Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

KIAA0101 in Malignant Pleural Mesothelioma: A Potential Diagnostic and Prognostic Marker

Author(s): Ping Lin, Yuean Zhao, Xiaoqian Li and Zongan Liang*

Volume 25, Issue 9, 2022

Published on: 07 July, 2021

Page: [1498 - 1506] Pages: 9

DOI: 10.2174/1386207324666210707105634

Price: $65

Abstract

Background: Currently, there are no reliable diagnostic and prognostic markers for Malignant Pleural Mesothelioma (MPM). The objective of this study was to identify hub genes that could be helpful for diagnosis and prognosis in MPM by using bioinformatics analysis.

Methods: The gene expression profiles were downloaded from the Gene Expression Omnibus (GEO) database and The Cancer Genome Atlas (TCGA). Weighted Gene Co-expression Network Analysis (WGCNA), LASSO regression analysis, Cox regression analysis, and Gene Set Enrichment Analysis (GSEA) were performed to identify hub genes and their functions.

Results: A total of 430 upregulated and 867 downregulated genes in MPM were identified based on the GSE51024 dataset. According to the WGCNA analysis, differentially expressed genes were classified into 8 modules. Among them, the pink module was most closely associated with MPM. According to genes with GS > 0.8 and MM > 0.8, six genes were selected as candidate hub genes (NUSAP1, TOP2A, PLOD2, BUB1B, UHRF1, KIAA0101) in the pink module. In the LASSO model, three genes (NUSAP1, PLOD2, and KIAA0101) were identified with non-zero regression coefficients and were considered as hub genes among the 6 candidates. The hub gene-based LASSO model can accurately distinguish MPM from controls (AUC=0.98). Moreover, the high expression level of KIAA0101, PLOD2, and NUSAP1 was associated with poor prognosis compared to the low level in Kaplan–Meier survival analyses. After further multivariate Cox analysis, only KIAA0101 (HR = 1.55, 95% CI = 1.05-2.29) was identified as an independent prognostic factor among these hub genes. Finally, GSEA revealed that high expression of KIAA0101 was closely associated with 10 signaling pathways.

Conclusion: Our study identified several hub genes relevant to MPM, including NUSAP1, PLOD2, and KIAA0101. Among these genes, KIAA0101 appears to be a useful diagnostic and prognostic biomarker for MPM, which may provide new clues for MPM diagnosis and therapy.

Keywords: Malignant pleural mesothelioma, WGCNA, TCGA, GEO, biomarker, LASSO.

Graphical Abstract

[1]
Bibby, A.C.; Tsim, S.; Kanellakis, N.; Ball, H.; Talbot, D.C.; Blyth, K.G.; Maskell, N.A.; Psallidas, I. Malignant pleural mesothelioma: An update on investigation, diagnosis and treatment. Eur. Respir. Rev., 2016, 25(142), 472-486.
[http://dx.doi.org/10.1183/16000617.0063-2016] [PMID: 27903668]
[2]
Ettinger, D.S.; Akerley, W.; Borghaei, H.; Chang, A.; Cheney, R.T.; Chirieac, L.R.; D’Amico, T.A.; Demmy, T.L.; Ganti, A.K.; Govindan, R.; Grannis, F.W.; Horn, L.; Jahan, T.M.; Jahanzeb, M.; Kessinger, A.; Komaki, R.; Kong, F.M.; Kris, M.G.; Krug, L.M.; Lennes, I.T.; Loo, B.W.; Martins, R.; O’Malley, J.; Osarogiagbon, R.U.; Otterson, G.A.; Patel, J.D.; Schenck, M.P.; Pisters, K.M.; Reckamp, K.; Riely, G.J.; Rohren, E.; Swanson, S.J.; Wood, D.E.; Yang, S.C. Malignant pleural mesothelioma. J. Natl. Compr. Canc. Netw., 2012, 10(1), 26-41.
[http://dx.doi.org/10.6004/jnccn.2012.0006] [PMID: 22223867]
[3]
Lin, R-T.; Chang, Y-Y.; Wang, J-D.; Lee, L.J-H. Upcoming epidemic of asbestos-related malignant pleural mesothelioma in taiwan: A prediction of incidence in the next 30 years. J. Formos. Med. Assoc., 2019, 118(1 Pt 3), 463-470.
[http://dx.doi.org/10.1016/j.jfma.2018.07.013] [PMID: 30072200]
[4]
Beckett, P.; Edwards, J.; Fennell, D.; Hubbard, R.; Woolhouse, I.; Peake, M.D. Demographics, management and survival of patients with malignant pleural mesothelioma in the national lung cancer audit in england and Wales. Lung Cancer, 2015, 88(3), 344-348.
[http://dx.doi.org/10.1016/j.lungcan.2015.03.005] [PMID: 25863904]
[5]
Zalcman, G.; Mazieres, J.; Margery, J.; Greillier, L.; Audigier-Valette, C.; Moro-Sibilot, D.; Molinier, O.; Corre, R.; Monnet, I.; Gounant, V.; Rivière, F.; Janicot, H.; Gervais, R.; Locher, C.; Milleron, B.; Tran, Q.; Lebitasy, M.P.; Morin, F.; Creveuil, C.; Parienti, J.J.; Scherpereel, A. Bevacizumab for newly diagnosed pleural mesothelioma in the mesothelioma avastin cisplatin pemetrexed study (MAPS): A randomised, controlled, open-label, phase 3 trial. Lancet, 2016, 387(10026), 1405-1414.
[http://dx.doi.org/10.1016/S0140-6736(15)01238-6] [PMID: 26719230]
[6]
Scherpereel, A.; Wallyn, F.; Albelda, S.M.; Munck, C. Novel therapies for malignant pleural mesothelioma. Lancet Oncol., 2018, 19(3), e161-e172.
[http://dx.doi.org/10.1016/S1470-2045(18)30100-1] [PMID: 29508763]
[7]
Patel, S.C.; Dowell, J.E. Modern management of malignant pleural mesothelioma. Lung Cancer (Auckl.), 2016, 7, 63-72.
[PMID: 28210162]
[8]
Henry, N.L.; Hayes, D.F. Cancer biomarkers. Mol. Oncol., 2012, 6(2), 140-146.
[http://dx.doi.org/10.1016/j.molonc.2012.01.010] [PMID: 22356776]
[9]
Kibe, S.; Adams, K.; Barlow, G. Diagnostic and prognostic biomarkers of sepsis in critical care. J. Antimicrob. Chemother., 2011, 66(Suppl. 2), ii33-ii40.
[http://dx.doi.org/10.1093/jac/dkq523] [PMID: 21398306]
[10]
Werner, T. Bioinformatics applications for pathway analysis of microarray data. Curr. Opin. Biotechnol., 2008, 19(1), 50-54.
[http://dx.doi.org/10.1016/j.copbio.2007.11.005] [PMID: 18207385]
[11]
Tao, Z.; Shi, A.; Li, R.; Wang, Y.; Wang, X.; Zhao, J. Microarray bioinformatics in cancer- a review. J. BUON, 2017, 22(4), 838-843.
[PMID: 29155508]
[12]
Weinstein, J.N.; Collisson, E.A.; Mills, G.B.; Shaw, K.R.M.; Ozenberger, B.A.; Ellrott, K.; Shmulevich, I.; Sander, C.; Stuart, J.M. The cancer genome atlas pan-cancer analysis project. Nat. Genet., 2013, 45(10), 1113-1120.
[http://dx.doi.org/10.1038/ng.2764] [PMID: 24071849]
[13]
Clough, E.; Barrett, T. The gene expression omnibus database. Statistical genomics, Springer. 2016, 93-110.
[14]
Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics, 2008, 9, 559.
[http://dx.doi.org/10.1186/1471-2105-9-559] [PMID: 19114008]
[15]
Fonti, V.; Belitser, E. Feature selection using lasso. VU Amsterdam Research Paper in Business Analytics, 2017, 30, 1-25.
[16]
Yu, G.; Wang, L-G.; Han, Y.; He, Q-Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5), 284-287.
[http://dx.doi.org/10.1089/omi.2011.0118] [PMID: 22455463]
[17]
Pei, G.; Chen, L.; Zhang, W. WGCNA application to proteomic and metabolomic data analysis.Methods in enzymology; Elsevier, 2017, pp. 135-158.
[18]
Sing, T.; Sander, O.; Beerenwinkel, N.; Lengauer, T. ROCR: Visualizing classifier performance in R. Bioinformatics, 2005, 21(20), 3940-3941.
[http://dx.doi.org/10.1093/bioinformatics/bti623] [PMID: 16096348]
[19]
Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; Mesirov, J.P. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA, 2005, 102(43), 15545-15550.
[http://dx.doi.org/10.1073/pnas.0506580102] [PMID: 16199517]
[20]
Remon, J.; Reguart, N.; Corral, J.; Lianes, P. Malignant pleural mesothelioma: New hope in the horizon with novel therapeutic strategies. Cancer Treat. Rev., 2015, 41(1), 27-34.
[http://dx.doi.org/10.1016/j.ctrv.2014.10.007] [PMID: 25467107]
[21]
Warbrick, E. A functional analysis of PCNA-binding peptides derived from protein sequence, interaction screening and rational design. Oncogene, 2006, 25(20), 2850-2859.
[http://dx.doi.org/10.1038/sj.onc.1209320] [PMID: 16407840]
[22]
Emanuele, M.J.; Ciccia, A.; Elia, A.E.H.; Elledge, S.J. Proliferating cell nuclear antigen (PCNA)-associated KIAA0101/PAF15 protein is a cell cycle-regulated anaphase-promoting complex/cyclosome substrate. Proc. Natl. Acad. Sci. USA, 2011, 108(24), 9845-9850.
[http://dx.doi.org/10.1073/pnas.1106136108] [PMID: 21628590]
[23]
Simpson, F.; Lammerts van Bueren, K.; Butterfield, N.; Bennetts, J.S.; Bowles, J.; Adolphe, C.; Simms, L.A.; Young, J.; Walsh, M.D.; Leggett, B.; Fowles, L.F.; Wicking, C. The PCNA-associated factor KIAA0101/p15(PAF) binds the potential tumor suppressor product p33ING1b. Exp. Cell Res., 2006, 312(1), 73-85.
[http://dx.doi.org/10.1016/j.yexcr.2005.09.020] [PMID: 16288740]
[24]
Jain, M.; Zhang, L.; Patterson, E.E.; Kebebew, E. KIAA0101 is overexpressed, and promotes growth and invasion in adrenal cancer. PLoS One, 2011, 6(11), e26866.
[http://dx.doi.org/10.1371/journal.pone.0026866] [PMID: 22096502]
[25]
Kato, T.; Daigo, Y.; Aragaki, M.; Ishikawa, K.; Sato, M.; Kaji, M. Overexpression of KIAA0101 predicts poor prognosis in primary lung cancer patients. Lung Cancer, 2012, 75(1), 110-118.
[http://dx.doi.org/10.1016/j.lungcan.2011.05.024] [PMID: 21689861]
[26]
Cheng, Y.; Li, K.; Diao, D.; Zhu, K.; Shi, L.; Zhang, H.; Yuan, D.; Guo, Q.; Wu, X.; Liu, D.; Dang, C. Expression of KIAA0101 protein is associated with poor survival of esophageal cancer patients and resistance to cisplatin treatment in vitro. Lab. Invest., 2013, 93(12), 1276-1287.
[http://dx.doi.org/10.1038/labinvest.2013.124] [PMID: 24145239]
[27]
Yuan, R-H.; Jeng, Y-M.; Pan, H-W.; Hu, F-C.; Lai, P-L.; Lee, P-H.; Hsu, H.C. Overexpression of KIAA0101 predicts high stage, early tumor recurrence, and poor prognosis of hepatocellular carcinoma. Clin. Cancer Res., 2007, 13(18), 5368-5376.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1113] [PMID: 17875765]
[28]
Zhang, Q.; Yuan, J.; Liu, Y.; Liu, X.; Lv, T.; Zhou, K.; Song, Y. KIAA0101 knockdown inhibits cell proliferation and induces cell cycle arrest and cell apoptosis in chronic lymphocytic leukemia cells. Ann. Transl. Med., 2021, 9(6), 487.
[http://dx.doi.org/10.21037/atm-21-626] [PMID: 33850884]
[29]
Liu, J.; Gao, L.; Liao, J.; Yang, J.; Yuan, F.; Chen, Q. Kiaa0101 serves as a prognostic marker and promotes invasion by regulating p38/snail1 pathway in glioma. Ann. Transl. Med., 2021, 9(3), 260.
[http://dx.doi.org/10.21037/atm-20-3219] [PMID: 33708887]
[30]
Lei, H.; Wang, K.; Jiang, T.; Lu, J.; Dong, X.; Wang, F.; Li, Q.; Zhao, L. KIAA0101 and UbcH10 interact to regulate non-small cell lung cancer cell proliferation by disrupting the function of the spindle assembly checkpoint. BMC Cancer, 2020, 20(1), 957.
[http://dx.doi.org/10.1186/s12885-020-07463-3] [PMID: 33008389]
[31]
Jin, C.; Liu, Z.; Li, Y.; Bu, H.; Wang, Y.; Xu, Y.; Qiu, C.; Yan, S.; Yuan, C.; Li, R.; Diao, N.; Zhang, Z.; Wang, X.; Liu, L.; Kong, B. PCNA-associated factor P15PAF, targeted by FOXM1, predicts poor prognosis in high-grade serous ovarian cancer patients. Int. J. Cancer, 2018, 143(11), 2973-2984.
[http://dx.doi.org/10.1002/ijc.31800] [PMID: 30129654]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy