Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

SAR131675 Receptor Tyrosine Kinase Inhibitor Induces Apoptosis through Bcl- 2/Bax/Cyto c Mitochondrial Pathway in Human Umbilical Vein Endothelial Cells

Author(s): Zeinab Babaei, Mojtaba Panjehpour, Hadi Parsian and Mahmoud Aghaei*

Volume 22, Issue 5, 2022

Published on: 08 July, 2021

Page: [943 - 950] Pages: 8

DOI: 10.2174/1871520621666210708102619

Price: $65

Abstract

Background: Tyrosine Kinase Inhibitors (TKIs) can be used to inhibit cancer cell proliferation by targeting the vascular endothelial growth factor receptor (VEGFR) family. SAR131675 is a highly selective receptor tyrosine kinase inhibitor to VEGFR3 that reveals the inhibitory effect on proliferation in human lymphatic endothelial cells. However, the molecular mechanisms underlying this process are generally unclear.

Objective: This study was performed to investigate the possible involvement of the Bcl-2/Bax/Cyto c apoptosis pathway in Human Umbilical Vein Endothelial Cells (HUVECs). In addition, the role of Reactive Oxygen Species (ROS) and mitochondrial membrane potential was evaluated.

Methods: The effect of SAR131675 on HUVEC cell viability was evaluated by MTT assay. The activity of SAR131675 in inducing apoptosis was carried out through the detection of Annexin V-FITC/PI signal by flow cytometry. To determine the mechanisms underlying SAR131675 induced apoptosis, the mitochondrial membrane potential, ROS generation, the activity of caspase-3, and expression of apoptosis-related proteins such as Bcl-2, Bax, and cytochrome c were evaluated in HUVECs.

Results: SAR131675 significantly inhibited cell viability and induced apoptosis in HUVECs in a dose-dependent manner. Moreover, SAR131675 induced mitochondrial dysfunction, ROS generation, Bcl-2 down-regulation, Bax upregulation, cytochrome c release, and caspase-3 activation, which displays features of mitochondria-dependent apoptosis signaling pathway.

Conclusion: Our present data demonstrated that SAR131675-induced cytotoxicity in HUVECs associated with the mitochondria apoptotic pathway. These results suggest that further studies are required to fully elucidate the role of TKIs in these cellular processes.

Keywords: Tyrosine kinase inhibitors, SAR131675, apoptosis, mitochondrial pathway, Bcl-2, Bax.

Graphical Abstract

[1]
Ghosh, S.; Marrocco, I.; Yarden, Y. Roles for receptor tyrosine kinases in tumor progression and implications for cancer treatment. Adv. Cancer Res., 2020, 147, 1-57.
[http://dx.doi.org/10.1016/bs.acr.2020.04.002] [PMID: 32593398]
[2]
Lemmon, M.A.; Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell, 2010, 141(7), 1117-1134.
[http://dx.doi.org/10.1016/j.cell.2010.06.011] [PMID: 20602996]
[3]
Salameh, A.; Galvagni, F.; Bardelli, M.; Bussolino, F.; Oliviero, S. Direct recruitment of CRK and GRB2 to VEGFR-3 induces proliferation, migration, and survival of endothelial cells through the activation of ERK, AKT, and JNK pathways. Blood, 2005, 106(10), 3423-3431.
[http://dx.doi.org/10.1182/blood-2005-04-1388] [PMID: 16076871]
[4]
Arora, A.; Scholar, E.M. Role of tyrosine kinase inhibitors in cancer therapy. J. Pharmacol. Exp. Ther., 2005, 315(3), 971-979.
[http://dx.doi.org/10.1124/jpet.105.084145] [PMID: 16002463]
[5]
Pottier, C.; Fresnais, M.; Gilon, M.; Jérusalem, G.; Longuespée, R.; Sounni, N.E. Tyrosine kinase inhibitors in cancer: Breakthrough and challenges of targeted therapy. Cancers (Basel), 2020, 12(3), 731.
[http://dx.doi.org/10.3390/cancers12030731] [PMID: 32244867]
[6]
Qin, S.; Li, A.; Yi, M.; Yu, S.; Zhang, M.; Wu, K. Recent advances on anti-angiogenesis receptor tyrosine kinase inhibitors in cancer therapy. J. Hematol. Oncol., 2019, 12(1), 27.
[http://dx.doi.org/10.1186/s13045-019-0718-5] [PMID: 30866992]
[7]
Chang, S.P.; Shen, S.C.; Lee, W.R.; Yang, L.L.; Chen, Y.C. Imatinib mesylate induction of ROS-dependent apoptosis in melanoma B16F0 cells. J. Dermatol. Sci., 2011, 62(3), 183-191.
[http://dx.doi.org/10.1016/j.jdermsci.2011.03.001] [PMID: 21482077]
[8]
Gordon, P.M.; Fisher, D.E.; Fisher, D.E. Role for the proapoptotic factor BIM in mediating imatinib-induced apoptosis in a c-KIT-dependent gastrointestinal stromal tumor cell line. J. Biol. Chem., 2010, 285(19), 14109-14114.
[http://dx.doi.org/10.1074/jbc.M109.078592] [PMID: 20231287]
[9]
Carloni, S.; Fabbri, F.; Brigliadori, G.; Ulivi, P.; Silvestrini, R.; Amadori, D.; Zoli, W. Tyrosine kinase inhibitors gefitinib, lapatinib and sorafenib induce rapid functional alterations in breast cancer cells. Curr. Cancer Drug Targets, 2010, 10(4), 422-431.
[http://dx.doi.org/10.2174/156800910791208580] [PMID: 20384581]
[10]
Shen, G.; Zheng, F.; Ren, D.; Du, F.; Dong, Q.; Wang, Z.; Zhao, F.; Ahmad, R.; Zhao, J. Anlotinib: A novel multi-targeting tyrosine kinase inhibitor in clinical development. J. Hematol. Oncol., 2018, 11(1), 120.
[http://dx.doi.org/10.1186/s13045-018-0664-7] [PMID: 30231931]
[11]
Wilhelm, S.M.; Carter, C.; Tang, L.; Wilkie, D.; McNabola, A.; Rong, H.; Chen, C.; Zhang, X.; Vincent, P.; McHugh, M.; Cao, Y.; Shujath, J.; Gawlak, S.; Eveleigh, D.; Rowley, B.; Liu, L.; Adnane, L.; Lynch, M.; Auclair, D.; Taylor, I.; Gedrich, R.; Voznesensky, A.; Riedl, B.; Post, L.E.; Bollag, G.; Trail, P.A. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res., 2004, 64(19), 7099-7109.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-1443] [PMID: 15466206]
[12]
Motzer, R.J.; Michaelson, M.D.; Redman, B.G.; Hudes, G.R.; Wilding, G.; Figlin, R.A.; Ginsberg, M.S.; Kim, S.T.; Baum, C.M.; DePrimo, S.E.; Li, J.Z.; Bello, C.L.; Theuer, C.P.; George, D.J.; Rini, B.I. Activity of SU11248, a multitargeted inhibitor of vascular endothelial growth factor receptor and platelet-derived growth factor receptor, in patients with metastatic renal cell carcinoma. J. Clin. Oncol., 2006, 24(1), 16-24.
[http://dx.doi.org/10.1200/JCO.2005.02.2574] [PMID: 16330672]
[13]
Lin, N.U.; Winer, E.P.; Wheatley, D.; Carey, L.A.; Houston, S.; Mendelson, D.; Munster, P.; Frakes, L.; Kelly, S.; Garcia, A.A.; Cleator, S.; Uttenreuther-Fischer, M.; Jones, H.; Wind, S.; Vinisko, R.; Hickish, T. A phase II study of afatinib (BIBW 2992), an irreversible ErbB family blocker, in patients with HER2-positive metastatic breast cancer progressing after trastuzumab. Breast Cancer Res. Treat., 2012, 133(3), 1057-1065.
[http://dx.doi.org/10.1007/s10549-012-2003-y] [PMID: 22418700]
[14]
Buchanan, S.G.; Hendle, J.; Lee, P.S.; Smith, C.R.; Bounaud, P.Y.; Jessen, K.A.; Tang, C.M.; Huser, N.H.; Felce, J.D.; Froning, K.J.; Peterman, M.C.; Aubol, B.E.; Gessert, S.F.; Sauder, J.M.; Schwinn, K.D.; Russell, M.; Rooney, I.A.; Adams, J.; Leon, B.C.; Do, T.H.; Blaney, J.M.; Sprengeler, P.A.; Thompson, D.A.; Smyth, L.; Pelletier, L.A.; Atwell, S.; Holme, K.; Wasserman, S.R.; Emtage, S.; Burley, S.K.; Reich, S.H. SGX523 is an exquisitely selective, ATP-competitive inhibitor of the MET receptor tyrosine kinase with antitumor activity in vivo. Mol. Cancer Ther., 2009, 8(12), 3181-3190.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0477] [PMID: 19934279]
[15]
Alam, A.; Blanc, I.; Gueguen-Dorbes, G.; Duclos, O.; Bonnin, J.; Barron, P.; Laplace, M.C.; Morin, G.; Gaujarengues, F.; Dol, F.; Hérault, J.P.; Schaeffer, P.; Savi, P.; Bono, F. SAR131675, a potent and selective VEGFR-3-TK inhibitor with antilymphangiogenic, antitumoral, and antimetastatic activities. Mol. Cancer Ther., 2012, 11(8), 1637-1649.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0866-T] [PMID: 22584122]
[16]
Azizi, R.; Fallahian, F.; Aghaei, M.; Salemi, Z. Down-regulation of ddr1 induces apoptosis and inhibits EMT through phosphorylation of Pyk2/MKK7 in DU-145 and lncap-fgc prostate cancer cell lines. Anticancer. Agents Med. Chem., 2020, 20(8), 1009-1016.
[http://dx.doi.org/10.2174/1871520620666200410075558] [PMID: 32275493]
[17]
Sun, X.; Li, J.; Li, Y.; Wang, S.; Li, Q. Apatinib, a novel tyrosine kinase inhibitor, promotes ros-dependent apoptosis and autophagy via the nrf2/ho-1 pathway in ovarian cancer cells. Oxid. Med. Cell. Longev., 2020, 2020, 3145182.
[http://dx.doi.org/10.1155/2020/3145182] [PMID: 32509141]
[18]
Sonntag, R.; Gassler, N.; Bangen, J.M.; Trautwein, C.; Liedtke, C. Pro-apoptotic sorafenib signaling in murine hepatocytes depends on malignancy and is associated with puma expression in vitro and in vivo. Cell Death Dis., 2014, 5(1), e1030.
[http://dx.doi.org/10.1038/cddis.2013.557] [PMID: 24481444]
[19]
Zhang, W.; Konopleva, M.; Ruvolo, V.R.; McQueen, T.; Evans, R.L.; Bornmann, W.G.; McCubrey, J.; Cortes, J.; Andreeff, M. Sorafenib induces apoptosis of aml cells via bim-mediated activation of the intrinsic apoptotic pathway. Leukemia, 2008, 22(4), 808-818.
[http://dx.doi.org/10.1038/sj.leu.2405098] [PMID: 18200035]
[20]
Gillissen, B.; Richter, A.; Richter, A.; Preissner, R.; Schulze-Osthoff, K.; Essmann, F.; Daniel, P.T. Bax/Bak-independent mitochondrial depolarization and reactive oxygen species induction by sorafenib overcome resistance to apoptosis in renal cell carcinoma. J. Biol. Chem., 2017, 292(16), 6478-6492.
[http://dx.doi.org/10.1074/jbc.M116.754184] [PMID: 28154184]
[21]
Paech, F.; Mingard, C.; Grünig, D.; Abegg, V.F.; Bouitbir, J.; Krähenbühl, S. Mechanisms of mitochondrial toxicity of the kinase inhibitors ponatinib, regorafenib and sorafenib in human hepatic HepG2 cells. Toxicology, 2018, 395, 34-44.
[22]
Ly, J.D.; Grubb, D.R.; Lawen, A. The mitochondrial membrane potential (ΔΨm) in apoptosis; an update. Apoptosis, 2003, 8(2), 115-128.
[http://dx.doi.org/10.1023/A:1022945107762] [PMID: 12766472]
[23]
Shan, F.; Shao, Z.; Jiang, S.; Cheng, Z. Erlotinib induces the human non-small-cell lung cancer cells apoptosis via activating ROS-dependent JNK pathways. Cancer Med., 2016, 5(11), 3166-3175.
[http://dx.doi.org/10.1002/cam4.881] [PMID: 27726288]
[24]
Yip, K.W.; Reed, J.C. Bcl-2 family proteins and cancer. Oncogene, 2008, 27(50), 6398-6406.
[http://dx.doi.org/10.1038/onc.2008.307] [PMID: 18955968]
[25]
Zhang, C.; Liu, Z.; Bunker, E.; Ramirez, A.; Lee, S.; Peng, Y.; Tan, A.C.; Eckhardt, S.G.; Chapnick, D.A.; Liu, X. Sorafenib targets the mitochondrial electron transport chain complexes and ATP synthase to activate the PINK1-Parkin pathway and modulate cellular drug response. J. Biol. Chem., 2017, 292(36), 15105-15120.
[http://dx.doi.org/10.1074/jbc.M117.783175] [PMID: 28673964]
[26]
Rodríguez-Hernández, M.A.; de la Cruz-Ojeda, P.; López-Grueso, M.J.; Navarro-Villarán, E.; Requejo-Aguilar, R.; Castejón-Vega, B.; Negrete, M.; Gallego, P.; Vega-Ochoa, Á.; Victor, V.M.; Cordero, M.D.; Del Campo, J.A.; Bárcena, J.A.; Padilla, C.A.; Muntané, J. Integrated molecular signaling involving mitochondrial dysfunction and alteration of cell metabolism induced by tyrosine kinase inhibitors in cancer. Redox Biol., 2020, 36101510
[http://dx.doi.org/10.1016/j.redox.2020.101510] [PMID: 32593127]
[27]
Rahmani, M.; Davis, E.M.; Crabtree, T.R.; Habibi, J.R.; Nguyen, T.K.; Dent, P.; Grant, S. The kinase inhibitor sorafenib induces cell death through a process involving induction of endoplasmic reticulum stress. Mol. Cell. Biol., 2007, 27(15), 5499-5513.
[http://dx.doi.org/10.1128/MCB.01080-06] [PMID: 17548474]
[28]
Redza-Dutordoir, M.; Averill-Bates, D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta, 2016, 1863(12), 2977-2992.
[http://dx.doi.org/10.1016/j.bbamcr.2016.09.012] [PMID: 27646922]
[29]
Kim, S.J.; Kim, H.S.; Seo, Y.R. Understanding of ros-inducing strategy in anticancer therapy. Oxid. Med. Cell. Longev., 2019, 20195381692
[http://dx.doi.org/10.1155/2019/5381692] [PMID: 31929855]
[30]
Fulda, S.; Galluzzi, L.; Kroemer, G. Targeting mitochondria for cancer therapy. Nat. Rev. Drug Discov., 2010, 9(6), 447-464.
[http://dx.doi.org/10.1038/nrd3137] [PMID: 20467424]
[31]
Putt, K.S.; Chen, G.W.; Pearson, J.M.; Sandhorst, J.S.; Hoagland, M.S.; Kwon, J.T.; Hwang, S.K.; Jin, H.; Churchwell, M.I.; Cho, M.H.; Doerge, D.R.; Helferich, W.G.; Hergenrother, P.J. Small-molecule activation of procaspase-3 to caspase-3 as a personalized anticancer strategy. Nat. Chem. Biol., 2006, 2(10), 543-550.
[http://dx.doi.org/10.1038/nchembio814] [PMID: 16936720]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy