Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Application of Functional Magnetic Nanoparticles for Separation of Target Materials: A Review

Author(s): Houra Nekounam, Mahrokh Babaei, Misagh Fathi Kisomi, Soheila Pourkhodadad , Narges Mahmoodi, Abolfazl Nazbar, Elham Hasanzadeh, Mojtaba Zarei and Reza Faridi-Majidi*

Volume 18, Issue 5, 2022

Published on: 12 January, 2022

Page: [554 - 570] Pages: 17

DOI: 10.2174/1573413717666210708162149

Price: $65

Abstract

Magnetic nanoparticles (MNPs) have unique properties that have made them widely used in medicine and biology. They are easy to work with due to their responsiveness to external magnetic force. Functionalization of nanoparticles(NPs) effectively improves performance, increases stability in the body and acidic environment, and prevents the agglomeration of the particles. One of the important applications of these NPs is in the separation of materials as solid-phase extracting agents. On the other hand, functionalizing these NPs can increase the efficiency, stability, specificity, and sensitivity of the structure to separate the target. In this paper, various material separation studies were collected and classified into several main groups based on material types. Study groups included functional MNPs for separating pathogen, organic and inorganic substances of environmental resources, removal of heavy metal ions, separation of biomolecules, isolation of cells, especially tumor cells, and harvesting the microalgae. The results showed that this method has advantages such as high sensitivity and specificity, is easy to use without needing an operator, low costs, and is a time-saving technique for not requiring sample preparation and concentration.

Keywords: Functional magnetic nanoparticles, separation of biomolecules, cell sorting, pathogen detection, microalgae, dispersibility.

Graphical Abstract

[1]
Zhang, Z.; Yan, B.; Liao, Y.; Liu, H. Nanoparticle: Is it promising in capillary electrophoresis? Anal. Bioanal. Chem., 2008, 391(3), 925-927.
[http://dx.doi.org/10.1007/s00216-008-1930-2] [PMID: 18317740]
[2]
Bhakdi, S.C.; Ottinger, A.; Somsri, S.; Sratongno, P.; Pannadaporn, P.; Chimma, P.; Malasit, P.; Pattanapanyasat, K.; Neumann, H.P. Optimized high gradient magnetic separation for isolation of Plasmodium-infected red blood cells. Malar. J., 2010, 9(1), 38.
[http://dx.doi.org/10.1186/1475-2875-9-38] [PMID: 20122252]
[3]
Sau, T.K.; Rogach, A.L. Nonspherical noble metal nanoparticles: Colloid-chemical synthesis and morphology control. Adv. Mater., 2010, 22(16), 1781-1804.
[http://dx.doi.org/10.1002/adma.200901271] [PMID: 20512953]
[4]
Zhang, Y.; Wang, X.; Shan, W.; Wu, B.; Fan, H.; Yu, X.; Tang, Y.; Yang, P. Enrichment of low-abundance peptides and proteins on zeolite nanocrystals for direct MALDI-TOF MS analysis. Angew. Chem. Int. Ed. Engl., 2005, 44(4), 615-617.
[http://dx.doi.org/10.1002/anie.200460741] [PMID: 15597394]
[5]
Lin, P-C.; Tseng, M-C.; Su, A-K.; Chen, Y-J.; Lin, C-C. Functionalized magnetic nanoparticles for small-molecule isolation, identification, and quantification. Anal. Chem., 2007, 79(9), 3401-3408.
[http://dx.doi.org/10.1021/ac070195u] [PMID: 17402709]
[6]
Duan, A-H.; Xie, S-M.; Yuan, L-M. Nanoparticles as stationary and pseudo-station+ ary phases in chromatographic and electrochromatographic separations. Trends Analyt. Chem., 2011, 30(3), 484-491.
[http://dx.doi.org/10.1016/j.trac.2011.01.007]
[7]
Sancho, R.; Minguillón, C. The chromatographic separation of enantiomers through nanoscale design. Chem. Soc. Rev., 2009, 38(3), 797-805.
[http://dx.doi.org/10.1039/b718359n] [PMID: 19322471]
[8]
Zamborini, F.P.; Bao, L.; Dasari, R. Nanoparticles in measurement science. Anal. Chem., 2012, 84(2), 541-576.
[http://dx.doi.org/10.1021/ac203233q] [PMID: 22148733]
[9]
Campelo, J.M.; Luna, D.; Luque, R.; Marinas, J.M.; Romero, A.A. Sustainable preparation of supported metal nanoparticles and their applications in catalysis. ChemSusChem, 2009, 2(1), 18-45.
[http://dx.doi.org/10.1002/cssc.200800227] [PMID: 19142903]
[10]
Zahmakıran, M.; Özkar, S. Metal nanoparticles in liquid phase catalysis; from recent advances to future goals. Nanoscale, 2011, 3(9), 3462-3481.
[http://dx.doi.org/10.1039/c1nr10201j] [PMID: 21833406]
[11]
Wang, F-H.; Yoshitake, T.; Kim, D-K.; Muhammed, M.; Bjelke, B.; Kehr, J. Determination of conjugation efficiency of antibodies and proteins to the superparamagnetic iron oxide nanoparticles by capillary electrophoresis with laser-induced fluorescence detection. J. Nanopart. Res., 2003, 5(1-2), 137-146.
[http://dx.doi.org/10.1023/A:1024428417660]
[12]
Grancharov, S.G.; Zeng, H.; Sun, S.; Wang, S.X.; O’Brien, S.; Murray, C.B.; Kirtley, J.R.; Held, G.A. Bio-functionalization of monodisperse magnetic nanoparticles and their use as biomolecular labels in a magnetic tunnel junction based sensor. J. Phys. Chem. B, 2005, 109(26), 13030-13035.
[http://dx.doi.org/10.1021/jp051098c] [PMID: 16852617]
[13]
Kumar, C.S.; Hormes, J.; Leuschner, C. Nanofabrication towards biomedical applications: Techniques, tools, applications, and impact; John Wiley & Sons, 2006.
[14]
Lee, I.S.; Lee, N.; Park, J.; Kim, B.H.; Yi, Y-W.; Kim, T.; Kim, T.K.; Lee, I.H.; Paik, S.R.; Hyeon, T. Ni/NiO core/shell nanoparticles for selective binding and magnetic separation of histidine-tagged proteins. J. Am. Chem. Soc., 2006, 128(33), 10658-10659.
[http://dx.doi.org/10.1021/ja063177n] [PMID: 16910642]
[15]
Xu, J.; Sun, J.; Wang, Y.; Sheng, J.; Wang, F.; Sun, M. Application of iron magnetic nanoparticles in protein immobilization. Molecules, 2014, 19(8), 11465-11486.
[http://dx.doi.org/10.3390/molecules190811465] [PMID: 25093986]
[16]
Lee, S.Y.; Ahn, C.Y.; Lee, J.; Lee, J.H.; Chang, J.H. Rapid and selective separation for mixed proteins with thiol functionalized magnetic nanoparticles. Nanoscale Res. Lett., 2012, 7(1), 279.
[http://dx.doi.org/10.1186/1556-276X-7-279] [PMID: 22650609]
[17]
Liu, H-L.; Ko, S.P.; Wu, J-H.; Jung, M-H.; Min, J.H.; Lee, J.H.; An, B.H.; Kim, Y.K. One-pot polyol synthesis of monosize PVP-coated sub-5 nm Fe3O4 nanoparticles for biomedical applications. J. Magn. Magn. Mater., 2007, 310(2), e815-e817.
[http://dx.doi.org/10.1016/j.jmmm.2006.10.776]
[18]
Sun, C; Veiseh, O; Gunn, J; Fang, C; Hansen, S; Lee, D; Sze, R; Ellenbogen, RG; Olson, J; Zhang, M In vivo MRI detection of gliomas by chlorotoxin‐conjugated superparamagnetic nanoprobes. small, 2008, 4(3), 372-379.
[http://dx.doi.org/10.1002/smll.200700784]
[19]
Souza, K.C.; Ardisson, J.D.; Sousa, E.M. Study of mesoporous silica/magnetite systems in drug controlled release. J. Mater. Sci. Mater. Med., 2009, 20(2), 507-512.
[http://dx.doi.org/10.1007/s10856-008-3592-1] [PMID: 18839283]
[20]
Lee, H.; Lee, E.; Kim, D.K.; Jang, N.K.; Jeong, Y.Y.; Jon, S. Antibiofouling polymer-coated superparamagnetic iron oxide nanoparticles as potential magnetic resonance contrast agents for In vivo cancer imaging. J. Am. Chem. Soc., 2006, 128(22), 7383-7389.
[http://dx.doi.org/10.1021/ja061529k] [PMID: 16734494]
[21]
Maleki, A; Niksefat, M; Rahimi, J Taheri-Ledari, RJMTC Multicomponent synthesis of pyrano [2, 3-d] pyrimidine derivatives via a direct one-pot strategy executed by novel designed copperated Fe3O4@ polyvinyl alcohol magnetic nanoparticles. 2019, 13, 110-120.
[22]
Faridi-Majidi, R.; Sharifi-Sanjani, N.; Agend, F. Encapsulation of magnetic nanoparticles with polystyrene via emulsifier-free miniemulsion polymerization. Thin Solid Films, 2006, 515(1), 368-374.
[http://dx.doi.org/10.1016/j.tsf.2005.12.102]
[23]
Nekounam, H; Gholizadeh, S; Allahyari, Z; Samadian, H; Nazeri, N; Shokrgozar, MA Faridi-Majidi, RJMRB Electroconductive scaffolds for tissue regeneration: Current opportunities, pitfalls, and potential solutions. 2020, 111083.
[24]
Nekounam, H.; Allahyari, Z.; Gholizadeh, S.; Mirzaei, E.; Shokrgozar, M.A. Faridi-Majidi RJb; Simple and robust fabrication and characterization of conductive carbonized nanofibers loaded with gold nanoparticles for bone tissue engineering applications, 2020.
[25]
Nekounam, H; Kandi, MR; Shaterabadi, D; Samadian, H; Mahmoodi, N; Hasanzadeh, E; Faridi-Majidi, RJD; Materials, R Silica nanoparticles-incorporated carbon nanofibers as bioactive biomaterial for bone tissue engineering. 2021, 115, 108320.
[26]
Nekounam, H; Samadian, H Electro-conductive carbon nanofibers containing ferrous sulfate for bone tissue engineering. 2020.
[27]
Nekounam, H; Dinarvand, R; Khademi, R; Asghari, F; Mahmoodi, N; Arzani, H; Hasanzadeh, E; Hadi, A; Karimi, R; Kamali, M Preparation of cationized albumin nanoparticles loaded indirubin by high pressure hemogenizer. 2021, 44, 4280.
[28]
Madani, M.; Sharifi-Sanjani, N.; Faridi-Majidi, R. Magnetic polystyrene nanocapsules with core-shell morphology obtained by emulsifier-free miniemulsion polymerization. Polym. Sci. Ser. A, 2011, 53(2), 143-148.
[http://dx.doi.org/10.1134/S0965545X11020088]
[29]
Han, H; Johnson, A; Kaczor, J; Kaur, M; Paszczynski, A; Qiang, Y Silica coated magnetic nanoparticles for separation of nuclear acidic waste. J. Appl. Phys., 2010, 107(9), 09B520.
[http://dx.doi.org/10.1063/1.3358612]
[30]
Treccani, L.; Yvonne Klein, T.; Meder, F.; Pardun, K.; Rezwan, K. Functionalized ceramics for biomedical, biotechnological and environmental applications. Acta Biomater., 2013, 9(7), 7115-7150.
[http://dx.doi.org/10.1016/j.actbio.2013.03.036] [PMID: 23567940]
[31]
Yeung, S.W.; Hsing, I-M. Manipulation and extraction of genomic DNA from cell lysate by functionalized magnetic particles for lab on a chip applications. Biosens. Bioelectron., 2006, 21(7), 989-997.
[http://dx.doi.org/10.1016/j.bios.2005.03.008] [PMID: 16368479]
[32]
Herr, J.K.; Smith, J.E.; Medley, C.D.; Shangguan, D.; Tan, W. Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells. Anal. Chem., 2006, 78(9), 2918-2924.
[http://dx.doi.org/10.1021/ac052015r] [PMID: 16642976]
[33]
ZHU LZ. YU PG, SHEN HB, JIA NQ, LONG DH, ZHOU HQ. Extraction and detection of mRNA from a single K562 cell based on the functionalized superparamagnetic nanoparticles. Chin. J. Chem., 2008, 26(6), 1041-1044.
[http://dx.doi.org/10.1002/cjoc.200890185]
[34]
Scarberry, K.E.; Dickerson, E.B.; McDonald, J.F.; Zhang, Z.J. Magnetic nanoparticle-peptide conjugates for in vitro and In vivo targeting and extraction of cancer cells. J. Am. Chem. Soc., 2008, 130(31), 10258-10262.
[http://dx.doi.org/10.1021/ja801969b] [PMID: 18611005]
[35]
Chou, P-H.; Chen, S-H.; Liao, H-K.; Lin, P-C.; Her, G-R.; Lai, A.C-Y.; Chen, J-H.; Lin, C-C.; Chen, Y-J. Nanoprobe-based affinity mass spectrometry for selected protein profiling in human plasma. Anal. Chem., 2005, 77(18), 5990-5997.
[http://dx.doi.org/10.1021/ac050655o] [PMID: 16159132]
[36]
Turney, K.; Drake, T.J.; Smith, J.E.; Tan, W.; Harrison, W.W. Functionalized nanoparticles for liquid atmospheric pressure matrix-assisted laser desorption/ionization peptide analysis. Rapid Commun. Mass Spectrom., 2004, 18(20), 2367-2374.
[http://dx.doi.org/10.1002/rcm.1634] [PMID: 15386634]
[37]
Chen, C-T.; Chen, Y-C. Fe3O4/TiO2 core/shell nanoparticles as affinity probes for the analysis of phosphopeptides using TiO2 surface-assisted laser desorption/ionization mass spectrometry. Anal. Chem., 2005, 77(18), 5912-5919.
[http://dx.doi.org/10.1021/ac050831t] [PMID: 16159121]
[38]
Chen g-Tai Chen, Chen W-Y, Tsai P-J, Chien K-Y, Yu J-S, Chen Y-C. Rapid enrichment of phosphopeptides and phosphoproteins from complex samples using magnetic particles coated with alumina as the concentrating probes for MALDI MS analysis. J. Proteome Res., 2006, 6(1), 316-325.
[39]
Lin, S.; Yun, D.; Qi, D.; Deng, C.; Li, Y.; Zhang, X. Novel microwave-assisted digestion by trypsin-immobilized magnetic nanoparticles for proteomic analysis. J. Proteome Res., 2008, 7(3), 1297-1307.
[http://dx.doi.org/10.1021/pr700586j] [PMID: 18257514]
[40]
Shabatina, T.I.; Vernaya, O.I.; Shabatin, V.P.; Melnikov, M.Y.J.M. Magnetic Nanoparticles for Biomedical Purposes. Modern Trends and Prospects, 2020, 6(3), 30.
[41]
Ugelstad, J.; Stenstad, P.; Kilaas, L.; Prestvik, W.S.; Herje, R.; Berge, A.; Hornes, E. Monodisperse magnetic polymer particles. New biochemical and biomedical applications. Blood Purif., 1993, 11(6), 349-369.
[http://dx.doi.org/10.1159/000170129] [PMID: 8043257]
[42]
Uyttendaele, M.; Van Hoorde, I.; Debevere, J. The use of immuno-magnetic separation (IMS) as a tool in a sample preparation method for direct detection of L. monocytogenes in cheese. Int. J. Food Microbiol., 2000, 54(3), 205-212.
[http://dx.doi.org/10.1016/S0168-1605(99)00196-8] [PMID: 10777071]
[43]
Schwaminger, SP; Fraga-García, P; Eigenfeld, M; Becker, TM Berensmeier SJFib, biotechnology: Magnetic separation in bioprocessing beyond the analytical scale: From biotechnology to the food industry. 2019, 7, 233.
[44]
Chang, C.; Wang, X.; Bai, Y.; Liu, H. Applications of nanomaterials in enantioseparation and related techniques. Trends Analyt. Chem., 2012, 39, 195-206.
[http://dx.doi.org/10.1016/j.trac.2012.07.002]
[45]
Naume, B.; Borgen, E.; Nesland, J.M.; Beiske, K.; Gilen, E.; Renolen, A.; Ravnås, G.; Qvist, H.; Kåresen, R.; Kvalheim, G. Increased sensitivity for detection of micrometastases in bone-marrow/peripheral-blood stem-cell products from breast-cancer patients by negative immunomagnetic separation. Int. J. Cancer, 1998, 78(5), 556-560.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19981123)78:5<556:AID-IJC5>3.0.CO;2-G] [PMID: 9808522]
[46]
Jordan, A; Scholz, R; Wust, P; Schirra, H; Schiestel, T; Schmidt, H Materials M: Endocytosis of dextran and silan-coated magnetite nanoparticles and the effect of intracellular hyperthermia on human mammary carcinoma cells in vitro. 1999, 194(1-3), 185-196.
[47]
Multhoff, G; Botzler, C; Wiesnet, M; Müller, E; Meier, T; Wilmanns, W Issels RDJIjoc: A stress‐inducible 72‐kDa heat‐shock protein (HSP72) is expressed on the surface of human tumor cells, but not on normal cells. 1995, 61(2), 272-279.
[48]
Jain, TK; Reddy, MK; Morales, MA; Leslie-Pelecky, DL Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. 2008, 5(2), 316-327.
[49]
Kumar, A; Jena, PK; Behera, S; Lockey, RF; Mohapatra, S Mohapatra, SJNN Biology, Medicine: Multifunctional magnetic nanoparticles for targeted delivery. 2010, 6(1), 64-69.
[50]
Dutz SJIToM. Are magnetic multicore nanoparticles promising candidates for biomedical applications? 2016, 52(9), 1-3.
[51]
Han, K-H Paramagnetic capture mode magnetophoretic microseparator for high efficiency blood cell separations. 2006, 6(2), 265-273.
[52]
Uskoković, V; Tang, S; Wu, VMJN Targeted magnetic separation of biomolecules and cells using earthicle-based ferrofluids. 2019, 11(23), 11236-11253.
[http://dx.doi.org/10.1039/C9NR01579E]
[53]
Fraga-García, P; Kubbutat, P; Brammen, M; Schwaminger, S; Berensmeier, SJN Bare iron oxide nanoparticles for magnetic harvesting of microalgae: From interaction behavior to process realization. 2018, 8(5), 292.
[http://dx.doi.org/10.3390/nano8050292]
[54]
Huy, T.Q.; Van Chung, P.; Thuy, N.T.; Blanco-Andujar, C.; Thanh, N.T.K. Protein A-conjugated iron oxide nanoparticles for separation of Vibrio cholerae from water samples. Faraday Discuss., 2014, 175, 73-82.
[http://dx.doi.org/10.1039/C4FD00152D] [PMID: 25421572]
[55]
Tallury, P.; Malhotra, A.; Byrne, L.M.; Santra, S. Nanobioimaging and sensing of infectious diseases. Adv. Drug Deliv. Rev., 2010, 62(4-5), 424-437.
[http://dx.doi.org/10.1016/j.addr.2009.11.014] [PMID: 19931579]
[56]
Xu, H.; Aguilar, Z.P.; Yang, L.; Kuang, M.; Duan, H.; Xiong, Y.; Wei, H.; Wang, A. Antibody conjugated magnetic iron oxide nanoparticles for cancer cell separation in fresh whole blood. Biomaterials, 2011, 32(36), 9758-9765.
[http://dx.doi.org/10.1016/j.biomaterials.2011.08.076] [PMID: 21920599]
[57]
Lee, K; Lee, SY; Na, J-G; Jeon, SG; Praveenkumar, R; Kim, D-M Chang, W-S Magnetophoretic harvesting of oleaginous Chlorella sp. by using biocompatible chitosan/magnetic nanoparticle composites. 2013, 149, 575-578.
[58]
Gu, H.; Xu, K.; Xu, C.; Xu, B. Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chem. Commun. (Camb.), 2006, (9), 941-949.
[http://dx.doi.org/10.1039/b514130c] [PMID: 16491171]
[59]
Cudjoe, K.S.; Hagtvedt, T.; Dainty, R. Immunomagnetic separation of Salmonella from foods and their detection using immunomagnetic particle (IMP)-ELISA. Int. J. Food Microbiol., 1995, 27(1), 11-25.
[http://dx.doi.org/10.1016/0168-1605(94)00134-R] [PMID: 8527325]
[60]
Füchslin, H.P.; Kötzsch, S.; Keserue, H.A.; Egli, T. Rapid and quantitative detection of Legionella pneumophila applying immunomagnetic separation and flow cytometry. Cytometry A, 2010, 77(3), 264-274.
[PMID: 20099248]
[61]
Dyas, K Immunomagnetic Separation (IMS) for the detection of Legionella. Water Management Society,
[62]
Skjerve, E.; Rørvik, L.M.; Olsvik, O. Detection of Listeria monocytogenes in foods by immunomagnetic separation. Appl. Environ. Microbiol., 1990, 56(11), 3478-3481.
[http://dx.doi.org/10.1128/aem.56.11.3478-3481.1990] [PMID: 2125186]
[63]
Fluit, A.C.; Torensma, R.; Visser, M.J.; Aarsman, C.J.; Poppelier, M.J.; Keller, B.H.; Klapwijk, P.; Verhoef, J. Detection of Listeria monocytogenes in cheese with the magnetic immuno-polymerase chain reaction assay. Appl. Environ. Microbiol., 1993, 59(5), 1289-1293.
[http://dx.doi.org/10.1128/aem.59.5.1289-1293.1993] [PMID: 8517730]
[64]
Wright, D.J.; Chapman, P.A.; Siddons, C.A. Immunomagnetic separation as a sensitive method for isolating Escherichia coli O157 from food samples. Epidemiol. Infect., 1994, 113(1), 31-39.
[http://dx.doi.org/10.1017/S0950268800051438] [PMID: 8062877]
[65]
Grif, K.; Dierich, M.P.; Allerberger, F. Dynabeads plus 3 M Petrifilm HEC versus Vitek Immunodiagnostic Assay System for detection of E. coli O157 in minced meat. Lett. Appl. Microbiol., 1998, 26(3), 199-204.
[http://dx.doi.org/10.1046/j.1472-765X.1998.00318.x] [PMID: 9569709]
[66]
Sithivong, N.; Morita-Ishihara, T.; Vongdouangchanh, A.; Phouthavane, T.; Chomlasak, K.; Sisavath, L.; Khamphaphongphane, B.; Sengkeopraseuth, B.; Vongprachanh, P.; Keosavanh, O.; Southalack, K.; Jiyoung, L.; Tsuyuoka, R.; Ohnishi, M.; Izumiya, H. Molecular subtyping in cholera outbreak, Laos, 2010. Emerg. Infect. Dis., 2011, 17(11), 2060-2062.
[http://dx.doi.org/10.3201/eid1711.110280] [PMID: 22099098]
[67]
Czajka, J.; Batt, C.A. A solid phase fluorescent capillary immunoassay for the detection of Escherichia coli O157:H7 in ground beef and apple cider. J. Appl. Bacteriol., 1996, 81(6), 601-607.
[http://dx.doi.org/10.1111/j.1365-2672.1996.tb03553.x] [PMID: 8972087]
[68]
Wang, D.; Xu, X.; Deng, X.; Chen, C.; Li, B.; Tan, H.; Wang, H.; Tang, S.; Qiu, H.; Chen, J.; Ke, B.; Ke, C.; Kan, B. Detection of Vibrio cholerae O1 and O139 in environmental water samples by an immunofluorescent-aggregation assay. Appl. Environ. Microbiol., 2010, 76(16), 5520-5525.
[http://dx.doi.org/10.1128/AEM.02559-09] [PMID: 20581193]
[69]
Thanh, BT; Van Sau, N; Ju, H; Bashir, MJ; Jun, HK; Phan, TB; Ngo, QM; Tran, NQ; Hai, TH Immobilization of protein a on monodisperse magnetic nanoparticles for biomedical applications. 2019.
[70]
Bromberg, L.; Raduyk, S.; Hatton, T.A. Functional magnetic nanoparticles for biodefense and biological threat monitoring and surveillance. Anal. Chem., 2009, 81(14), 5637-5645.
[http://dx.doi.org/10.1021/ac9003437] [PMID: 19522527]
[71]
Wang, X.; Shi, Y.; Graff, R.W.; Lee, D.; Gao, H. Developing recyclable pH-responsive magnetic nanoparticles for oil–water separation. Polymer (Guildf.), 2015, 72, 361-367.
[http://dx.doi.org/10.1016/j.polymer.2014.12.056]
[72]
Kang, K.; Choi, J.; Nam, J.H.; Lee, S.C.; Kim, K.J.; Lee, S-W.; Chang, J.H. Preparation and characterization of chemically functionalized silica-coated magnetic nanoparticles as a DNA separator. J. Phys. Chem. B, 2009, 113(2), 536-543.
[http://dx.doi.org/10.1021/jp807081b] [PMID: 19099431]
[73]
Tsai, H.; Chang, C.; Li, Y.; Chu, W.; Viswanathan, K.; Fuh, C.B. Detection of carcinoembryonic antigen using functional magnetic and fluorescent nanoparticles in magnetic separators. J. Nanopart. Res., 2011, 13(6), 2461-2467.
[http://dx.doi.org/10.1007/s11051-010-0138-5]
[74]
Shen, H.; Chen, W.; Li, J.; Li, X.; Yang, H. Biofunctional magnetic nanoparticles as a general agent to immobilize proteins contained in traditional Chinese medicines. Mikrochim. Acta, 2007, 157(1-2), 49-54.
[http://dx.doi.org/10.1007/s00604-006-0648-0]
[75]
Health criteria and other supporting information: Addendum; Organization, W.H. Guidelines for drinking-water quality; World Health Organization: Geneva, 1998, p. 2.
[76]
Rao, T.P.; Metilda, P.; Gladis, J.M. Preconcentration techniques for uranium(VI) and thorium(IV) prior to analytical determination-an overview. Talanta, 2006, 68(4), 1047-1064.
[http://dx.doi.org/10.1016/j.talanta.2005.07.021] [PMID: 18970431]
[77]
Sadeghi, S.; Azhdari, H.; Arabi, H.; Moghaddam, A.Z. Surface modified magnetic Fe3O4 nanoparticles as a selective sorbent for solid phase extraction of uranyl ions from water samples. J. Hazard. Mater., 2012, 215-216, 208-216.
[http://dx.doi.org/10.1016/j.jhazmat.2012.02.054] [PMID: 22444035]
[78]
Lobato, NCC; de Mello Ferreira, A; Weidler, PG; Franzreb, M; Mansur, MBJS Technology, P Technology P: Improvement of magnetic solvent extraction using functionalized silica-coated Fe3O4 nanoparticles. 2019, 229, 115839.
[http://dx.doi.org/10.1016/j.seppur.2019.115839]
[79]
Hu, A.; Yee, G.T.; Lin, W. Magnetically recoverable chiral catalysts immobilized on magnetite nanoparticles for asymmetric hydrogenation of aromatic ketones. J. Am. Chem. Soc., 2005, 127(36), 12486-12487.
[http://dx.doi.org/10.1021/ja053881o] [PMID: 16144385]
[80]
Ghosh, S.; Badruddoza, A.Z.; Uddin, M.S.; Hidajat, K. Adsorption of chiral aromatic amino acids onto carboxymethyl-β-cyclodextrin bonded Fe(3)O(4)/SiO(2) core-shell nanoparticles. J. Colloid Interface Sci., 2011, 354(2), 483-492.
[http://dx.doi.org/10.1016/j.jcis.2010.11.060] [PMID: 21167497]
[81]
Choi, H.J.; Hyun, M.H. Separation of enantiomers with magnetic silica nanoparticles modified by a chiral selector: Enantioselective fishing. Chem. Commun. (Camb.), 2009, (42), 6454-6456.
[http://dx.doi.org/10.1039/b908349a] [PMID: 19841807]
[82]
Chang, C; Wang, X; Bai, Y Applications of nanomaterials in enantioseparation and related techniques. 2012, 39, 195-206.
[83]
Chen, X.; Rao, J.; Wang, J.; Gooding, J.J.; Zou, G.; Zhang, Q. A facile enantioseparation for amino acids enantiomers using β-cyclodextrins functionalized Fe3O4 nanospheres. Chem. Commun. (Camb.), 2011, 47(37), 10317-10319.
[http://dx.doi.org/10.1039/c1cc13734d] [PMID: 21850300]
[84]
Faraji, M. Recent analytical applications of magnetic nanoparticles. Nanochemistry Research, 2016, 1(2), 264-290.
[85]
Kheshti, Z.; Ghajar, K.A.; Moreno-Atanasio, R.; Neville, F.; Ghasemi, S. Investigating the high gradient magnetic separator function for highly efficient adsorption of lead salt onto magnetic mesoporous silica microspheres and adsorbent recycling. Chemical Engineering and Processing-Process Intensification, 2020, 148, 107770.
[http://dx.doi.org/10.1016/j.cep.2019.107770]
[86]
Yee, N.; Benning, L.G.; Phoenix, V.R.; Ferris, F.G. Characterization of metal-cyanobacteria sorption reactions: A combined macroscopic and infrared spectroscopic investigation. Environ. Sci. Technol., 2004, 38(3), 775-782.
[http://dx.doi.org/10.1021/es0346680] [PMID: 14968864]
[87]
Wang, Y.; Wu, D.; Wei, Q.; Wei, D.; Yan, T.; Yan, L.; Hu, L.; Du, B. Rapid removal of Pb(II) from aqueous solution using branched polyethylenimine enhanced magnetic carboxymethyl chitosan optimized with response surface methodology. Sci. Rep., 2017, 7(1), 10264.
[http://dx.doi.org/10.1038/s41598-017-09700-5] [PMID: 28860492]
[88]
Hu, D.; Lian, Z.; Xian, H.; Jiang, R.; Wang, N.; Weng, Y.; Peng, X.; Wang, S.; Ouyang, X.K. Adsorption of Pb (II) from aqueous solution by polyacrylic acid grafted magnetic chitosan nanocomposite. Int. J. Biol. Macromol., 2020, 15, 1537-1547.
[PMID: 31730966]
[89]
Lu, Z.; Tan, R.; Chu, W.; Tang, S.; Xu, W.; Song, W. Synthesis of SrHPO4/Fe3O4 magnetic nanocomposite and its application on Pb2+ removal from aqueous solutions. Microchem. J., 2018, 142, 152-158.
[http://dx.doi.org/10.1016/j.microc.2018.06.030]
[90]
Wang, Y.; Hu, L.; Zhang, G.; Yan, T.; Yan, L.; Wei, Q.; Du, B. Removal of Pb(II) and methylene blue from aqueous solution by magnetic hydroxyapatite-immobilized oxidized multi-walled carbon nanotubes. J. Colloid Interface Sci., 2017, 494, 380-388.
[http://dx.doi.org/10.1016/j.jcis.2017.01.105] [PMID: 28167426]
[91]
Hasanzadeh, R.; Moghadam, P.N.; Bahri-Laleh, N.; Sillanpää, M. Effective removal of toxic metal ions from aqueous solutions: 2-Bifunctional magnetic nanocomposite base on novel reactive PGMA-MAn copolymer@Fe3O4 nanoparticles. J. Colloid Interface Sci., 2017, 490, 727-746.
[http://dx.doi.org/10.1016/j.jcis.2016.11.098] [PMID: 27978456]
[92]
Martínez-Cabanas, M.; López-García, M.; Barriada, J.L.; Herrero, R.; de Vicente, M.E.S. Green synthesis of iron oxide nanoparticles. Development of magnetic hybrid materials for efficient As (V) removal. Chem. Eng. J., 2016, 301, 83-91.
[http://dx.doi.org/10.1016/j.cej.2016.04.149]
[93]
Feng, Y.; Gong, J-L.; Zeng, G-M.; Niu, Q-Y.; Zhang, H-Y.; Niu, C-G.; Deng, J-H.; Yan, M. Adsorption of Cd (II) and Zn (II) from aqueous solutions using magnetic hydroxyapatite nanoparticles as adsorbents. Chem. Eng. J., 2010, 162(2), 487-494.
[http://dx.doi.org/10.1016/j.cej.2010.05.049]
[94]
Madrakian, T.; Afkhami, A.; Zadpour, B.; Ahmadi, M. New synthetic mercaptoethylamino homopolymer-modified maghemite nanoparticles for effective removal of some heavy metal ions from aqueous solution. J. Ind. Eng. Chem., 2015, 21, 1160-1166.
[http://dx.doi.org/10.1016/j.jiec.2014.05.029]
[95]
Huang, S-H.; Chen, D-H. Rapid removal of heavy metal cations and anions from aqueous solutions by an amino-functionalized magnetic nano-adsorbent. J. Hazard. Mater., 2009, 163(1), 174-179.
[http://dx.doi.org/10.1016/j.jhazmat.2008.06.075] [PMID: 18657903]
[96]
Verma, M.; Tyagi, I.; Chandra, R.; Gupta, V.K. Adsorptive removal of Pb (II) ions from aqueous solution using CuO nanoparticles synthesized by sputtering method. J. Mol. Liq., 2017, 225, 936-944.
[http://dx.doi.org/10.1016/j.molliq.2016.04.045]
[97]
Verma, R.; Asthana, A.; Singh, A.K.; Prasad, S.; Susan, M.A.B.H. Novel glycine-functionalized magnetic nanoparticles entrapped calcium alginate beads for effective removal of lead. Microchem. J., 2017, 130, 168-178.
[http://dx.doi.org/10.1016/j.microc.2016.08.006]
[98]
Xu, P.; Zeng, G.M.; Huang, D.L.; Lai, C.; Zhao, M.H.; Wei, Z.; Li, N.J.; Huang, C.; Xie, G.X. Adsorption of Pb (II) by iron oxide nanoparticles immobilized Phanerochaete chrysosporium: Equilibrium, kinetic, thermodynamic and mechanisms analysis. Chem. Eng. J., 2012, 203, 423-431.
[http://dx.doi.org/10.1016/j.cej.2012.07.048]
[99]
Fan, H.; Ma, X.; Zhou, S.; Huang, J.; Liu, Y.; Liu, Y. Highly efficient removal of heavy metal ions by carboxymethyl cellulose-immobilized Fe3O4 nanoparticles prepared via high-gravity technology. Carbohydr. Polym., 2019, 213, 39-49.
[http://dx.doi.org/10.1016/j.carbpol.2019.02.067] [PMID: 30879683]
[100]
Abdolmaleki, A.; Mallakpour, S.; Borandeh, S. Efficient heavy metal ion removal by triazinyl-β-cyclodextrin functionalized iron nanoparticles. RSC Advances, 2015, 5(110), 90602-90608.
[http://dx.doi.org/10.1039/C5RA15134A]
[101]
Ge, F.; Li, M-M.; Ye, H.; Zhao, B-X. Effective removal of heavy metal ions Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by polymer-modified magnetic nanoparticles. J. Hazard. Mater., 2012, 211-212, 366-372.
[http://dx.doi.org/10.1016/j.jhazmat.2011.12.013] [PMID: 22209322]
[102]
Tan, Y.; Chen, M.; Hao, Y. High efficient removal of Pb (II) by amino-functionalized Fe3O4 magnetic nano-particles. Chem. Eng. J., 2012, 191, 104-111.
[http://dx.doi.org/10.1016/j.cej.2012.02.075]
[103]
Gao, J.; He, Y.; Zhao, X.; Ran, X.; Wu, Y.; Su, Y.; Dai, J. Single step synthesis of amine-functionalized mesoporous magnetite nanoparticles and their application for copper ions removal from aqueous solution. J. Colloid Interface Sci., 2016, 481, 220-228.
[http://dx.doi.org/10.1016/j.jcis.2016.07.057] [PMID: 27475709]
[104]
Shen, H.; Chen, J.; Dai, H.; Wang, L.; Hu, M.; Xia, Q. New insights into the sorption and detoxification of chromium (VI) by tetraethylenepentamine functionalized nanosized magnetic polymer adsorbents: Mechanism and pH effect. Ind. Eng. Chem. Res., 2013, 52(36), 12723-12732.
[http://dx.doi.org/10.1021/ie4010805]
[105]
Shen, H.; Pan, S.; Zhang, Y.; Huang, X.; Gong, H. A new insight on the adsorption mechanism of amino-functionalized nano-Fe3O4 magnetic polymers in Cu (II), Cr (VI) co-existing water system. Chem. Eng. J., 2012, 183, 180-191.
[http://dx.doi.org/10.1016/j.cej.2011.12.055]
[106]
Liu, J-F.; Zhao, Z-S.; Jiang, G-B. Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environ. Sci. Technol., 2008, 42(18), 6949-6954.
[http://dx.doi.org/10.1021/es800924c] [PMID: 18853814]
[107]
Kakavandi, B.; Kalantary, R.R.; Jafari, A.J.; Nasseri, S.; Ameri, A.; Esrafili, A.; Azari, A. Pb (II) adsorption onto a magnetic composite of activated carbon and superparamagnetic Fe3O4 nanoparticles: Experimental and modeling study. CLEAN–Soil, Air, Water, 2015, 43(8), 1157-1166.
[108]
Clarke, C.; Davies, S. Immunomagnetic cell separation.Metastasis research protocols; Springer, 2001, pp. 17-23.
[http://dx.doi.org/10.1385/1-59259-137-X:017]
[109]
Fu, J.; Mao, P.; Han, J. Artificial molecular sieves and filters: A new paradigm for biomolecule separation. Trends Biotechnol., 2008, 26(6), 311-320.
[http://dx.doi.org/10.1016/j.tibtech.2008.02.009] [PMID: 18430480]
[110]
Liu, J.; Liu, F.; Gao, K.; Wu, J.; Xue, D. Recent developments in the chemical synthesis of inorganic porous capsules. J. Mater. Chem., 2009, 19(34), 6073-6084.
[http://dx.doi.org/10.1039/b900116f]
[111]
Liu, J.; Xia, H.; Xue, D.; Lu, L. Double-shelled nanocapsules of V2O5-based composites as high-performance anode and cathode materials for Li ion batteries. J. Am. Chem. Soc., 2009, 131(34), 12086-12087.
[http://dx.doi.org/10.1021/ja9053256] [PMID: 19705911]
[112]
Sun, N; Wu, H Shen, XJMA Magnetic titanium dioxide nanomaterial modified with hydrophilic dicarboxylic ligand for effective enrichment and separation of phosphopeptides and glycopeptides. 2020, 187(3), 1-8.
[http://dx.doi.org/10.1007/s00604-020-4161-7]
[113]
Reza, R.; Pérez, C.M.; González, C.R.; Romero, H.; Casillas, P.G. Effect of the polymeric coating over Fe3O4 particles used for magnetic separation. Open Chem., 2010, 8(5), 1041-1046.
[http://dx.doi.org/10.2478/s11532-010-0073-4]
[114]
Leong, SS; Ahmad, Z; Low, SC; Camacho, J; Faraudo, J Lim, JJL Unified View of Magnetic Nanoparticle Separation under Magnetophoresis. 2020, 36(28), 8033-8055.
[http://dx.doi.org/10.1021/acs.langmuir.0c00839]
[115]
Jain, K.K. Potential of Nanobiotechnology in the Management of Glioblastoma Multiforme.Glioblastoma; Springer, 2010, pp. 399-419.
[http://dx.doi.org/10.1007/978-1-4419-0410-2_19]
[116]
Westmeyer, G.G.; Durocher, Y.; Jasanoff, A. A secreted enzyme reporter system for MRI. Angew. Chem. Int. Ed. Engl., 2010, 49(23), 3909-3911.
[http://dx.doi.org/10.1002/anie.200906712] [PMID: 20414908]
[117]
Fahmy, SA; Alawak, M; Brüßler, J Bakowsky, U Nanoenabled bioseparations: Current developments and future prospects. 2019.
[118]
Xu, C.; Xu, K.; Gu, H.; Zhong, X.; Guo, Z.; Zheng, R.; Zhang, X.; Xu, B. Nitrilotriacetic acid-modified magnetic nanoparticles as a general agent to bind histidine-tagged proteins. J. Am. Chem. Soc., 2004, 126(11), 3392-3393.
[http://dx.doi.org/10.1021/ja031776d] [PMID: 15025444]
[119]
Lee, K.B.; Park, S.; Mirkin, C.A. Multicomponent magnetic nanorods for biomolecular separations. Angew. Chem. Int. Ed. Engl., 2004, 43(23), 3048-3050.
[http://dx.doi.org/10.1002/anie.200454088] [PMID: 15188476]
[120]
Park, J.; Kang, E.; Son, S.U.; Park, H.M.; Lee, M.K.; Kim, J.; Kim, K.W.; Noh, H.J.; Park, J.H.; Bae, C.J. Monodisperse nanoparticles of Ni and NiO: Synthesis, characterization, self-assembled superlattices, and catalytic applications in the Suzuki coupling reaction. Adv. Mater., 2005, 17(4), 429-434.
[http://dx.doi.org/10.1002/adma.200400611]
[121]
Bucak, S.; Jones, D.A.; Laibinis, P.E.; Hatton, T.A. Protein separations using colloidal magnetic nanoparticles. Biotechnol. Prog., 2003, 19(2), 477-484.
[http://dx.doi.org/10.1021/bp0200853] [PMID: 12675590]
[122]
Gu, H.; Ho, P-L.; Tsang, K.W.; Wang, L.; Xu, B. Using biofunctional magnetic nanoparticles to capture vancomycin-resistant enterococci and other gram-positive bacteria at ultralow concentration. J. Am. Chem. Soc., 2003, 125(51), 15702-15703.
[http://dx.doi.org/10.1021/ja0359310] [PMID: 14677934]
[123]
Wang, J.; Polsky, R.; Merkoci, A.; Turner, K.L. Electroactive beads for ultrasensitive DNA detection. Langmuir, 2003, 19(4), 989-991.
[http://dx.doi.org/10.1021/la026697e]
[124]
Oster, J.; Parker, J. à Brassard, L. Polyvinyl-alcohol-based magnetic beads for rapid and efficient separation of specific or unspecific nucleic acid sequences. J. Magn. Magn. Mater., 2001, 225(1-2), 145-150.
[http://dx.doi.org/10.1016/S0304-8853(00)01243-9]
[125]
Lu, A.H.; Salabas, E.L.; Schüth, F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. Engl., 2007, 46(8), 1222-1244.
[http://dx.doi.org/10.1002/anie.200602866] [PMID: 17278160]
[126]
Lee, S.Y.; Lee, J.; Chang, J.H.; Lee, J.H. Inorganic nanomaterial-based biocatalysts. BMB Rep., 2011, 44(2), 77-86.
[http://dx.doi.org/10.5483/BMBRep.2011.44.2.77] [PMID: 21345305]
[127]
Chang, J.H.; Lee, J.; Jeong, Y.; Hyung Lee, J.; Kim, I.J.; Park, S.E. Hydrophobic partitioning approach to efficient protein separation with magnetic nanoparticles. Anal. Biochem., 2010, 405(1), 135-137.
[http://dx.doi.org/10.1016/j.ab.2010.05.027] [PMID: 20522328]
[128]
Lee, D-H.; Kim, S-G.; Kweon, D-H.; Seo, J-H. Folding machineries displayed on a cation-exchanger for the concerted refolding of cysteine- or proline-rich proteins. BMC Biotechnol., 2009, 9(1), 27.
[http://dx.doi.org/10.1186/1472-6750-9-27] [PMID: 19323835]
[129]
de Graaf, A.J.; Kooijman, M.; Hennink, W.E.; Mastrobattista, E. Nonnatural amino acids for site-specific protein conjugation. Bioconjug. Chem., 2009, 20(7), 1281-1295.
[http://dx.doi.org/10.1021/bc800294a] [PMID: 19191567]
[130]
Bruce, I.J.; Taylor, J.; Todd, M.; Davies, M.J.; Borioni, E.; Sangregorio, C.; Sen, T. Synthesis, characterisation and application of silica-magnetite nanocomposites. J. Magn. Magn. Mater., 2004, 284, 145-160.
[http://dx.doi.org/10.1016/j.jmmm.2004.06.032]
[131]
Dou, P.; Liang, L.; He, J.; Liu, Z.; Chen, H-Y. Boronate functionalized magnetic nanoparticles and off-line hyphenation with capillary electrophoresis for specific extraction and analysis of biomolecules containing cis-diols. J. Chromatogr. A, 2009, 1216(44), 7558-7563.
[http://dx.doi.org/10.1016/j.chroma.2009.04.040] [PMID: 19419720]
[132]
Hsu, C-C.; Whang, C-W. Microscale solid phase extraction of glyphosate and aminomethylphosphonic acid in water and guava fruit extract using alumina-coated iron oxide nanoparticles followed by capillary electrophoresis and electrochemiluminescence detection. J. Chromatogr. A, 2009, 1216(49), 8575-8580.
[http://dx.doi.org/10.1016/j.chroma.2009.10.023] [PMID: 19853856]
[133]
Tseng, S-H.; Lo, Y-W.; Chang, P-C.; Chou, S-S.; Chang, H-M. Simultaneous quantification of glyphosate, glufosinate, and their major metabolites in rice and soybean sprouts by gas chromatography with pulsed flame photometric detector. J. Agric. Food Chem., 2004, 52(13), 4057-4063.
[http://dx.doi.org/10.1021/jf049973z] [PMID: 15212448]
[134]
Stalikas, C.D.; Konidari, C.N. Analytical methods to determine phosphonic and amino acid group-containing pesticides. J. Chromatogr. A, 2001, 907(1-2), 1-19.
[http://dx.doi.org/10.1016/S0021-9673(00)01009-8] [PMID: 11217016]
[135]
Coletti-Previero, M-A.; Previero, A. Alumina-phosphate complexes for immobilization of biomolecules. Anal. Biochem., 1989, 180(1), 1-10.
[http://dx.doi.org/10.1016/0003-2697(89)90080-8] [PMID: 2683856]
[136]
Sun, L.; Zhang, C.; Chen, L.; Liu, J.; Jin, H.; Xu, H.; Ding, L. Preparation of alumina-coated magnetite nanoparticle for extraction of trimethoprim from environmental water samples based on mixed hemimicelles solid-phase extraction. Anal. Chim. Acta, 2009, 638(2), 162-168.
[http://dx.doi.org/10.1016/j.aca.2009.02.039] [PMID: 19327455]
[137]
Hoelzer, D.; Gökbuget, N.; Ottmann, O.; Pui, C-H.; Relling, M.V.; Appelbaum, F.R.; van Dongen, J.J. Szczepański, T. Acute lymphoblastic leukemia. Hematology (Am. Soc. Hematol. Educ. Program), 2002, 2002(1), 162-192.
[http://dx.doi.org/10.1182/asheducation-2002.1.162] [PMID: 12446423]
[138]
Ren, J.; Zhang, Z.; Wang, F.; Yang, Y.; Liu, Y.; Wei, G.; Yang, A.; Zhang, R.; Huan, Y.; Cui, Y.; Larson, A.C. MRI of prostate stem cell antigen expression in prostate tumors. Nanomedicine (Lond.), 2012, 7(5), 691-703.
[http://dx.doi.org/10.2217/nnm.11.147] [PMID: 22630152]
[139]
Haghighi, AH; Khorasani, MT; Faghih, Z; Farjadian, FJH Effects of different quantities of antibody conjugated with magnetic nanoparticles on cell separation efficiency. 2020, 6(4), e03677.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03677]
[140]
Shahbazi-Gahrouei, D.; Abdolahi, M.; Zarkesh-Esfahani, S.H.; Laurent, S.; Sermeus, C.; Gruettner, C. Functionalized magnetic nanoparticles for the detection and quantitative analysis of cell surface antigen. Biomed research international, 2013.
[http://dx.doi.org/10.1155/2013/349408]
[141]
Azeloglu, E.U.; Iyengar, R. Signaling networks: Information flow, computation, and decision making. Cold Spring Harb. Perspect. Biol., 2015, 7(4), a005934.
[http://dx.doi.org/10.1101/cshperspect.a005934] [PMID: 25833842]
[142]
Jain, K.K. Biomarkers of Pulmonary Diseases. The Handbook of Biomarkers; Springer, 2017, pp. 673-688.
[http://dx.doi.org/10.1007/978-1-4939-7431-3_16]
[143]
Chiu, H-Y.; Lin, Z-Y.; Tu, H-L.; Whang, C-W. Analysis of glyphosate and aminomethylphosphonic acid by capillary electrophoresis with electrochemiluminescence detection. J. Chromatogr. A, 2008, 1177(1), 195-198.
[http://dx.doi.org/10.1016/j.chroma.2007.11.042] [PMID: 18061199]
[144]
Ranzoni, A.; Sabatte, G.; van Ijzendoorn, L.J.; Prins, M.W. One-step homogeneous magnetic nanoparticle immunoassay for biomarker detection directly in blood plasma. ACS Nano, 2012, 6(4), 3134-3141.
[http://dx.doi.org/10.1021/nn204913f] [PMID: 22414272]
[145]
Long, C.M.; van Laarhoven, H.W.; Bulte, J.W.; Levitsky, H.I. Magnetovaccination as a novel method to assess and quantify dendritic cell tumor antigen capture and delivery to lymph nodes. Cancer Res., 2009, 69(7), 3180-3187.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-3691] [PMID: 19276358]
[146]
Towner, R.A.; Smith, N.; Doblas, S.; Tesiram, Y.; Garteiser, P.; Saunders, D.; Cranford, R.; Silasi-Mansat, R.; Herlea, O.; Ivanciu, L.; Wu, D.; Lupu, F. In vivo detection of c-Met expression in a rat C6 glioma model. J. Cell. Mol. Med., 2008, 12(1), 174-186.
[http://dx.doi.org/10.1111/j.1582-4934.2008.00220.x] [PMID: 18194445]
[147]
Yang, G; Huang, M; Wang, Y; Chen, G; Zhao, Y Xu, HJMA Streptavidin-exposed magnetic nanoparticles for lectin magnetic separation (LMS) of Staphylococcus aureus prior to three quantification strategies. 2019, 186(12), 813.
[148]
Miltenyi, S.; Müller, W.; Weichel, W.; Radbruch, A. High gradient magnetic cell separation with MACS. Cytometry, 1990, 11(2), 231-238.
[http://dx.doi.org/10.1002/cyto.990110203] [PMID: 1690625]
[149]
Manyonda, I.T.; Soltys, A.J.; Hay, F.C. A critical evaluation of the magnetic cell sorter and its use in the positive and negative selection of CD45RO+ cells. J. Immunol. Methods, 1992, 149(1), 1-10.
[http://dx.doi.org/10.1016/S0022-1759(12)80042-1] [PMID: 1533866]
[150]
Harris, R.A.; Eichholtz, T.J.; Hiles, I.D.; Page, M.J.; O’Hare, M.J. New model of ErbB-2 over-expression in human mammary luminal epithelial cells. Int. J. Cancer, 1999, 80(3), 477-484.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19990129)80:3<477:AID-IJC23>3.0.CO;2-W] [PMID: 9935193]
[151]
Elsässer-Beile, U.; Bühler, P.; Wolf, P. Targeted therapies for prostate cancer against the prostate specific membrane antigen. Curr. Drug Targets, 2009, 10(2), 118-125.
[http://dx.doi.org/10.2174/138945009787354601] [PMID: 19199907]
[152]
Haghighi, A.H.; Faghih, Z.; Khorasani, M.T. Antibody-conjugated paramagnetic nanobeads: Kinetics of bead-cell binding. Int. J. Mol. Sci., 2019, 15(5), 8821-8834.
[153]
Waseem, S.; Allen, M.A.; Schreier, S.; Udomsangpetch, R.; Bhakdi, S.C. Antibody-conjugated paramagnetic nanobeads: Kinetics of bead-cell binding. Int. J. Mol. Sci., 2014, 15(5), 8821-8834.
[http://dx.doi.org/10.3390/ijms15058821] [PMID: 24852940]
[154]
Wang, S-K.; Stiles, A.R.; Guo, C.; Liu, C-Z. Harvesting microalgae by magnetic separation: A review. Algal Res., 2015, 9, 178-185.
[http://dx.doi.org/10.1016/j.algal.2015.03.005]
[155]
Xu, L.; Guo, C.; Wang, F.; Zheng, S.; Liu, C-Z. A simple and rapid harvesting method for microalgae by in situ magnetic separation. Bioresour. Technol., 2011, 102(21), 10047-10051.
[http://dx.doi.org/10.1016/j.biortech.2011.08.021] [PMID: 21890346]
[156]
Seo, J.Y.; Lee, K.; Lee, S.Y.; Jeon, S.G.; Na, J-G.; Oh, Y-K.; Park, S.B. Effect of barium ferrite particle size on detachment efficiency in magnetophoretic harvesting of oleaginous Chlorella sp. Bioresour. Technol., 2014, 152, 562-566.
[http://dx.doi.org/10.1016/j.biortech.2013.11.064] [PMID: 24333146]
[157]
Liu, P.; Wang, T.; Yang, Z.; Hong, Y.; Xie, X.; Hou, Y. Effects of Fe3O4 nanoparticle fabrication and surface modification on Chlorella sp. harvesting efficiency. Sci. Total Environ., 2020, 704, 135286.
[http://dx.doi.org/10.1016/j.scitotenv.2019.135286] [PMID: 31791750]
[158]
Hu, Y-R.; Wang, F.; Wang, S-K.; Liu, C-Z.; Guo, C. Efficient harvesting of marine microalgae Nannochloropsis maritima using magnetic nanoparticles. Bioresour. Technol., 2013, 138, 387-390.
[http://dx.doi.org/10.1016/j.biortech.2013.04.016] [PMID: 23639490]
[159]
Toh, P.Y.; Yeap, S.P.; Kong, L.P.; Ng, B.W.; Chan, D.J.C.; Ahmad, A.L.; Lim, J.K. Magnetophoretic removal of microalgae from fishpond water: Feasibility of high gradient and low gradient magnetic separation. Chem. Eng. J., 2012, 211, 22-30.
[http://dx.doi.org/10.1016/j.cej.2012.09.051]
[160]
Amaro, H.M.; Guedes, A.C.; Malcata, F.X. Advances and perspectives in using microalgae to produce biodiesel. Appl. Energy, 2011, 88(10), 3402-3410.
[http://dx.doi.org/10.1016/j.apenergy.2010.12.014]
[161]
Lee, K.; Lee, S.Y.; Na, J-G.; Jeon, S.G.; Praveenkumar, R.; Kim, D-M.; Chang, W-S.; Oh, Y-K. Magnetophoretic harvesting of oleaginous Chlorella sp. by using biocompatible chitosan/magnetic nanoparticle composites. Bioresour. Technol., 2013, 149, 575-578.
[http://dx.doi.org/10.1016/j.biortech.2013.09.074] [PMID: 24128604]
[162]
Lee, Y-C.; Lee, K.; Hwang, Y.; Andersen, H.R.; Kim, B.; Lee, S.Y.; Choi, M-H.; Park, J-Y.; Han, Y-K.; Oh, Y-K. Aminoclay-templated nanoscale zero-valent iron (nZVI) synthesis for efficient harvesting of oleaginous microalga, Chlorella sp. KR-1. RSC Advances, 2014, 4(8), 4122-4127.
[http://dx.doi.org/10.1039/C3RA46602G]
[163]
Hu, Y-R.; Guo, C.; Wang, F.; Wang, S-K.; Pan, F.; Liu, C-Z. Improvement of microalgae harvesting by magnetic nanocomposites coated with polyethylenimine. Chem. Eng. J., 2014, 242, 341-347.
[http://dx.doi.org/10.1016/j.cej.2013.12.066]
[164]
Jangyubol, K.; Kasemwong, K.; Charoenrat, T.; Chittapun, S. Magnetic–cationic cassava starch composite for harvesting Chlorella sp. TISTR8236. Algal Res., 2018, 35, 561-568.
[http://dx.doi.org/10.1016/j.algal.2018.09.027]
[165]
Baresel, C; Schaller, V; Jonasson, C; Johansson, C; Bordes, R; Chauhan, V; Sugunan, A; Sommertune, J; Welling, SJH Functionalized magnetic particles for water treatment. 2019, 5(8), e02325.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02325]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy