1016/j.cose.2020.102006]
[http://dx.doi.org/10.1016/j.procs.2020.04.299]
[http://dx.doi.org/10.1016/j.comcom.2020.04.023]
[http://dx.doi.org/10.1007/s00521-019-04682-z]
[http://dx.doi.org/10.1109/JIOT.2019.2953537]
[PMID: 32837593]
[http://dx.doi.org/10.1007/s00779-020-01428-w]
[http://dx.doi.org/10.1016/j.neucom.2020.02.097]
[http://dx.doi.org/10.1109/ACCESS.2019.2923707]
[http://dx.doi.org/10.1109/ACCESS.2018.2846609]
[http://dx.doi.org/10.1109/ACCESS.2020.2993887]
[http://dx.doi.org/10.1109/ACCESS.2020.2995310]
[http://dx.doi.org/10.1109/ACCESS.2020.2989857]
[http://dx.doi.org/10.1007/s11227-020-03159-4]
[http://dx.doi.org/10.1186/s40537-019-0271-7]
[http://dx.doi.org/10.1007/s00500-020-05003-6]
[http://dx.doi.org/10.1007/s11227-020-03404-w]
[http://dx.doi.org/10.1007/s11042-019-7327-8]
[http://dx.doi.org/10.1007/s11227-019-02873-y]
[http://dx.doi.org/10.1016/j.comcom.2020.02.059]
[ETT] [http://dx.doi.org/10.1002/ett.4104]
[IoT] [http://dx.doi.org/10.1109/JIOT.2018.2803201]
[http://dx.doi.org/10.1109/ACCESS.2018.2885142]
[FGCS] [http://dx.doi.org/10.1016/j.future.2019.01.048]
[FGCS] [http://dx.doi.org/10.1016/j.future.2020.04.037]
[http://dx.doi.org/10.1016/j.comcom.2020.08.011] [PMID: 32843778]
[http://dx.doi.org/10.1016/j.comnet.2019.04.016]
[FGCS] [http://dx.doi.org/10.1016/j.future.2019.09.015]
[http://dx.doi.org/10.1016/j.jpdc.2020.07.003]
[http://dx.doi.org/10.1109/ACCESS.2020.2988854]
[IoT] [http://dx.doi.org/10.1109/JIOT.2019.2901840]
[http://dx.doi.org/10.1007/s11227-019-02913-7]
[http://dx.doi.org/10.1007/s13369-020-04476-9]
[http://dx.doi.org/10.1002/dac.4169]
[http://dx.doi.org/10.1111/coin.12293]
[ETT] [http://dx.doi.org/10.1002/ett.3893]
[http://dx.doi.org/10.1002/int.22272]
[http://dx.doi.org/10.1016/j.iot.2019.100153]
[http://dx.doi.org/10.1016/j.comcom.2020.02.080]
[FGCS] [http://dx.doi.org/10.1016/j.future.2020.02.017]
[FGCS] [http://dx.doi.org/10.1016/j.future.2020.07.020]
[http://dx.doi.org/10.1016/B978-0-12-381960-4.00013-9]
[http://dx.doi.org/10.3390/electronics7120419]