Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

In vitro Antioxidant and Enzyme Inhibitory Properties and Phenolic Contents of Crude Extracts and Fractions from Different Organs of the Halophyte Lycium europaeum L

Author(s): Houaria Bendjedoua, Malika Bennaceura, Houari Benamar*, Maria João Rodriguesd, Catarina Pereirad, Chawki Bensouicie and Luísa Custódiod

Volume 18, Issue 2, 2022

Published on: 13 July, 2021

Article ID: e301121194729 Pages: 9

DOI: 10.2174/1573407217666210713101441

Price: $65

Abstract

Background: Background: Lycium europaeum L. is a medicinal and edible Mediterranean halophyte spiny shrub, however, studies regarding its biological properties focused mainly on its aerial organs.

Objective: The objective of the present work was to make a comparative evaluation of the in vitro antioxidant and enzyme inhibitory activities of ethanol extracts and fractions (chloroform, ethyl acetate, n-butanol and aqueous) from roots and leaves of L. europaeum, along with its total phenolic, flavonoid and tannin contents.

Methods: The antioxidant activity was evaluated by the 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2’-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS), superoxide radical, β-carotene bleaching, cupric reducing and ferric reducing activity methods.

Results: The n-butanol fraction from roots had the highest antioxidant activity in all the assays, and was also the most active against acetylcholinesterase, butyrylcholinesterase and urease (IC50 values of 92.63, 118.26 and 135.60 μgmL-1, respectively). This fraction showed a high level of total phenolic, flavonoid and tannin contents.

Conclusion: The results suggest L. europaeum, especially its roots, as a candidate to be further explored as a source of bioactive products.

Keywords: Lycium europaeum L., bioactive plant-derived products, cholinesterase inhibition, enzymatic inhibition, phenolics, flavonoids, urease.

Graphical Abstract

[1]
Shrestha, P.M.; Dhillion, S.S. Medicinal plant diversity and use in the highlands of Dolakha district, Nepal. J. Ethnopharmacol., 2003, 86(1), 81-96.
[http://dx.doi.org/10.1016/S0378-8741(03)00051-5] [PMID: 12686446]
[2]
Asase, A.; Kokubun, T.; Grayer, R.J.; Kite, G.; Simmonds, M.S.J.; Oteng-Yeboah, A.A.; Odamtten, G.T. Chemical constituents and antimicrobial activity of medicinal plants from Ghana: Cassia sieberiana, Haematostaphis barteri, Mitragyna inermis and Pseudocedrela kotschyi. Phytother. Res., 2008, 22(8), 1013-1016.
[http://dx.doi.org/10.1002/ptr.2392] [PMID: 18618525]
[3]
Sarkar, S.; Zaidi, S.; Chaturvedi, A.K.; Srivastava, R.; Dwivedi, P.K.; Shukla, R. Search for a herbal medicine: Antiasthmatic activity of methanolic extract of Curcuma longa. J. Pharmacogn. Phytochem., 2015, 3, 59-72.
[4]
Fukuda, T.; Yokoyama, J.; Ohashi, H. Phylogeny and biogeography of the genus Lycium (Solanaceae): Inferences from chloroplast DNA sequences. Mol. Phylogenet. Evol., 2001, 19(2), 246-258.
[http://dx.doi.org/10.1006/mpev.2001.0921] [PMID: 11341807]
[5]
Quezel, P.; Santa, S. Nouvelle flore de l’algerie et des regions desertiques meridionales.CNRS: Paris,, 1963, II, pp. 821-822.
[6]
Yao, R.; Heinrich, M.; Weckerle, C.S. The genus Lycium as food and medicine: A botanical, ethnobotanical and historical review. J. Ethnopharmacol., 2018, 212, 50-66.
[http://dx.doi.org/10.1016/j.jep.2017.10.010] [PMID: 29042287]
[7]
Tardío, J.; Pardo-De-Santayana, M.; Morales, R. Ethnobotanical review of wild edible plants in Spain. Bot. J. Linn. Soc., 2006, 152, 27-71.
[http://dx.doi.org/10.1111/j.1095-8339.2006.00549.x]
[8]
Qasem, J.R. Prospects of wild medicinal and industrial plants of saline habitats in the Jordan valley. Pak. J. Bot., 2015, 47, 551-570.
[9]
Dafni, A.; Yaniv, Z. Solanaceae as medicinal plants in Israel. J. Ethnopharmacol., 1994, 44(1), 11-18.
[http://dx.doi.org/10.1016/0378-8741(94)90093-0] [PMID: 7990499]
[10]
Stave, J.; Oba, G.; Nordal, I.; Stenseth, N.C. Traditional ecological knowledge of a riverine forest in Turkana, Kenya: Implications for research and management. Biodivers. Conserv., 2007, 16, 1471-1489.
[http://dx.doi.org/10.1007/s10531-006-9016-y]
[11]
Rosa, A.; Maxia, A.; Putzu, D.; Atzeri, A.; Era, B.; Fais, A.; Sanna, C.; Piras, A. Chemical composition of Lycium europaeum fruit oil obtained by supercritical CO2 extraction and evaluation of its antioxidant activity, cytotoxicity and cell absorption. Food Chem., 2017, 230, 82-90.
[http://dx.doi.org/10.1016/j.foodchem.2017.03.019] [PMID: 28407975]
[12]
Azaizeh, H.; Saad, B.; Khalil, K.; Said, O. The state of the art of traditional arab herbal medicine in the eastern region of the mediterranean: A review. Evid. Based Complement. Alternat. Med., 2006, 3(2), 229-235.
[http://dx.doi.org/10.1093/ecam/nel034] [PMID: 16786053]
[13]
Delbanco, A.S.; Burgess, N.D.; Cuni-Sanchez, A. Medicinal plant trade in northern Kenya: Importance, uses and origin. Econ. Bot., 2017, 71, 13-31.
[http://dx.doi.org/10.1007/s12231-017-9368-0]
[14]
Ali-Shtayeh, M.S.; Al-Assali, A.A.; Jamous, R.M. Antimicrobial activity of Palestinian medicinal plants against acne-inducing bacteria. Afr. J. Microbiol. Res., 2013, 7, 2560-2573.
[http://dx.doi.org/10.5897/AJMR12.1875]
[15]
Tej, R.; Rodríguez-Mallol, C.; Rodríguez-Arcos, R.; Karray-Bouraoui, N.; Molinero-Ruiz, L. Inhibitory effect of Lycium europaeum extracts on phytopathogenic soil-borne fungi and the reduction of late wilt in maize. Eur. J. Plant Pathol., 2018, 152, 249-265.
[http://dx.doi.org/10.1007/s10658-018-1469-9]
[16]
Wannes, W.A.; Tounsi, M.S. Phytochemical composition and health properties of Lycium europaeum L.: A review. Acta Ecol. Sin., 2020, x, x-x.
[17]
Rjeibi, I.; Feriani, A.; Hfaiedh, N. In vivo cardioprotective effect of a polysaccharide from Lycium europaeum on cisplatin-induced heart injury in mice. Curr. Trends Biotechnol. Pharm., 2021, 15, 79-86.
[http://dx.doi.org/10.5530/ctbp.2021.1.9]
[18]
Ghali, W.; Vaudry, D.; Jouenne, T.; Marzouki, M.N. Lycium europaeum fruit extract: Antiproliferative activity on A549 human lung carcinoma cells and PC12 rat adrenal medulla cancer cells and assessment of its cytotoxicity on cerebellum granule cells. Nutr. Cancer, 2015, 67(4), 637-646.
[http://dx.doi.org/10.1080/01635581.2015.1017054] [PMID: 25825796]
[19]
Bendjedou, H.; Barboni, L.; Maggi, F.; Bennaceur, M.; Benamar, H. Alkaloids and sesquiterpenes from roots and leaves of Lycium europaeum L. (Solanaceae) with antioxidant and anti-acetylcholinesterase activities. Nat. Prod. Res., 2019, 1-5.
[http://dx.doi.org/10.1080/14786419.2019.1666386] [PMID: 31542954]
[20]
Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol., 1999, 299, 152-178.
[http://dx.doi.org/10.1016/S0076-6879(99)99017-1]
[21]
Kim, D.O.; Chun, O.K.; Kim, Y.J.; Moon, H.Y.; Lee, C.Y. Quantification of polyphenolics and their antioxidant capacity in fresh plums. J. Agric. Food Chem., 2003, 51(22), 6509-6515.
[http://dx.doi.org/10.1021/jf0343074] [PMID: 14558771]
[22]
Cam, M.; Hisil, Y. Pressurised water extraction of polyphenols from pomegranate peels. Food Chem., 2010, 123, 878-885.
[http://dx.doi.org/10.1016/j.foodchem.2010.05.011]
[23]
Blois, M.S. Antioxidant determinations by the use of a stable Free Radical. Nature, 1958, 4617, 1119-1200.
[http://dx.doi.org/10.1038/1811199a0]
[24]
Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 1999, 26(9-10), 1231-1237.
[http://dx.doi.org/10.1016/S0891-5849(98)00315-3] [PMID: 10381194]
[25]
Elizabeth, K.; Rao, M.N.A. Oxygen radical scavenging activity of curcumin. Int. J. Pharm., 1990, 58, 237-240.
[http://dx.doi.org/10.1016/0378-5173(90)90201-E]
[26]
Öztürk, M.; Duru, M.E.; Kivrak, S.; Mercan-Doğan, N.; Türkoglu, A.; Özler, M.A. In vitro antioxidant, anticholinesterase and antimicrobial activity studies on three Agaricus species with fatty acid compositions and iron contents: A comparative study on the three most edible mushrooms. Food Chem. Toxicol., 2011, 49(6), 1353-1360.
[http://dx.doi.org/10.1016/j.fct.2011.03.019] [PMID: 21419821]
[27]
Oyaizu, M. Studies on products of browning reactions: Antioxidative activities of browning reaction prepared from glucosamine. Jpn. J. Nutr. Diet., 1986, 44, 307-315.
[http://dx.doi.org/10.5264/eiyogakuzashi.44.307]
[28]
Apak, R.; Güçlü, K.; Özyürek, M.; Çelik, S.E. Mechanism of antioxidant capacity assays and the CUPRAC (Cupric ion Reducing Antioxidant Capacity) assay. Mikrochim. Acta, 2008, 160, 413-419.
[http://dx.doi.org/10.1007/s00604-007-0777-0]
[29]
Zengin, G.; Sarikurkcu, C.; Aktumsek, A.; Ceylan, R.; Ceylan, O.A. comprehensive study on phytochemical characterization of Haplophyllum myrtifolium Boiss. endemic to Turkey and its inhibitory potential against key enzymes involved in Alzheimer, skin diseases and type II diabetes. Ind. Crops Prod., 2014, 53, 244-251.
[http://dx.doi.org/10.1016/j.indcrop.2013.12.043]
[30]
Lordan, S.; Smyth, T.J.; Soler-Vila, A.; Stanton, C.; Ross, R.P. The α-amylase and α-glucosidase inhibitory effects of Irish seaweed extracts. Food Chem., 2013, 141(3), 2170-2176.
[http://dx.doi.org/10.1016/j.foodchem.2013.04.123] [PMID: 23870944]
[31]
Ellman, G.L.; Courtney, K.D.; Andres, V., Jr; Feather-Stone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 1961, 7, 88-95.
[http://dx.doi.org/10.1016/0006-2952(61)90145-9] [PMID: 13726518]
[32]
Taha, M.; Ullah, H.; Al Muqarrabun, L.M.R.; Khan, M.N.; Rahim, F.; Ahmat, N.; Javid, M.T.; Ali, M.; Khan, K.M. Bisindolylmethane thiosemicarbazides as potential inhibitors of urease: Synthesis and molecular modeling studies. Bioorg. Med. Chem., 2018, 26(1), 152-160.
[http://dx.doi.org/10.1016/j.bmc.2017.11.028] [PMID: 29183662]
[33]
Rjeibi, I.; Feriani, A.; Ben Saad, A.; Ncib, S.; Sdayria, J.; Saidi, I.; Souid, S.; Hfaiedh, N.; Allagui, M.S. Phytochemical characterization and bioactivity of Lycium europaeum: A focus on antioxidant, antinociceptive, hepatoprotective and nephroprotective effects. Biomed. Pharmacother., 2017, 95, 1441-1450.
[http://dx.doi.org/10.1016/j.biopha.2017.09.035] [PMID: 28946192]
[34]
Halla, N.; Boucherit, K.; Boucherit-otmani, Z.; Zohra, F.; Rahmani, N. Ammodaucus leucotrichus and Citrullus colocynthis from Algerian Sahara: Ethnopharmacological application, phytochemical screening, polyphenols content and antioxidant activity of hydromethanolic extracts. J. King Saud Univ. Sci., 2018, 31, 541-548.
[http://dx.doi.org/10.1016/j.jksus.2018.03.018]
[35]
Ferreira, I.C.; Martins, N.; Barros, L. Phenolic compounds and its bioavailability: In vitro bioactive compounds or health promoters? Advances in food and nutrition research Toldrá, F., Ed.; Academic Press: Cambridge, ; , 2017, 82, pp. 1-44.
[36]
Jayaprakasha, G.K.; Girennavar, B.; Patil, B.S. Radical scavenging activities of Rio Red grapefruits and Sour orange fruit extracts in different in vitro model systems. Bioresour. Technol., 2008, 99(10), 4484-4494.
[http://dx.doi.org/10.1016/j.biortech.2007.07.067] [PMID: 17935981]
[37]
Abdennacer, B.; Karim, M.; Yassine, M.; Nesrine, R.; Mouna, D.; Mohamed, B. Determination of phytochemicals and antioxidant activity of methanol extracts obtained from the fruit and leaves of Tunisian Lycium intricatum Boiss. Food Chem., 2015, 174, 577-584.
[http://dx.doi.org/10.1016/j.foodchem.2014.11.114] [PMID: 25529722]
[38]
Masuoka, N.; Matsuda, M.; Kubo, I. Characterisation of the antioxidant activity of flavonoids. Food Chem., 2012, 131, 541-545.
[http://dx.doi.org/10.1016/j.foodchem.2011.09.020]
[39]
Alves, C.Q.; David, J.M.; David, J.P.; Bahia, M.V.; Aguiar, R.M. Methods for determination of in vitro antioxidant activity for extracts and organic compounds. Quim. Nova, 2010, 33, 2202-2210.
[http://dx.doi.org/10.1590/S0100-40422010001000033]
[40]
Meyer, A.S.; Isaksen, A. Application of enzymes as food antioxidants. Trends Food Sci. Technol., 1995, 6, 300-304.
[http://dx.doi.org/10.1016/S0924-2244(00)89140-2]
[41]
Dahech, I.; Farah, W.; Trigui, M.; Ben Hssouna, A.; Belghith, H.; Belghith, K.S.; Ben Abdallah, F. Antioxidant and antimicrobial activities of Lycium shawii fruits extract. Int. J. Biol. Macromol., 2013, 60, 328-333.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.05.020] [PMID: 23732331]
[42]
Ruto, M.C.; Ngugi, C.M.; Kareru, P.G.; Cheruiyot, K.; Cheruiyot, K.; Rechab, S.O.; Madivoli, E.S.; Mutembei, J.K.; Kairigo, P.K.; Maina, E.G. Antioxidant activity and antimicrobial properties of Entada leptostachya and Prosopis juliflora extracts. J. Med. Plan. Econ. Dev., 2018, 2, a31.
[http://dx.doi.org/10.4102/jomped.v2i1.31]
[43]
Abd Hamid, H.; Mutazah, R.; Yusoff, M.M.; Abd Karim, N.A.; Abdull Razis, A.F. Comparative analysis of antioxidant and antiproliferative activities of Rhodomyrtus tomentosa extracts prepared with various solvents. Food Chem. Toxicol., 2017, 108(Pt B), 451-457.
[http://dx.doi.org/10.1016/j.fct.2016.10.004] [PMID: 27725206]
[44]
Benamar, H.; Marouf, A.; Bennaceur, M. Phytochemical composition, antioxidant and acetylcholinesterase inhibitory activities of aqueous extract and fractions of Pistacia atlantica subsp. atlantica from Algeria. J. Herbs Spices Med. Plants, 2018, 24, 229-244.
[http://dx.doi.org/10.1080/10496475.2018.1446204]
[45]
Mocan, A.; Moldovan, C.; Zengin, G.; Bender, O.; Locatelli, M.; Simirgiotis, M.; Atalay, A.; Vodnar, D.C.; Rohn, S.; Crișan, G. UHPLC-QTOF-MS analysis of bioactive constituents from two Romanian Goji (Lycium barbarum L.) berries cultivars and their antioxidant, enzyme inhibitory, and real-time cytotoxicological evaluation. Food Chem. Toxicol., 2018, 115, 414-424.
[http://dx.doi.org/10.1016/j.fct.2018.01.054] [PMID: 29448090]
[46]
Ye, X.P.; Song, C.Q.; Yuan, P.; Mao, R.G. α-glucosidase and α-amylase inhibitory activity of common constituents from traditional Chinese medicine used for diabetes mellitus. Chin. J. Nat. Med., 2010, 8, 349-352.
[http://dx.doi.org/10.3724/SP.J.1009.2010.00349]
[47]
Hamdan, I.I.; Afifi, F.U. Capillary electrophoresis as a screening tool for alpha amylase inhibitors in plant extracts. Saudi Pharm. J., 2010, 18(2), 91-95.
[http://dx.doi.org/10.1016/j.jsps.2010.02.004] [PMID: 24115900]
[48]
Tian, L.M.; Wang, M.; Chen, W. Inhibition effects of Lycium barbarum polysaccharides on α‐glucosidase. Pharmacol. Clinic. Med., 2005, 21, 23-25.
[49]
Buchholz, T.; Chen, C.; Zhang, X.Y.; Melzig, M.F. Pancreatic lipase and α-amylase inhibitory activities of plants used in Traditional Chinese Medicine (TCM). Pharmazie, 2016, 71(7), 420-424.
[PMID: 29441920]
[50]
Rosenberry, T.L.; Sonoda, L.K.; Dekat, S.E.; Cusack, B.; Johnson, J.L. Monitoring the reaction of carbachol with acetylcholinesterase by thioflavin T fluorescence and acetylthiocholine hydrolysis. Chem. Biol. Interact., 2008, 175(1-3), 235-241.
[http://dx.doi.org/10.1016/j.cbi.2008.06.002] [PMID: 18602908]
[51]
Chen, W.; Cheng, X.; Chen, J.; Yi, X.; Nie, D.; Sun, X.; Qin, J.; Tian, M.; Jin, G.; Zhang, X. Lycium barbarum polysaccharides prevent memory and neurogenesis impairments in scopolamine-treated rats. PLoS One, 2014, 9(2), e88076.
[http://dx.doi.org/10.1371/journal.pone.0088076] [PMID: 24505383]
[52]
Uddin, G.; Ismail, ; Rauf, A.; Raza, M.; Khan, H.; Nasruddin, ; Khan, M.; Farooq, U.; Khan, A.; Arifullah, Urease inhibitory profile of extracts and chemical constituents of Pistacia atlantica ssp. cabulica Stocks. Nat. Prod. Res., 2016, 30(12), 1411-1416.
[http://dx.doi.org/10.1080/14786419.2015.1062378] [PMID: 26291657]
[53]
Nile, S.H.; Nile, A.S.; Keum, Y.S.; Sharma, K. Utilization of quercetin and quercetin glycosides from onion (Allium cepa L.) solid waste as an antioxidant, urease and xanthine oxidase inhibitors. Food Chem., 2017, 235, 119-126.
[http://dx.doi.org/10.1016/j.foodchem.2017.05.043] [PMID: 28554615]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy