Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Mini-Review Article

Affinity Tags for Protein Purification

Author(s): Vibhor Mishra*

Volume 21, Issue 8, 2020

Page: [821 - 830] Pages: 10

DOI: 10.2174/1389203721666200606220109

Price: $65

Abstract

The affinity tags are unique proteins/peptides that are attached at the N- or C-terminus of the recombinant proteins. These tags help in protein purification. Additionally, some affinity tags also serve a dual purpose as solubility enhancers for challenging protein targets. By applying a combinatorial approach, carefully chosen affinity tags designed in tandem have proven to be very successful in the purification of single proteins or multi-protein complexes. In this mini-review, the key features of the most commonly used affinity tags are discussed. The affinity tags have been classified into two significant categories, epitope tags, and protein/domain tags. The epitope tags are generally small peptides with high affinity towards a chromatography resin. The protein/domain tags often perform double duty as solubility enhancers as well as aid in affinity purification. Finally, protease-based affinity tag removal strategies after purification are discussed.

Keywords: Proteins, affinity tag, purification, chromatography, protease, solubility.

Graphical Abstract

[1]
Sambrook, J.F.E.F. Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, N.Y., 1989.
[2]
Wood, D.W. New trends and affinity tag designs for recombinant protein purification. Curr. Opin. Struct. Biol., 2014, 26, 54-61.
[http://dx.doi.org/10.1016/j.sbi.2014.04.006] [PMID: 24859434]
[3]
Terpe, K. Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl. Microbiol. Biotechnol., 2003, 60(5), 523-533.
[http://dx.doi.org/10.1007/s00253-002-1158-6] [PMID: 12536251]
[4]
Lichty, J.J.; Malecki, J.L.; Agnew, H.D.; Michelson-Horowitz, D.J.; Tan, S. Comparison of affinity tags for protein purification. Protein Expr. Purif., 2005, 41(1), 98-105.
[http://dx.doi.org/10.1016/j.pep.2005.01.019] [PMID: 15802226]
[5]
Kuo, W.H.; Chase, H.A. Exploiting the interactions between poly-histidine fusion tags and immobilized metal ions. Biotechnol. Lett., 2011, 33(6), 1075-1084.
[http://dx.doi.org/10.1007/s10529-011-0554-3] [PMID: 21318632]
[6]
Dashivets, T.; Wood, N.; Hergersberg, C.; Buchner, J.; Haslbeck, M. Rapid matrix-assisted refolding of histidine-tagged proteins. ChemBioChem, 2009, 10(5), 869-876.
[http://dx.doi.org/10.1002/cbic.200800697] [PMID: 19235820]
[7]
Hsu, M.F.; Yu, T.F.; Chou, C.C.; Fu, H.Y.; Yang, C.S.; Wang, A.H. Using Haloarcula marismortui bacteriorhodopsin as a fusion tag for enhancing and visible expression of integral membrane proteins in Escherichia coli. PLoS One, 2013, 8(2)e56363
[http://dx.doi.org/10.1371/journal.pone.0056363] [PMID: 23457558]
[8]
Periasamy, A.; Shadiac, N.; Amalraj, A.; Garajová, S.; Nagarajan, Y.; Waters, S.; Mertens, H.D.; Hrmova, M. Cell-free protein synthesis of membrane (1,3)-β-d-glucan (curdlan) synthase: co-translational insertion in liposomes and reconstitution in nanodiscs. Biochim. Biophys. Acta, 2013, 1828(2), 743-757.
[http://dx.doi.org/10.1016/j.bbamem.2012.10.003] [PMID: 23063656]
[9]
Antaloae, A.V.; Montigny, C.; le Maire, M.; Watson, K.A.; Sørensen, T.L. Optimisation of recombinant production of active human cardiac SERCA2a ATPase. PLoS One, 2013, 8(8)e71842
[http://dx.doi.org/10.1371/journal.pone.0071842] [PMID: 23951256]
[10]
Nakatani, K.; Ishikawa, H.; Aono, S.; Mizutani, Y. Heme-binding properties of heme detoxification protein from Plasmodium falciparum. Biochem. Biophys. Res. Commun., 2013, 439(4), 477-480.
[http://dx.doi.org/10.1016/j.bbrc.2013.08.100] [PMID: 24025682]
[11]
Horchani, H.; Fendri, A.; Louati, H.; Sayari, A.; Gargouri, Y.; Verger, R. Purification, biochemical and kinetic properties of recombinant Staphylococcus aureus lipase. Methods Mol. Biol., 2012, 861, 267-282.
[http://dx.doi.org/10.1007/978-1-61779-600-5_16] [PMID: 22426724]
[12]
Kimple, M. E.; Brill, A. L.; Pasker, R. L. Overview of affinity tags for protein purification. Curr. Protoc. Protein Sci, 2013.
[http://dx.doi.org/10.1002/0471140864.ps0909s73]
[13]
Esposito, D.; Chatterjee, D.K. Enhancement of soluble protein expression through the use of fusion tags. Curr. Opin. Biotechnol., 2006, 17(4), 353-358.
[http://dx.doi.org/10.1016/j.copbio.2006.06.003] [PMID: 16781139]
[14]
Einhauer, A.; Jungbauer, A. The FLAG peptide, a versatile fusion tag for the purification of recombinant proteins. J. Biochem. Biophys. Methods, 2001, 49(1-3), 455-465.
[http://dx.doi.org/10.1016/S0165-022X(01)00213-5] [PMID: 11694294]
[15]
Munro, S.; Pelham, H.R. Use of peptide tagging to detect proteins expressed from cloned genes: deletion mapping functional domains of Drosophila hsp 70. EMBO J., 1984, 3(13), 3087-3093.
[http://dx.doi.org/10.1002/j.1460-2075.1984.tb02263.x] [PMID: 6526011]
[16]
Singh, J.; Mishra, V.; Wang, F.; Huang, H.Y.; Pikaard, C.S. Reaction mechanisms of pol IV, RDR2, and DCL3 drive RNA channeling in the siRNA-directed DNA methylation pathway. Mol. Cell, 2019, 75(3), 576-589.e5.
[17]
Maroux, S.; Baratti, J.; Desnuelle, P. Purification and specificity of porcine enterokinase. J. Biol. Chem., 1971, 246(16), 5031-5039.
[PMID: 5570436]
[18]
Field, J.; Nikawa, J.; Broek, D.; MacDonald, B.; Rodgers, L.; Wilson, I.A.; Lerner, R.A.; Wigler, M. Purification of a RAS-responsive adenylyl cyclase complex from Saccharomyces cerevisiae by use of an epitope addition method. Mol. Cell. Biol., 1988, 8(5), 2159-2165.
[http://dx.doi.org/10.1128/MCB.8.5.2159] [PMID: 2455217]
[19]
McNutt, M.C.; Lagace, T.A.; Horton, J.D. Catalytic activity is not required for secreted PCSK9 to reduce low density lipoprotein receptors in HepG2 cells. J. Biol. Chem., 2007, 282(29), 20799-20803.
[http://dx.doi.org/10.1074/jbc.C700095200] [PMID: 17537735]
[20]
Blevins, T.; Podicheti, R.; Mishra, V.; Marasco, M.; Wang, J.; Rusch, D.; Tang, H.; Pikaard, C.S. Identification of Pol IV and RDR2-dependent precursors of 24 nt siRNAs guiding de novo DNA methylation in Arabidopsis. eLife, 2015, 4e09591
[http://dx.doi.org/10.7554/eLife.09591] [PMID: 26430765]
[21]
Ferrando, A.; Koncz-Kálmán, Z.; Farràs, R.; Tiburcio, A.; Schell, J.; Koncz, C. Detection of in vivo protein interactions between Snf1-related kinase subunits with intron-tagged epitope-labelling in plants cells. Nucleic Acids Res., 2001, 29(17), 3685-3693.
[http://dx.doi.org/10.1093/nar/29.17.3685] [PMID: 11522840]
[22]
Schmidt, T.G.; Skerra, A. The Strep-tag system for one-step purification and high-affinity detection or capturing of proteins. Nat. Protoc., 2007, 2(6), 1528-1535.
[http://dx.doi.org/10.1038/nprot.2007.209] [PMID: 17571060]
[23]
Skerra, A.; Schmidt, T.G. Use of the Strep-Tag and streptavidin for detection and purification of recombinant proteins. Methods Enzymol., 2000, 326, 271-304.
[http://dx.doi.org/10.1016/S0076-6879(00)26060-6] [PMID: 11036648]
[24]
Ostermeier, C.; Harrenga, A.; Ermler, U.; Michel, H. Structure at 2.7 A resolution of the Paracoccus denitrificans two-subunit cytochrome c oxidase complexed with an antibody FV fragment. Proc. Natl. Acad. Sci. USA, 1997, 94(20), 10547-10553.
[http://dx.doi.org/10.1073/pnas.94.20.10547] [PMID: 9380672]
[25]
Ayala, J.C.; Pimienta, E.; Rodríguez, C.; Anné, J.; Vallín, C.; Milanés, M.T.; King-Batsios, E.; Huygen, K.; Van Mellaert, L. Use of Strep-tag II for rapid detection and purification of Mycobacterium tuberculosis recombinant antigens secreted by Streptomyces lividans. J. Microbiol. Methods, 2013, 94(3), 192-198.
[http://dx.doi.org/10.1016/j.mimet.2013.06.004] [PMID: 23791917]
[26]
Junttila, M.R.; Saarinen, S.; Schmidt, T.; Kast, J.; Westermarck, J. Single-step Strep-tag purification for the isolation and identification of protein complexes from mammalian cells. Proteomics, 2005, 5(5), 1199-1203.
[http://dx.doi.org/10.1002/pmic.200400991] [PMID: 15761952]
[27]
Loughran, S.T.; Bree, R.T.; Walls, D. Purification of Polyhistidine-Tagged Proteins. Methods Mol. Biol., 2017, 1485, 275-303.
[http://dx.doi.org/10.1007/978-1-4939-6412-3_14] [PMID: 27730558]
[28]
Mishra, V. Structural functional and stability studies on phosphoserine aminotransferase and d phosphoglycerate dehydrogenase from entamoeba histolytica; Jawaharlal Nehru Univeristy: New Delhi, 2011.
[29]
Mishra, V. A comprehensive guide to the commercial Baculovirus Expression Vector Systems for recombinant protein production. Protein Pept. Lett., 2020, 27(6), 529-537.
[http://dx.doi.org/10.2174/0929866526666191112152646] [PMID: 31721691]
[30]
Håkansson, K.; Broder, D.; Wang, A.H.; Miller, C.G. Crystallization of peptidase T from Salmonella typhimurium. Acta Crystallogr. D Biol. Crystallogr., 2000, 56(Pt 7), 924-926.
[http://dx.doi.org/10.1107/S0907444900006375] [PMID: 10930847]
[31]
Mishra, V.; Ali, V.; Nozaki, T.; Bhakuni, V. Entamoeba histolytica Phosphoserine aminotransferase (EhPSAT): insights into the structure-function relationship. BMC Res. Notes, 2010, 3, 52.
[http://dx.doi.org/10.1186/1756-0500-3-52] [PMID: 20199659]
[32]
Simons, P.C.; Vander Jagt, D.L. Purification of glutathione S-transferases from human liver by glutathione-affinity chromatography. Anal. Biochem., 1977, 82(2), 334-341.
[http://dx.doi.org/10.1016/0003-2697(77)90169-5] [PMID: 907137]
[33]
Frangioni, J.V.; Neel, B.G. Solubilization and purification of enzymatically active glutathione S-transferase (pGEX) fusion proteins. Anal. Biochem., 1993, 210(1), 179-187.
[http://dx.doi.org/10.1006/abio.1993.1170] [PMID: 8489015]
[34]
Harper, S.; Speicher, D.W. Purification of proteins fused to glutathione S-transferase. Methods Mol. Biol., 2011, 681, 259-280.
[http://dx.doi.org/10.1007/978-1-60761-913-0_14] [PMID: 20978970]
[35]
Fabrini, R.; De Luca, A.; Stella, L.; Mei, G.; Orioni, B.; Ciccone, S.; Federici, G.; Lo Bello, M.; Ricci, G. Monomer-dimer equilibrium in glutathione transferases: a critical re-examination. Biochemistry, 2009, 48(43), 10473-10482.
[http://dx.doi.org/10.1021/bi901238t] [PMID: 19795889]
[36]
Mishra, V.; Kumar, A.; Ali, V.; Nozaki, T.; Zhang, K.Y.; Bhakuni, V. Novel protein-protein interactions between Entamoeba histolyticad-phosphoglycerate dehydrogenase and phosphoserine aminotransferase. Biochimie, 2012, 94(8), 1676-1686.
[http://dx.doi.org/10.1016/j.biochi.2012.02.028] [PMID: 22386871]
[37]
Duplay, P.; Bedouelle, H.; Fowler, A.; Zabin, I.; Saurin, W.; Hofnung, M. Sequences of the malE gene and of its product, the maltose-binding protein of Escherichia coli K12. J. Biol. Chem., 1984, 259(16), 10606-10613.
[PMID: 6088507]
[38]
Peti, W.; Page, R. Strategies to maximize heterologous protein expression in Escherichia coli with minimal cost. Protein Expr. Purif., 2007, 51(1), 1-10.
[http://dx.doi.org/10.1016/j.pep.2006.06.024] [PMID: 16904906]
[39]
Salema, V.; Fernández, L.A. High yield purification of nanobodies from the periplasm of E. coli as fusions with the maltose binding protein. Protein Expr. Purif., 2013, 91(1), 42-48.
[http://dx.doi.org/10.1016/j.pep.2013.07.001] [PMID: 23856605]
[40]
Bach, H.; Mazor, Y.; Shaky, S.; Shoham-Lev, A.; Berdichevsky, Y.; Gutnick, D.L.; Benhar, I. Escherichia coli maltose-binding protein as a molecular chaperone for recombinant intracellular cytoplasmic single-chain antibodies. J. Mol. Biol., 2001, 312(1), 79-93.
[http://dx.doi.org/10.1006/jmbi.2001.4914] [PMID: 11545587]
[41]
Lebendiker, M.; Danieli, T. Purification of proteins fused to maltose-binding protein. Methods Mol. Biol., 2011, 681, 281-293.
[http://dx.doi.org/10.1007/978-1-60761-913-0_15] [PMID: 20978971]
[42]
Mitchell, S.F.; Lorsch, J.R. Protein Affinity Purification using Intein/Chitin Binding Protein Tags. Methods Enzymol., 2015, 559, 111-125.
[http://dx.doi.org/10.1016/bs.mie.2014.11.002] [PMID: 26096506]
[43]
Marblestone, J.G.; Edavettal, S.C.; Lim, Y.; Lim, P.; Zuo, X.; Butt, T.R. Comparison of SUMO fusion technology with traditional gene fusion systems: enhanced expression and solubility with SUMO. Protein Sci., 2006, 15(1), 182-189.
[http://dx.doi.org/10.1110/ps.051812706] [PMID: 16322573]
[44]
Peroutka Iii, R.J.; Orcutt, S.J.; Strickler, J.E.; Butt, T.R. SUMO fusion technology for enhanced protein expression and purification in prokaryotes and eukaryotes. Methods Mol. Biol., 2011, 705, 15-30.
[http://dx.doi.org/10.1007/978-1-61737-967-3_2] [PMID: 21125378]
[45]
Zuo, X.; Li, S.; Hall, J.; Mattern, M.R.; Tran, H.; Shoo, J.; Tan, R.; Weiss, S.R.; Butt, T.R. Enhanced expression and purification of membrane proteins by SUMO fusion in Escherichia coli. J. Struct. Funct. Genomics, 2005, 6(2-3), 103-111.
[http://dx.doi.org/10.1007/s10969-005-2664-4] [PMID: 16211506]
[46]
Kuo, D.; Nie, M.; Courey, A.J. SUMO as a solubility tag and in vivo cleavage of SUMO fusion proteins with Ulp1. Methods Mol. Biol., 2014, 1177, 71-80.
[http://dx.doi.org/10.1007/978-1-4939-1034-2_6] [PMID: 24943315]
[47]
Los, G.V.; Encell, L.P.; McDougall, M.G.; Hartzell, D.D.; Karassina, N.; Zimprich, C.; Wood, M.G.; Learish, R.; Ohana, R.F.; Urh, M.; Simpson, D.; Mendez, J.; Zimmerman, K.; Otto, P.; Vidugiris, G.; Zhu, J.; Darzins, A.; Klaubert, D.H.; Bulleit, R.F.; Wood, K.V. HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem. Biol., 2008, 3(6), 373-382.
[http://dx.doi.org/10.1021/cb800025k] [PMID: 18533659]
[48]
Locatelli-Hoops, S.; Sheen, F.C.; Zoubak, L.; Gawrisch, K.; Yeliseev, A.A. Application of HaloTag technology to expression and purification of cannabinoid receptor CB2. Protein Expr. Purif., 2013, 89(1), 62-72.
[http://dx.doi.org/10.1016/j.pep.2013.02.011] [PMID: 23470778]
[49]
England, C.G.; Luo, H.; Cai, W. HaloTag technology: a versatile platform for biomedical applications. Bioconjug. Chem., 2015, 26(6), 975-986.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00191] [PMID: 25974629]
[50]
Davis, G.D.; Elisee, C.; Newham, D.M.; Harrison, R.G. New fusion protein systems designed to give soluble expression in Escherichia coli. Biotechnol. Bioeng., 1999, 65(4), 382-388.
[http://dx.doi.org/10.1002/(SICI)1097-0290(19991120)65:4<382:AID-BIT2>3.0.CO;2-I] [PMID: 10506413]
[51]
Gusarov, I.; Nudler, E. Control of intrinsic transcription termination by N and NusA: the basic mechanisms. Cell, 2001, 107(4), 437-449.
[http://dx.doi.org/10.1016/S0092-8674(01)00582-7] [PMID: 11719185]
[52]
Sangawa, T.; Tabata, S.; Suzuki, K.; Saheki, Y.; Tanaka, K.; Takagi, J. A multipurpose fusion tag derived from an unstructured and hyperacidic region of the amyloid precursor protein. Protein Sci., 2013, 22(6), 840-850.
[http://dx.doi.org/10.1002/pro.2254] [PMID: 23526492]
[53]
Li, Y. The tandem affinity purification technology: an overview. Biotechnol. Lett., 2011, 33(8), 1487-1499.
[http://dx.doi.org/10.1007/s10529-011-0592-x] [PMID: 21424840]
[54]
Li, Y. Commonly used tag combinations for tandem affinity purification. Biotechnol. Appl. Biochem., 2010, 55(2), 73-83.
[http://dx.doi.org/10.1042/BA20090273] [PMID: 20156193]
[55]
Xu, X.; Song, Y.; Li, Y.; Chang, J.; Zhang, H.; An, L. The tandem affinity purification method: an efficient system for protein complex purification and protein interaction identification. Protein Expr. Purif., 2010, 72(2), 149-156.
[http://dx.doi.org/10.1016/j.pep.2010.04.009] [PMID: 20399864]
[56]
Stamsås, G.A.; Håvarstein, L.S.; Straume, D. CHiC, a new tandem affinity tag for the protein purification toolbox. J. Microbiol. Methods, 2013, 92(1), 59-63.
[http://dx.doi.org/10.1016/j.mimet.2012.11.003] [PMID: 23154041]
[57]
Cao, H.; Chapital, D.C.; Howard, O.D., Jr; Deterding, L.J.; Mason, C.B.; Shockey, J.M.; Klasson, K.T. Expression and purification of recombinant tung tree diacylglycerol acyltransferase 2. Appl. Microbiol. Biotechnol., 2012, 96(3), 711-727.
[http://dx.doi.org/10.1007/s00253-012-3869-7] [PMID: 22270236]
[58]
Li, Y.; Wang, J.; Yang, J.; Wan, C.; Wang, X.; Sun, H. Recombinant expression, purification and characterization of antimicrobial peptide ORBK in Escherichia coli. Protein Expr. Purif., 2014, 95, 182-187.
[http://dx.doi.org/10.1016/j.pep.2013.12.011] [PMID: 24398234]
[59]
Liew, O.W.; Ang, C.X.; Peh, Y.P.; Chong, P.C.; Ng, Y.X.; Hwang, L.A.; Koh, X.Y.; Yip, Y.M.; Liu, W.; Richards, A.M.A. His6-SUMO-eXact tag for producing human prepro-urocortin 2 in Escherichia coli for raising monoclonal antibodies. J. Immunol. Methods, 2014, 403(1-2), 37-51.
[http://dx.doi.org/10.1016/j.jim.2013.11.015] [PMID: 24291344]
[60]
Zhang, J.; Ma, L.; Zhang, S.Q. Expression and purification of soluble human APRIL in Escherichia coli using ELP-SUMO tag. Protein Expr. Purif., 2014, 95, 177-181.
[http://dx.doi.org/10.1016/j.pep.2013.12.013] [PMID: 24412409]
[61]
Miladi, B.; Dridi, C.; El Marjou, A.; Boeuf, G.; Bouallagui, H.; Dufour, F.; Di Martino, P.; Elm’selmi, A. An improved strategy for easy process monitoring and advanced purification of recombinant proteins. Mol. Biotechnol., 2013, 55(3), 227-235.
[http://dx.doi.org/10.1007/s12033-013-9673-5] [PMID: 23780701]
[62]
Shahravan, S.H.; Qu, X.; Chan, I.S.; Shin, J.A. Enhancing the specificity of the enterokinase cleavage reaction to promote efficient cleavage of a fusion tag. Protein Expr. Purif., 2008, 59(2), 314-319.
[http://dx.doi.org/10.1016/j.pep.2008.02.015] [PMID: 18406169]
[63]
Dougherty, W.G.; Parks, T.D.; Cary, S.M.; Bazan, J.F.; Fletterick, R.J. Characterization of the catalytic residues of the tobacco etch virus 49-kDa proteinase. Virology, 1989, 172(1), 302-310.
[http://dx.doi.org/10.1016/0042-6822(89)90132-3] [PMID: 2475971]
[64]
Carrington, J.C.; Dougherty, W.G. A viral cleavage site cassette: identification of amino acid sequences required for tobacco etch virus polyprotein processing. Proc. Natl. Acad. Sci. USA, 1988, 85(10), 3391-3395.
[http://dx.doi.org/10.1073/pnas.85.10.3391] [PMID: 3285343]
[65]
Parks, T.D.; Leuther, K.K.; Howard, E.D.; Johnston, S.A.; Dougherty, W.G. Release of proteins and peptides from fusion proteins using a recombinant plant virus proteinase. Anal. Biochem., 1994, 216(2), 413-417.
[http://dx.doi.org/10.1006/abio.1994.1060] [PMID: 8179197]
[66]
Chang, J.Y. Thrombin specificity. Requirement for apolar amino acids adjacent to the thrombin cleavage site of polypeptide substrate. Eur. J. Biochem., 1985, 151(2), 217-224.
[http://dx.doi.org/10.1111/j.1432-1033.1985.tb09091.x] [PMID: 2863141]
[67]
Chang, J.Y.; Alkan, S.S.; Hilschmann, N.; Braun, D.G. Thrombin specificity. Selective cleavage of antibody light chains at the joints of variable with joining regions and joining with constant regions. Eur. J. Biochem., 1985, 151(2), 225-230.
[http://dx.doi.org/10.1111/j.1432-1033.1985.tb09092.x] [PMID: 3928376]
[68]
Guan, K.L.; Dixon, J.E. Eukaryotic proteins expressed in Escherichia coli: an improved thrombin cleavage and purification procedure of fusion proteins with glutathione S-transferase. Anal. Biochem., 1991, 192(2), 262-267.
[http://dx.doi.org/10.1016/0003-2697(91)90534-Z] [PMID: 1852137]
[69]
Nagai, K.; Thøgersen, H.C. Generation of beta-globin by sequence-specific proteolysis of a hybrid protein produced in Escherichia coli. Nature, 1984, 309(5971), 810-812.
[http://dx.doi.org/10.1038/309810a0] [PMID: 6330564]
[70]
Ko, Y.H.; Thomas, P.J.; Delannoy, M.R.; Pedersen, P.L. The cystic fibrosis transmembrane conductance regulator. Overexpression, purification, and characterization of wild type and delta F508 mutant forms of the first nucleotide binding fold in fusion with the maltose-binding protein. J. Biol. Chem., 1993, 268(32), 24330-24338.
[PMID: 7693699]
[71]
Leong, L.E. The use of recombinant fusion proteases in the affinity purification of recombinant proteins. Mol. Biotechnol., 1999, 12(3), 269-274.
[http://dx.doi.org/10.1385/MB:12:3:269] [PMID: 10631683]
[72]
Waugh, D.S. An overview of enzymatic reagents for the removal of affinity tags. Protein Expr. Purif., 2011, 80(2), 283-293.
[http://dx.doi.org/10.1016/j.pep.2011.08.005] [PMID: 21871965]
[73]
Frey, S.; Görlich, D. Purification of protein complexes of defined subunit stoichiometry using a set of orthogonal, tag-cleaving proteases. J. Chromatogr. A, 2014, 1337, 106-115.
[http://dx.doi.org/10.1016/j.chroma.2014.02.030] [PMID: 24636567]
[74]
Huang, Q.; Li, Q.; Chen, A.S.; Kang, C. West Nile virus protease activity in detergent solutions and application for affinity tag removal. Anal. Biochem., 2013, 435(1), 44-46.
[http://dx.doi.org/10.1016/j.ab.2012.12.015] [PMID: 23291011]
[75]
Ye, W.; Wang, H.; Ma, Y.; Luo, X.; Zhang, W.; Wang, J.; Wang, X. Characterization of the glutamate-specific endopeptidase from Bacillus licheniformis expressed in Escherichia coli. J. Biotechnol., 2013, 168(1), 40-45.
[http://dx.doi.org/10.1016/j.jbiotec.2013.08.009] [PMID: 23965272]
[76]
Southworth, M.W.; Amaya, K.; Evans, T.C.; Xu, M.Q.; Perler, F.B. Purification of proteins fused to either the amino or carboxy terminus of the Mycobacterium xenopi gyrase A intein. Biotechniques, 1999, 27(1), 110-114, 116, 118-120.
[http://dx.doi.org/10.2144/99271st04] [PMID: 10407673]
[77]
Wood, D.W.; Wu, W.; Belfort, G.; Derbyshire, V.; Belfort, M. A genetic system yields self-cleaving inteins for bioseparations. Nat. Biotechnol., 1999, 17(9), 889-892.
[http://dx.doi.org/10.1038/12879] [PMID: 10471931]
[78]
Liu, F.; Tsai, S.L.; Madan, B.; Chen, W. Engineering a high-affinity scaffold for non-chromatographic protein purification via intein-mediated cleavage. Biotechnol. Bioeng., 2012, 109(11), 2829-2835.
[http://dx.doi.org/10.1002/bit.24545] [PMID: 22566125]
[79]
Tian, L.; Sun, S.S. A cost-effective ELP-intein coupling system for recombinant protein purification from plant production platform. PLoS One, 2011, 6(8)e24183
[http://dx.doi.org/10.1371/journal.pone.0024183] [PMID: 21918684]
[80]
Banki, M.R.; Feng, L.; Wood, D.W. Simple bioseparations using self-cleaving elastin-like polypeptide tags. Nat. Methods, 2005, 2(9), 659-661.
[http://dx.doi.org/10.1038/nmeth787] [PMID: 16074986]
[81]
Guan, D.; Ramirez, M.; Chen, Z. Split intein mediated ultra-rapid purification of tagless protein (SIRP). Biotechnol. Bioeng., 2013, 110(9), 2471-2481.
[http://dx.doi.org/10.1002/bit.24913] [PMID: 23568256]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy