Generic placeholder image

Recent Advances in Computer Science and Communications

Editor-in-Chief

ISSN (Print): 2666-2558
ISSN (Online): 2666-2566

Review Article

Data Analytics and Modeling in IoT-Fog Environment for Resourceconstrained IoT-Applications: A Review

Author(s): Omar Farooq* and Parminder Singh

Volume 15, Issue 7, 2022

Published on: 15 July, 2021

Article ID: e190522194822 Pages: 24

DOI: 10.2174/2666255814666210715161630

Price: $65

Abstract

Objective: The emergence of the concepts like Big Data, Data Science, Machine Learning (ML), and the Internet of Things (IoT) in recent years has added the potential of research in today's world. The continuous use of IoT devices, sensors, etc. that collect data continuously is putting tremendous pressure on the existing IoT network.

Materials and Methods: This resource-constrained IoT environment is flooded with data acquired from millions of IoT nodes deployed at the device level. The limited resources of the IoT Network have driven the researchers towards data Management. This paper focuses on data classification at the device level, edge/fog level, and cloud level using machine learning techniques.

Results: The data coming from different devices is vast and is of variety. Therefore, it becomes essential to choose the right approach for classification and analysis. This will help in optimizing the data at the device, edge/fog level for better performance of the network in the future.

Conclusion: This paper presents data classification, machine learning approaches, and a proposed mathematical model for the IoT environment.

Keywords: Data analytics, data classification, IoT-data, fog, machine learning sensors, machine learning (ML).

Graphical Abstract

[1]
M. Marjani, F. Nasaruddin, A. Gani, A. Karm, I. Abaker, and A. Siddiqa, "Big IoT data analytics: architecture, opportunities, and open research challenges", IEEE Access, vol. 5, pp. 5247-5261, 2017.
[http://dx.doi.org/10.1109/ACCESS.2017.2689040]
[2]
M. Mahdavinejad, M. Rezvan, M. Barekatain, P. Adibi, P. Barnaghi, and A. Sheth, "Machine learning for internet of things data analysis: A survey", Digit. Commun. Netw., vol. 4, pp. 161-175, 2018.
[http://dx.doi.org/10.1016/j.dcan.2017.10.002]
[3]
S. Zahoor, and R.N. Mir, "“Resource management in pervasive internet of things: A survey”, J. King Saud Univ. -", Comput. Inf. Sci., vol. 33, no. 8, pp. 921-935, 2021.
[http://dx.doi.org/10.1016/j.jksuci.2018.08.014]
[4]
A. Souza, and J. Amazonas, "An outlier detect algorithm using big data processing and internet of things architecture", Procedia Comput. Sci., vol. 52, pp. 1010-1015, 2015.
[http://dx.doi.org/10.1016/j.procs.2015.05.095]
[5]
V.S. Agneeswaran, P. Tonpay, and J. Tiwary, "Paradigms for realizing machine learning algorithms", Big Data, vol. 1, no. 4, pp. 207-214, 2013.
[http://dx.doi.org/10.1089/big.2013.0006] [PMID: 27447253]
[6]
T. Cover, and P. Hart, "Nearest neighbor pattern classification", IEEE Trans. Inf. Theory, vol. 13, pp. 21-27, 1967.
[http://dx.doi.org/10.1109/TIT.1967.1053964]
[7]
S. Li, L. Xu, and S. Zhao, "5G internet of things: A survey", J. Ind. Inf. Integr., vol. 10, pp. 1-9, 2018.
[http://dx.doi.org/10.1016/j.jii.2018.01.005]
[8]
A. Čolaković, and M. Hadžialić, "Internet of Things (IoT): A review of enabling technologies, challenges, and open research issues", Comput. Netw., vol. 144, pp. 17-39, 2018.
[http://dx.doi.org/10.1016/j.comnet.2018.07.017]
[9]
M. Mohammadi, A. Al-Fuqaha, S. Sorour, and M. Guizani, "Deep learning for iot big data and streaming analytics: a survey", IEEE Commun. Surv. Tutor., vol. 20, pp. 2923-2960, 2018.
[http://dx.doi.org/10.1109/COMST.2018.2844341]
[10]
"Amazon.com", Available from: https://aws.amazon.com/iot/ [Accessed: 01-June-2020]
[11]
V. Gunjan, J. Zurada, B. Raman, and G. Gangadharan, "Modern approaches in machine learning and cognitive science: A walkthrough", Latest Trends AI, vol. 2, 2021.
[http://dx.doi.org/10.1007/978-3-030-38445-6]
[12]
G.C. Cortes, and V. Vapnik, "Support-vector networks", Mach. Learn., vol. 20, no. 3, p. 273, 1995.
[http://dx.doi.org/10.1007/BF00994018]
[13]
C. Rudin, and K.L. Wagstaff, "Machine learning for science and society", Mach. Learn., vol. 95, pp. 1-9, 2014.
[http://dx.doi.org/10.1007/s10994-013-5425-9]
[14]
S.N. Swamy, and S.R. Kota, "An empirical study on system level aspects of internet of things (IoT)", IEEE Access, vol. 8, pp. 188082-188134, 2020.
[http://dx.doi.org/10.1109/ACCESS.2020.3029847]
[15]
A. Sharma, O. Farooq, and P.K. Misra, "Big data in mobile and pervasive computing", In International Conference on Intelligent Sustainable Systems (ICISS), Palladam, India, 2017, pp. 1068-1072
[http://dx.doi.org/10.1109/ISS1.2017.8389344]
[16]
J. Hegde, and B. Rokseth, "Applications of machine learning methods for engineering risk assessment – A review", Saf. Sci., vol. 122, p. 104492, 2020.
[http://dx.doi.org/10.1016/j.ssci.2019.09.015]
[17]
D. Guinard, V. Trifa, S. Karnouskos, P. Spiess, and D. Savio, "Interacting with the soa-based internet of things: Discovery, query, selection, and on-demand provisioning of web services", IEEE Trans. Serv. Comput., vol. 3, pp. 223-235, 2010.
[http://dx.doi.org/10.1109/TSC.2010.3]
[18]
D. Vukobratovic, D. Jakovetic, V. Skachek, D. Bajovic, D. Sejdinovic, and G. Karabulut Kurt, "CONDENSE: A reconfigurable knowledge acquisition architecture for future 5G IoT", IEEE Access, vol. 4, pp. 3360-3378, 2016.
[http://dx.doi.org/10.1109/ACCESS.2016.2585468]
[19]
"Introduction to IoT", Netacad.com. Available from: https://www.netacad.com/ [Accessed: May-2019]
[20]
X. Zhang, Y. Zhao, and W. Liu, "A method for mapping sensor data to ssn ontology", IJUNESST, vol. 8, pp. 303-316, 2015.
[21]
"Eetimes.com", Available from: https://iot.eetimes.com/machine-learning-on-edge-brings-ai-to-iot [Accessed: 01-June-2020]
[22]
A. Likas, N. Vlassis, and J. Verbeek, "The global k-means clustering algorithm", Pattern Recognit., vol. 36, pp. 451-461, 2003.
[http://dx.doi.org/10.1016/S0031-3203(02)00060-2]
[23]
D. Singh, and C.K. Reddy, "A survey on platforms for big data analytics", J. Big Data, vol. 2, no. 1, p. 8, 2015.
[http://dx.doi.org/10.1186/s40537-014-0008-6] [PMID: 26191487]
[24]
R. Bro, and A. Smilde, "Principal component analysis", Anal. Methods, vol. 6, pp. 2812-2831, 2014.
[http://dx.doi.org/10.1039/C3AY41907J]
[25]
Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition", Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.
[http://dx.doi.org/10.1109/5.726791]
[26]
Y. Qin, Q. Sheng, N. Falkner, S. Dustdar, H. Wang, and A. Vasilakos, "When things matter: A survey on data-centric internet of things", J. Netw. Comput. Appl., vol. 64, pp. 137-153, 2016.
[http://dx.doi.org/10.1016/j.jnca.2015.12.016]
[27]
T.R.N and R. Gupta, "A survey on machine learning approaches and its techniques", In Conference on Electrical, Electronics and Computer Science (SCEECS), Bhopal, India, 2020, pp. 1-6
[28]
V. Shende, "A survey on different machine learning approaches", Int. J. Res. Appl. Sci. Eng. Technol., vol. 7, pp. 1620-1624, 2019.
[http://dx.doi.org/10.22214/ijraset.2019.3302]
[29]
P. Ni, C. Zhang, and Y. Ji, "A hybrid method for short-term sensor data forecasting in internet of things", In 11th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), vol. 2, 2014, pp. 369-373
[http://dx.doi.org/10.1109/FSKD.2014.6980862]
[30]
X. Ma, Y. Wu, Y. Wang, F. Chen, and J. Liu, "Mining smart card data for transit riders’ travel patterns", Transp. Res., Part C Emerg. Technol., vol. 36, pp. 1-12, 2013.
[http://dx.doi.org/10.1016/j.trc.2013.07.010]
[31]
W. Derguech, E. Bruke, and E. Curry, "An autonomic approach to real-time predictive analytics using open data and internet of things,", In in 2014 IEEE 11th Intl Conf on Ubiquitous Intelligence and Computing and 2014 IEEE 11th Intl Conf on Autonomic and Trusted Computing and 2014 IEEE 14th Intl Conf on Scalable Computing and Communications and Its Associated Workshops, 2014.
[http://dx.doi.org/10.1109/UIC-ATC-ScalCom.2014.137]
[32]
R. Luss, and A. D’Aspremont, "Predicting abnormal returns from news using text classification", Quant. Finance, vol. 15, pp. 999-1012, 2012.
[http://dx.doi.org/10.1080/14697688.2012.672762]
[33]
W. Han, Y. Gu, Y. Zhang, and L. Zheng, "Data driven quantitative trust model for the internet of agricultural things", In International Conference on the Internet of Things (IOT), Cambridge, MA, USA, 2014, pp. 31-36
[http://dx.doi.org/10.1109/IOT.2014.7030111]
[34]
J.L. Berral-García, "A quick view on current techniques and machine learning algorithms for big data analytics", In 18th International Conference on Transparent Optical Networks (ICTON), 2016, pp. 1-4
[http://dx.doi.org/10.1109/ICTON.2016.7550517]
[35]
J. Qiu, Q. Wu, G. Ding, Y. Xu, and S. Feng, "Erratum to: A survey of machine learning for big data processing", EURASIP J. Adv. Signal Process., vol. 67, no. 1, 2016.
[36]
S. Athmaja, M. Hanumanthappa, and V. Kavitha, "A survey of machine learning algorithms for big data analytics", In International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), Coimbatore, India, 2017, pp. 1-4
[http://dx.doi.org/10.1109/ICIIECS.2017.8276028]
[37]
P.Y. Wu, C-W. Cheng, C.D. Kaddi, J. Venugopalan, R. Hoffman, and M.D. Wang, "-Omic and electronic health record big data analytics for precision medicine", IEEE Trans. Biomed. Eng., vol. 64, no. 2, pp. 263-273, 2017.
[http://dx.doi.org/10.1109/TBME.2016.2573285] [PMID: 27740470]
[38]
P. Sreeja, and M. Mondal, "A Survey on the overview of Internet of Things (IoT)", Int. J. Emerg. Trends Eng. Res., vol. 4, pp. 251-257, 2018.
[IJRTER] [http://dx.doi.org/10.23883/IJRTER.2018.4125.GLLAF]
[39]
H. Cui, and C. Chang, "Deep learning based advanced spatio-temporal extraction model in medical sports rehabilitation for motion analysis and data processing", IEEE Access, vol. 8, pp. 115848-115856, 2020.
[http://dx.doi.org/10.1109/ACCESS.2020.3003652]
[40]
T.J. Sheng, M.S. Islam, N. Misran, M.H. Baharuddin, H. Arshad, M.R. Islam, M.E.H. Chowdhury, H. Rmili, and M.T. Islam, "An internet of things based smart waste management system using lora and tensorflow deep learning model", IEEE Access, vol. 8, pp. 148793-148811, 2020.
[http://dx.doi.org/10.1109/ACCESS.2020.3016255]
[41]
L. Jiang, and C. Wu, "A massive multi-modal perception data classification method using deep learning based on internet of things", Int. J. Wirel. Inf. Netw., vol. 27, pp. 226-233, 2020.
[http://dx.doi.org/10.1007/s10776-019-00447-6]
[42]
B.M. ElHalawany, K. Wu, and A.B. Zaky, "Deep learning-based resources allocation for internet-of-things deployment underlaying cellular networks", Mob. Netw. Appl., vol. 25, no. 5, pp. 1833-1841, 2020.
[http://dx.doi.org/10.1007/s11036-020-01566-8]
[43]
F. Chen, Z. Fu, and Z. Yang, "Wind power generation fault diagnosis based on deep learning model in internet of things (IoT) with clusters", Cluster Comput., vol. 22, pp. 14013-14025, 2019.
[http://dx.doi.org/10.1007/s10586-018-2171-6]
[44]
F. Alqahtani, and Z. Al-Makhadmeh, "A. Tolba and wael said, “Internet of things-based urban waste management system for smart cities using a Cuckoo Search Algorithm”", Cluster Comput., vol. 23, pp. 1769-1780, 2020.
[http://dx.doi.org/10.1007/s10586-020-03126-x]
[45]
F. Pacheco, E. Exposito, and M. Gineste, "A framework to classify heterogeneous Internet traffic with machine learning and deep learning techniques for satellite communications", Comput. Netw., vol. 173, no. 107213, p. 107213, 2020.
[http://dx.doi.org/10.1016/j.comnet.2020.107213]
[46]
H. Naeem, and M. Farhanullah, "Malware detection in industrial internet of things based on hybrid image visualization and deep learning model", Ad Hoc Netw., vol. 105, no. 102154, p. 102154, 2020.
[http://dx.doi.org/10.1016/j.adhoc.2020.102154]
[47]
J. Siryani, B. Tanju, and T.J. Eveleigh, "A machine learning decision-support system improves the internet of things smart meter operations", IEEE Internet Things J., vol. 4, pp. 1056-1066, 2017.
[http://dx.doi.org/10.1109/JIOT.2017.2722358]
[48]
R. Zhao, X. Wang, J. Xia, and L. Fan, "Deep reinforcement learning based mobile edge computing for intelligent Internet of Things", Phys. Commun., vol. 43, no. 101184, p. 101184, 2020.
[http://dx.doi.org/10.1016/j.phycom.2020.101184]
[49]
C. Mo, and W. Sun, "Point-by-point feature extraction of artificial intelligence images based on the Internet of Things", Comput. Commun., vol. 159, pp. 1-8, 2020.
[http://dx.doi.org/10.1016/j.comcom.2020.05.015]
[50]
M. Mastalerz, A. Malinowski, S. Kwiatkowski, A. Śniegula, and B. Wieczorek, "Passenger BIBO detection with IoT support and machine learning techniques for intelligent transport systems", Procedia Comput. Sci., vol. 176, pp. 3780-3793, 2020.
[http://dx.doi.org/10.1016/j.procs.2020.09.009]
[51]
A. Castañeda-Miranda, and V.M. Castaño-Meneses, "Internet of things for smart farming and frost intelligent control in greenhouses", Comput. Electron. Agric., vol. 176, no. 105614, p. 105614, 2020.
[http://dx.doi.org/10.1016/j.compag.2020.105614]
[52]
M. W. Rahman, R. Islam, A. Hasan, N. I. Bithi, M. M. Hasan, and M. M. Rahman, "Intelligent waste management system using deep learning with IoT", J. King Saud Univ. - Comput. Inf. Sci, 2020.
[http://dx.doi.org/10.1016/j.jksuci.2020.08.016]
[53]
Z. Shen, A. Shehzad, S. Chen, H. Sun, and J. Liu, "Machine learning based approach on food recognition and nutrition estimation", Procedia Comput. Sci., vol. 174, pp. 448-453, 2020.
[http://dx.doi.org/10.1016/j.procs.2020.06.113]
[54]
G. Alfian, M. Syafrudin, U. Farooq, M. Maarif, M. Alex, N. Latif, J. Lee, and J. Rhee, "Improving efficiency of RFID-based traceability system for perishable food by utilizing IoT sensors and machine learning model", Food Control, vol. 110, no. 107016, p. 107016, 2020.
[http://dx.doi.org/10.1016/j.foodcont.2019.107016]
[55]
A. Alarifi, and A. Tolba, "Optimizing the network energy of cloud assisted internet of things by using the adaptive neural learning approach in wireless sensor networks", Comput. Ind., vol. 106, pp. 133-141, 2019.
[http://dx.doi.org/10.1016/j.compind.2019.01.004]
[56]
N.G. Rezk, E.E-D. Hemdan, A-F. Attia, A. El-Sayed, and M.A. El-Rashidy, "An efficient IoT based smart farming system using machine learning algorithms", Multimedia Tools Appl., vol. 80, no. 1, pp. 773-797, 2021.
[http://dx.doi.org/10.1007/s11042-020-09740-6]
[57]
H. Zhang, Z. Fu, and K. Shu, "Recognizing ping-pong motions using inertial data based on machine learning classification algorithms", IEEE Access, vol. 7, pp. 167055-167064, 2019.
[http://dx.doi.org/10.1109/ACCESS.2019.2953772]
[58]
D. Goularas, and S. Kamis, "Evaluation of deep learning techniques in sentiment analysis from twitter data", In 2019 International Conference on Deep Learning and Machine Learning in Emerging Applications (Deep-ML), 2019.
[http://dx.doi.org/10.1109/Deep-ML.2019.00011]
[59]
F. Montori, L. Bedogni, and L. Bononi, "A collaborative internet of things architecture for smart cities and environmental monitoring", IEEE Internet Things J., vol. 5, pp. 592-605, 2018.
[http://dx.doi.org/10.1109/JIOT.2017.2720855]
[60]
S.K. Mydhili, S. Periyanayagi, S. Baskar, P.M. Shakeel, and P.R. Hariharan, "Machine learning based multi scale parallel K-means++ clustering for cloud assisted internet of things", Peer-to-Peer Netw. Appl., vol. 13, no. 6, pp. 2023-2035, 2020.
[http://dx.doi.org/10.1007/s12083-019-00800-9]
[61]
H. Jin, "Data processing model and performance analysis of cognitive computing based on machine learning in Internet environment", Soft Comput., vol. 23, pp. 9141-9151, 2019.
[http://dx.doi.org/10.1007/s00500-018-03722-5]
[62]
J. Diaz Rozo, C. Bielza, and P. Larrañaga, "Clustering of data streams with dynamic gaussian mixture models: An IoT application in industrial processes", IEEE Internet Things J., vol. 5, pp. 3533-3547, 2018.
[http://dx.doi.org/10.1109/JIOT.2018.2840129]
[63]
A. Ibrahim, A. Eltawil, Y. Na, and S. El-Tawil, "A machine learning approach for structural health monitoring using noisy data sets", IEEE Trans. Autom. Sci. Eng., vol. 17, pp. 900-908, 2020.
[http://dx.doi.org/10.1109/TASE.2019.2950958]
[64]
J. Dass, V. Sarin, and R.N. Mahapatra, "Fast and communication-efficient algorithm for distributed support vector machine training", IEEE Trans. Parallel Distrib. Syst., vol. 30, pp. 1065-1076, 2019.
[http://dx.doi.org/10.1109/TPDS.2018.2879950]
[65]
A. Aljumah, A. Kaur, M. Bhatia, and T. Ahamed Ahanger, "Internet of things‐fog computing‐based framework for smart disaster management", Trans. Emerg. Telecommun. Technol. (ETT), vol. 32, no. 8, 2021.
[66]
J. Li, H. Tao, L. Shuhong, S. Salih, J. Zain, L. Yankun, G. Vivekananda, and M. Thanjaivadel, "Internet of things assisted condition‐based support for smart manufacturing industry using learning technique", Comput. Intell., vol. 36, no. 4, pp. 1737-1754, 2020.
[http://dx.doi.org/10.1111/coin.12319]
[67]
P. Sharmila, J. Baskaran, C. Nayanatara, and R. Maheswari, "A hybrid technique of machine learning and data analytics for optimized distribution of renewable energy resources targeting smart energy management", Procedia Comput. Sci., vol. 165, pp. 278-284, 2019.
[http://dx.doi.org/10.1016/j.procs.2020.01.076]
[68]
N. Alghanmi, R. Alotaibi, and S.M. Buhari, "HLMCC: A hybrid learning anomaly detection model for unlabeled data in internet of things", IEEE Access, vol. 7, pp. 179492-179504, 2019.
[http://dx.doi.org/10.1109/ACCESS.2019.2959739]
[69]
S.K. Lakshmanaprabu, K. Shankar, A. Khanna, D. Gupta, J.P.C. Rodrigues, P.R. Pinheiro, and V.H. Albuquerque, "Effective features to classify big data using social internet of things", IEEE Access, vol. 6, pp. 24196-24204, 2018.
[http://dx.doi.org/10.1109/ACCESS.2018.2830651]
[70]
S. Lin, C. Chen, and T. Lee, "A multi-label classification with hybrid label-based meta-learning method in internet of things", IEEE Access, vol. 8, pp. 42261-42269, 2020.
[http://dx.doi.org/10.1109/ACCESS.2020.2976851]
[71]
G. Casolla, S. Cuomo, V.S.D. Cola, and F. Piccialli, "Exploring unsupervised learning techniques for the internet of things", IEEE Trans. Industr. Inform., vol. 16, pp. 2621-2628, 2020.
[http://dx.doi.org/10.1109/TII.2019.2941142]
[72]
H. Yao, P. Gao, J. Wang, P. Zhang, C. Jiang, and Z. Han, "Capsule network assisted iot traffic classification mechanism for smart cities", IEEE Internet Things J., vol. 6, pp. 7515-7525, 2019.
[http://dx.doi.org/10.1109/JIOT.2019.2901348]
[73]
A.H. Wahla, L. Chen, Y. Wang, R. Chen, and F. Wu, "Automatic wireless signal classification in multimedia internet of things: an adaptive boosting enabled approach", IEEE Access, vol. 7, pp. 160334-160344, 2019.
[http://dx.doi.org/10.1109/ACCESS.2019.2950989]
[74]
S. Egea, A. Rego Mañez, B. Carro, A. Sánchez-Esguevillas, and J. Lloret, "Intelligent iot traffic classification using novel search strategy for fast-based-correlation feature selection in industrial environments", IEEE Internet Things J., vol. 5, pp. 1616-1624, 2018.
[http://dx.doi.org/10.1109/JIOT.2017.2787959]
[75]
A. Sivanathan, H.H. Gharakheli, F. Loi, A. Radford, C. Wijenayake, A. Vishwanath, and V. Sivaraman, "Classifying iot devices in smart environments using network traffic characteristics", IEEE Trans. Mobile Comput., vol. 18, pp. 1745-1759, 2019.
[http://dx.doi.org/10.1109/TMC.2018.2866249]
[76]
O.G. Manzanilla-Salazar, F. Malandra, H. Mellah, C. Wetté, and B. Sansò, "A machine learning framework for sleeping cell detection in a smart-city IoT telecommunications infrastructure", IEEE Access, vol. 8, pp. 61213-61225, 2020.
[http://dx.doi.org/10.1109/ACCESS.2020.2983383]
[77]
F.C. Ribeiro, R.T.S. Carvalho, P.C. Cortez, V.H.C. De Albuquerque, and P.P.R. Filho, "Binary neural networks for classification of voice commands from throat microphone", IEEE Access, vol. 6, pp. 70130-70144, 2018.
[http://dx.doi.org/10.1109/ACCESS.2018.2881199]
[78]
P. Wei, and B. Wang, Food image classification and image retrieval based on visual features and machine learning., Multimed. Syst, 2020.
[http://dx.doi.org/10.1007/s00530-020-00673-6]
[79]
A. Ksentini, M. Jebalia, and S. Tabbane, "IoT/cloud‐enabled smart services: A review on QoS requirements in fog environment and a proposed approach based on priority classification technique", Int. J. Commun. Syst., vol. 34, no. 2, 2021.
[http://dx.doi.org/10.1002/dac.4269]
[80]
J. Huang, L. Zhu, Q. Liang, B. Fan, and S. Li, "Efficient classification of distribution-based data for internet of things", IEEE Access, vol. 6, pp. 69279-69287, 2018.
[http://dx.doi.org/10.1109/ACCESS.2018.2879652]
[81]
A. Mulahuwaish, K. Gyorick, K.Z. Ghafoor, H.S. Maghdid, and D.B. Rawat, "Efficient classification model of web news documents using machine learning algorithms for accurate information", Comput. Secur., vol. 98, no. 102006, p. 102006, 2020.
[http://dx.doi.org/10.1016/j.cose.2020.102006]
[82]
M. Raikar, M. Mulla, M.S. Meena, S. Shetti, and M. Karanandi, "Data Traffic classification in software defined networks (SDN) using supervised-learning", Procedia Comput. Sci., vol. 171, pp. 2750-2759, 2020.
[http://dx.doi.org/10.1016/j.procs.2020.04.299]
[83]
M. Wang, and Q. Zhang, "Optimized data storage algorithm of IoT based on cloud computing in distributed system", Comput. Commun., vol. 157, pp. 124-131, 2020.
[http://dx.doi.org/10.1016/j.comcom.2020.04.023]
[84]
R. Hou, Y. Kong, B. Cai, and H. Liu, "Unstructured big data analysis algorithm and simulation of Internet of Things based on machine learning", Neural Comput. Appl., vol. 32, pp. 5399-5407, 2020.
[http://dx.doi.org/10.1007/s00521-019-04682-z]
[85]
A. Singh, G.S. Aujla, S. Garg, G. Kaddoum, and G. Singh, "Deep-learning-based sdn model for internet of things: an incremental tensor train approach", IEEE Internet Things J., vol. 7, pp. 6302-6311, 2020.
[http://dx.doi.org/10.1109/JIOT.2019.2953537]
[86]
I.C. Hsu, and C-C. Chang, "Integrating machine learning and open data into social Chatbot for filtering information rumor", J. Ambient Intell. Humaniz. Comput., vol. 12, no. 1, pp. 1-15, 2020.
[PMID: 32837593]
[87]
Y. Shi, X. Zhang, Q. Hu, and H. Cheng, "Data recovery algorithm based on generative adversarial networks in crowd sensing Internet of Things", Pers. Ubiquitous Comput., 2020.
[http://dx.doi.org/10.1007/s00779-020-01428-w]
[88]
J. Azar, A. Makhoul, R. Couturier, and J. Demerjian, "Robust IoT time series classification with data compression and deep learning", Neurocomputing, vol. 398, pp. 222-234, 2020.
[http://dx.doi.org/10.1016/j.neucom.2020.02.097]
[89]
S. Mohan, C. Thirumalai, and G. Srivastava, "Effective heart disease prediction using hybrid machine learning techniques", IEEE Access, vol. 7, pp. 81542-81554, 2019.
[http://dx.doi.org/10.1109/ACCESS.2019.2923707]
[90]
T. Muhammed, R. Mehmood, A. Albeshri, and I. Katib, "UbeHealth: A personalized ubiquitous cloud and edge-enabled networked healthcare system for smart cities", IEEE Access, vol. 6, pp. 32258-32285, 2018.
[http://dx.doi.org/10.1109/ACCESS.2018.2846609]
[91]
H. Tang, and Z. Hu, "Research on medical image classification based on machine learning", IEEE Access, vol. 8, pp. 93145-93154, 2020.
[http://dx.doi.org/10.1109/ACCESS.2020.2993887]
[92]
G. Chen, C. Ding, Y. Li, X. Hu, X. Li, L. Ren, X. Ding, P. Tian, and W. Xue, "Prediction of chronic kidney disease using adaptive hybridized deep convolutional neural network on the internet of medical things platform", IEEE Access, vol. 8, pp. 100497-100508, 2020.
[http://dx.doi.org/10.1109/ACCESS.2020.2995310]
[93]
M.K. Hasan, M.A. Alam, D. Das, E. Hossain, and M. Hasan, "Diabetes prediction using ensembling of different machine learning classifiers", IEEE Access, vol. 8, pp. 76516-76531, 2020.
[http://dx.doi.org/10.1109/ACCESS.2020.2989857]
[94]
A. Khamparia, D. Gupta, A. Kumar de Albuquerque, and R.H. Jhaveri, "Internet of health things-driven deep learning system for detection and classification of cervical cells using transfer learning", J. Supercomput., vol. 76, pp. 8590-8608, 2020.
[http://dx.doi.org/10.1007/s11227-020-03159-4]
[95]
A. Ed-daoudy, and K. Maalmi, "A new Internet of Things architecture for real-time prediction of various diseases using machine learning on big data environment", J. Big Data, vol. 6, no. 1, 2019.
[http://dx.doi.org/10.1186/s40537-019-0271-7]
[96]
A. Souri, M.Y. Ghafour, A.M. Ahmed, F. Safara, A. Yamini, and M. Hoseyninezhad, "A new machine learning-based healthcare monitoring model for student’s condition diagnosis in Internet of Things environment", Soft Comput., vol. 24, no. 22, pp. 17111-17121, 2020.
[http://dx.doi.org/10.1007/s00500-020-05003-6]
[97]
M. Hosseinzadeh, O.H. Ahmed, M.Y. Ghafour, F. Safara, H.K. Hama, S. Ali, B. Vo, and H. Chiang, "A multiple multilayer perceptron neural network with an adaptive learning algorithm for thyroid disease diagnosis in the internet of medical things", J. Supercomput., 2020.
[http://dx.doi.org/10.1007/s11227-020-03404-w]
[98]
P. Kaur, R. Kumar, and M. Kumar, "A healthcare monitoring system using random forest and internet of things (IoT)", Multimedia Tools Appl., vol. 78, pp. 19905-19916, 2019.
[http://dx.doi.org/10.1007/s11042-019-7327-8]
[99]
L. Devi, and V. Kalaivani, "Machine learning and IoT-based cardiac arrhythmia diagnosis using statistical and dynamic features of ECG", J. Supercomput., vol. 76, pp. 6533-6544, 2020.
[http://dx.doi.org/10.1007/s11227-019-02873-y]
[100]
O. Irshad, M.U.G. Khan, R. Iqbal, S. Basheer, and A.K. Bashir, "Performance optimization of IoT based biological systems using deep learning", Comput. Commun., vol. 155, pp. 24-31, 2020.
[http://dx.doi.org/10.1016/j.comcom.2020.02.059]
[101]
A. Khamparia, P.K. Singh, P. Rani, D. Samanta, A. Khanna, and B. Bhushan, “An internet of health things‐driven deep learning framework for detection and classification of skin cancer using transfer learning”, Trans. emerg. telecommun. technol., ETT, 2020.
[102]
Z. Wang, and Z. Gao, "Analysis of real‐time heartbeat monitoring using wearable device Internet of Things system in sports environment", Comput. Intell., vol. 12337, pp. 1-18, 2020.
[103]
R. Kesavan, and S. Arumugam, "Adaptive deep convolutional neural network‐based secure integration of fog to cloud supported Internet of Things for health monitoring system", Trans. Emerg. Telecommun. Technol., vol. 31, no. 10, 2020.
[ETT] [http://dx.doi.org/10.1002/ett.4104]
[104]
J. Wu, and L. Patrono, "A fog‐based ubiquitous exercise healthcare monitoring framework for smart cities", Internet Technol. Lett., vol. 4, no. 1, 2021.
[105]
P. Verma, and S.K. Sood, "Fog assisted-iot enabled patient health monitoring in smart homes", IEEE Internet Things J., vol. 5, pp. 1789-1796, 2018.
[IoT] [http://dx.doi.org/10.1109/JIOT.2018.2803201]
[106]
Y. Huang, Q. Zhao, Q. Zhou, and W. Jiang, "Air quality forecast monitoring and its impact on brain health based on big data and the internet of things", IEEE Access, vol. 6, pp. 78678-78688, 2018.
[http://dx.doi.org/10.1109/ACCESS.2018.2885142]
[107]
R. Chatterjee, T. Maitra, S.K. Hafizul Islam, M.M. Hassan, A. Alamri, and G. Fortino, "A novel machine learning based feature selection for motor imagery EEG signal classification in Internet of medical things environment", Future Gener. Comput. Syst., vol. 98, pp. 419-434, 2019.
[FGCS] [http://dx.doi.org/10.1016/j.future.2019.01.048]
[108]
W. Xuan, and G. You, "Detection and diagnosis of pancreatic tumor using deep learning-based hierarchical convolutional neural network on the internet of medical things platform", Future Gener. Comput. Syst., vol. 111, pp. 132-142, 2020.
[FGCS] [http://dx.doi.org/10.1016/j.future.2020.04.037]
[109]
O. Deperlioglu, U. Kose, D. Gupta, A. Khanna, and A.K. Sangaiah, "Diagnosis of heart diseases by a secure internet of health things system based on autoencoder deep neural network", Comput. Commun., vol. 162, pp. 31-50, 2020.
[http://dx.doi.org/10.1016/j.comcom.2020.08.011] [PMID: 32843778]
[110]
M. Elhoseny, G-B. Bian, S.K. Lakshmanaprabu, K. Shankar, A.K. Singh, and W. Wu, "Effective features to classify ovarian cancer data in internet of medical things", Comput. Netw., vol. 159, pp. 147-156, 2019.
[http://dx.doi.org/10.1016/j.comnet.2019.04.016]
[111]
A. Ghoneim, G. Muhammad, and M.S. Hossain, "Cervical cancer classification using convolutional neural networks and extreme learning machines", Future Gener. Comput. Syst., vol. 102, pp. 643-649, 2020.
[FGCS] [http://dx.doi.org/10.1016/j.future.2019.09.015]
[112]
M.A. Hossain, R. Ferdousi, and M.F. Alhamid, "Knowledge-driven machine learning based framework for early-stage disease risk prediction in edge environment", J. Parallel Distrib. Comput., vol. 146, pp. 25-34, 2020.
[http://dx.doi.org/10.1016/j.jpdc.2020.07.003]
[113]
A. Samy, H. Yu, and H. Zhang, "Fog-based attack detection framework for internet of things using deep learning", IEEE Access, vol. 8, pp. 74571-74585, 2020.
[http://dx.doi.org/10.1109/ACCESS.2020.2988854]
[114]
M. Shen, X. Tang, L. Zhu, X. Du, and M. Guizani, "Privacy preserving support vector machine training over blockchain based encrypted iot data in smart cities", IEEE Internet Things J., vol. 6, pp. 7702-7712, 2019.
[IoT] [http://dx.doi.org/10.1109/JIOT.2019.2901840]
[115]
S. Venkatraman, and B. Surendiran, J. Supercomput., vol. 76, pp. 756-776, 2020.
[http://dx.doi.org/10.1007/s11227-019-02913-7]
[116]
M. Habib, I. Aljarah, and H. Faris, "A modified multi-objective particle swarm optimizer-based lévy flight: an approach toward intrusion detection in internet of things", Arab. J. Sci. Eng., vol. 45, pp. 6081-6108, 2020.
[http://dx.doi.org/10.1007/s13369-020-04476-9]
[117]
S. Zeadally, and M. Tsikerdekis, "Securing Internet of Things (IoT) with machine learning", Int. J. Commun. Syst., vol. 33, no. 1, p. e4169, 2020.
[http://dx.doi.org/10.1002/dac.4169]
[118]
X. Dong, C. Dong, Z. Chen, Y. Cheng, and B. Chen, "BotDetector: An extreme learning machine‐based Internet of Things botnet detection model", In: Trans. emerg. telecommun. Technol. (ETT), 2020.
[119]
A. Mubarakali, K. Srinivasan, R. Mukhalid, S.C.B. Jaganathan, and N. Marina, "Security challenges in internet of things: Distributed denial of service attack detection using support vector machine‐based expert systems", Comput. Intell., vol. 36, no. 4, pp. 1580-1592, 2020.
[http://dx.doi.org/10.1111/coin.12293]
[120]
F. Wang, S. Yang, Q. Li, and C. Wang, "An internet of things malware classification method based on mixture of experts neural network", In: Trans. emerg. telecommun. technol., (ETT), 2020.
[121]
O. Salman, I.H. Elhajj, A. Chehab, and A. Kayssi, "A machine learning based framework for IoT device identification and abnormal traffic detection", In: Trans. emerg. telecommun. technol., ETT, 2019.
[122]
W. Ma, "Analysis of anomaly detection method for Internet of things based on deep learning", Trans. Emerg. Telecommun. Technol., vol. 31, no. 12, 2020.
[ETT] [http://dx.doi.org/10.1002/ett.3893]
[123]
D.K. Reddy, H.S. Behera, J. Nayak, P. Vijayakumar, B. Naik, and P.K. Singh, "Deep neural network based anomaly detection in Internet of Things network traffic tracking for the applications of future smart cities", In: Trans. emerg. telecommun. technol., (ETT), 2020.
[124]
M. Sun, and R. Yang, "An efficient secure k nearest neighbor classification protocol with high‐dimensional features", Int. J. Intell. Syst., vol. 35, pp. 1791-1813, 2020.
[http://dx.doi.org/10.1002/int.22272]
[125]
Y. Otoum, D. Liu, and A. Nayak, "DL‐IDS: a deep learning–based intrusion detection framework for securing IoT", In: Trans. emerg. telecommun. technol. (ETT), 2019.
[126]
E.M. Karanja, S. Masupe, and M.G. Jeffrey, "Analysis of internet of things malware using image texture features and machine learning techniques", Internet of Things, vol. 9, no. 100153, p. 100153, 2020.
[http://dx.doi.org/10.1016/j.iot.2019.100153]
[127]
Y. Chen, "Mining of instant messaging data in the Internet of Things based on support vector machine", Comput. Commun., vol. 154, pp. 278-287, 2020.
[http://dx.doi.org/10.1016/j.comcom.2020.02.080]
[128]
M. Shafiq, Z. Tian, Y. Sun, X. Du, and M. Guizani, "Selection of effective machine learning algorithm and Bot-IoT attacks traffic identification for internet of things in smart city", Future Gener. Comput. Syst., vol. 107, pp. 433-442, 2020.
[FGCS] [http://dx.doi.org/10.1016/j.future.2020.02.017]
[129]
B. Amma, Future Gener. Comput. Syst., vol. 113, pp. 255-265, 2020.
[FGCS] [http://dx.doi.org/10.1016/j.future.2020.07.020]
[130]
"Choosing the best hardware for your next IoT project", Ibm.com. Available from: https://developer.ibm.com/technologies/iot/articles/iot-lp101-best-hardware-devices-iot-project/ [Accessed: 01-June-2020]
[131]
"IoT sensors & actuators", Postscapes.com. Available from: https://www.postscapes.com/iot-sensors-actuators/ [Accessed: 05-Mar-2021]
[132]
A.S. Morris, and R. Langari, Sensor Technologies.Measurement and Instrumentation., Elsevier, 2012, pp. 317-345.
[http://dx.doi.org/10.1016/B978-0-12-381960-4.00013-9]
[133]
S. Trilles, A. González-Pérez, and J. Huerta, "A comprehensive IoT node proposal using open hardware. A smart farming use case to monitor vineyards", Electronics (Basel), vol. 7, no. 12, p. 419, 2018.
[http://dx.doi.org/10.3390/electronics7120419]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy