Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

General Review Article

Effect of Metal and Non-metal Doping on the Photocatalytic Performance of Titanium dioxide (TiO2): A Review

Author(s): Abdullah Aljaafari *

Volume 18, Issue 4, 2022

Published on: 12 January, 2022

Page: [499 - 519] Pages: 21

DOI: 10.2174/1573413717666210706115018

Price: $65

Abstract

Titanium dioxide (TiO2) is a known semiconducting material that has been effectively used in photo-catalytic processes to promote environmental sustainability. It can also reduce the environmental chaos caused by fossil fuel combustion to meet energy demands. Many studies have proposed modifications of the large band gap in TiO2, which causes visible light activation during photocatalytic reactions when exposed to UV light radiation. Therefore, many alterations, such as the doping of nonmetals and metals to TiO2, have been investigated. In this review, we discuss advanced preparation techniques for TiO2 with various dopants and techniques. Characterization methods were performed to evaluate the structural, morphological, and optical properties of TiO2 doped with metal and nonmetal ions, such as S, C, N, Fe, B, W, Ag, Nb, and Zn, by various synthesis methods. We also explored the experimental and other characteristics to determine the best doping component for use in real-time applications.

Keywords: Titanium dioxide, doping, sol-gel, photocatalyst, visible irradiation, visible light absorption.

Graphical Abstract

[1]
Salvadores, F.; Reli, M.; Alfano, O.M.; Kočí, K.; Ballari, M.L.M. Efficiencies evaluation of photocatalytic paints under indoor and outdoor air conditions. Front Chem., 2020, 8, 551710.
[http://dx.doi.org/10.3389/fchem.2020.551710] [PMID: 33195045]
[2]
Andronic, L.; Enesca, A. Black TiO2 synthesis by chemical reduction methods for photocatalysis applications. Front Chem., 2020, 8, 565489.
[http://dx.doi.org/10.3389/fchem.2020.565489] [PMID: 33282823]
[3]
Wang, Y-C.; Liu, X-Y.; Wang, X-X.; Cao, M-S. Metal-organic frameworks based photocatalysts: architecture strategies for efficient solar energy conversion. Chem. Eng. J., 2021, 129459.
[http://dx.doi.org/10.1016/j.cej.2021.129459]
[4]
Teka, T. Current state of doped-tio2 photocatalysts and synthesis methods to prepare TiO2 films: A review. Int. J. Technol. Enhanc Emerg. Eng. Res., 2015, 3, 14-18.
[5]
Rockafellow, E.M.; Stewart, L.K.; Jenks, W.S. Is sulfur-doped TiO2 an effective visible light photocatalyst for remediation? Appl. Catal. B, 2009, 91(1–2), 554-562.
[http://dx.doi.org/10.1016/j.apcatb.2009.06.027]
[6]
Khairy, M.; Zakaria, W. Effect of metal-doping of TiO2 nanoparticles on their photocatalytic activities toward removal of organic dyes. Egyptian J. Petrol., 2014, 23, 419-426.
[http://dx.doi.org/10.1016/j.ejpe.2014.09.010]
[7]
Lin, Y-H.; Tseng, T-K.; Chu, H. Photo-catalytic degradation of dimethyl disulfide on s and metal-ions co-doped TiO2 under visible-light irradiation. Appl. Cat. A, 2014, 469, 221-228.
[http://dx.doi.org/10.1016/j.apcata.2013.10.006]
[8]
Ghorbanpour, M.; Feizi, A. Iron-doped TiO2 catalysts with photocatalytic activity. J. Water Environ. Nanotechnol., 2019, 4(1), 60-66.
[http://dx.doi.org/10.22090/JWENT.2019.01.006]
[9]
Kanjana, N.; Laokul, P. Synthesis and characterization of fe-doped TiO2 hollow nanospheres prepared by carbon sphere as hard template. J. Phys. Conf. Ser., 2019, 1380, 012036.
[http://dx.doi.org/10.1088/1742-6596/1380/1/012036]
[10]
Koysuren, O.; Koysuren, H.N. Photocatalytic activity of polyaniline/fe-doped TiO2 composites by in situ polymerization method. J. Macromol. Sci. A, 2019, 56(3), 267-276.
[http://dx.doi.org/10.1080/10601325.2019.1565548]
[11]
Meng, L.; Wang, Z.; Yang, L.; Ren, W.; Liu, W.; Zhang, Z.; Yang, T.; dos Santos, M.P. A detailed study on the Fe-doped TiO2 thin films induced by pulsed laser deposition route. Appl. Surf. Sci., 2019, 474, 211-217.
[http://dx.doi.org/10.1016/j.apsusc.2018.03.043]
[12]
Moradi, V.; Ahmed, F.; Jun, M.B.G.; Blackburn, A.; Herring, R.A. Acid-treated fe-doped TiO2 as a high performance photocatalyst used for degradation of phenol under visible light irradiation. J. Environ. Sci. (China), 2019, 83, 183-194.
[http://dx.doi.org/10.1016/j.jes.2019.04.002] [PMID: 31221381]
[13]
Sui, Y.; Hao, Y.; Wen, G.; Hu, Y.; Wu, L.; Zhong, S. Synthesis and photocatalytic properties of Fe-doped TiO2 nanoparticles with highly exposed (0 0 1) facets from ti-bearing tailings. Appl. Surf. Sci., 2019, 475, 880-886.
[http://dx.doi.org/10.1016/j.apsusc.2019.01.048]
[14]
Valero-Romero, M.J.; Santaclara, J.G.; Oar-Arteta, L.; van Koppen, L.; Osadchii, D.Y.; Gascon, J.; Kapteijn, F. Photocatalytic properties of TiO2 and Fe-doped TiO2 prepared by metal organic framework-mediated synthesis. Chem. Eng. J., 2019, 360, 75-88.
[http://dx.doi.org/10.1016/j.cej.2018.11.132]
[15]
Chen, Y.; Wang, L.; Wang, W.; Cao, M. Enhanced photoelectrochemical properties of ZnO/ZnSe/CdSe/Cu2-xSe core–shell nanowire arrays fabricated by ion-replacement method. Appl. Catal. B, 2017, 209, 110-117.
[http://dx.doi.org/10.1016/j.apcatb.2017.02.049]
[16]
Zhao, Y.; Chunzhong, Li. Xiuhong, Liu.; Feng, Gu.; L.Duc, H.; Liyi, Shi. Zn-doped TiO2 nanoparticles with high photocatalytic activity synthesized by hydrogen-oxygen diffusion flame. Appl. Catal. B, 2008, 79, 208-215.
[http://dx.doi.org/10.1016/j.apcatb.2007.09.044]
[17]
Deng, J.; Wang, M.; Fang, J.; Song, X.; Yang, Z.; Yuan, Z. Synthesis of zn-doped TiO2 nano-particles using metal ti and zn as raw materials and application in quantum dot sensitized solar cells. J. Alloys Compd., 2019, 791, 371-379.
[http://dx.doi.org/10.1016/j.jallcom.2019.03.306]
[18]
Aware, D.V.; Jadhav, S.S. Synthesis, characterization and photocatalytic applications of Zn-doped TiO2 nanoparticles by sol-gel method. Appl. Nanosci., 2016, 6, 965-972.
[http://dx.doi.org/10.1007/s13204-015-0513-8]
[19]
Liu, X.; Wu, Z.; Zhang, Y.; Tsamis, C. Low temperature zn-doped TiO2 as electron transport layer for 19% efficient planar perovskite solar cells. Appl. Surf. Sci., 2019, 471, 28-35.
[http://dx.doi.org/10.1016/j.apsusc.2018.11.237]
[20]
Österlund, L.; Štengl, V.; Mattsson, A.; Bakardjieva, S.; Andersson, P.O.; Opluštil, F. Effect of sample preparation and humidity on the photodegradation rate of CEES on pure and Zn doped anatase TiO2 nanoparticles prepared by homogeneous hydrolysis. Appl. Catal. B, 2009, 88, 194-203.
[http://dx.doi.org/10.1016/j.apcatb.2008.09.029]
[21]
Nair, R.G.; Mazumdar, S.; Modak, B.; Bapat, R.; Ayyub, P.; Bhattacharyya, K. The role of surface o-vacancies in the photocatalytic oxidation of methylene blue by zn-doped TiO2: A mechanistic approach. J. Photochem. Photobiol. Chem., 2017, 345, 36-53.
[http://dx.doi.org/10.1016/j.jphotochem.2017.05.016]
[22]
Kong, L.; Wang, C.; Zheng, H.; Zhang, X.; Liu, Y. Defect-induced yellow color in Nb-doped TiO2 and its impact on visible-light photocatalysis. J. Phys. Chem. C, 2015, 119(29), 16623-16632.
[http://dx.doi.org/10.1021/acs.jpcc.5b03448]
[23]
Saito, K.; Yi, E.; Laine, R.M.; Sugahara, Y. Preparation of Nb-doped TiO2 nanopowder by liquid-feed spray pyrolysis followed by ammonia annealing for tunable visible-light absorption and inhibition of photocatalytic activity. Ceram. Int., 2020, 46(2), 1314-1322.
[http://dx.doi.org/10.1016/j.ceramint.2019.09.094]
[24]
Cao, M-S.; Wang, X-X.; Zhang, M.; Shu, J-C.; Cao, W-Q.; Yang, H-J.; Fang, X-Y.; Yuan, J. Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater., 2019, 29, 1807398.
[http://dx.doi.org/10.1002/adfm.201807398]
[25]
Santos, L.M.; Machado, W.A.; França, M.D.; Borges, K.A.; Paniago, R.M.; Patrocinio, A.O.T.; Machado, A.E.H. Structural characterization of Ag-doped TiO2 with enhanced photocatalytic activity. RSC Advances, 2015, 5, 103752-103759.
[http://dx.doi.org/10.1039/C5RA22647C]
[26]
Gogoi, D.; Namdeo, A.; Golder, A.K.; Peela, N.R. Ag-doped TiO2 photocatalysts with effective charge transfer for highly efficient hydrogen production through water splitting. Int. J. Hydrogen Energy, 2020, 45(4), 2729-2744.
[http://dx.doi.org/10.1016/j.ijhydene.2019.11.127]
[27]
Suwarnkar, M.B.; Dhabbe, R.S.; Kadam, A.N.; Garadkar, K.M. Enhanced photocatalytic activity of Ag doped TiO2 nanoparticles synthesized by a microwave assisted method. Ceram. Int., 2014, 40(4), 5489-5496.
[http://dx.doi.org/10.1016/j.ceramint.2013.10.137]
[28]
Demirci, S.; Dikici, T.; Yurddaskal, M.; Gultekin, S.; Toparli, M.; Celik, E. Synthesis and characterization of Ag doped TiO2 heterojunction films and their photocatalytic performances. Appl. Surf. Sci., 2016, 390, 591-601.
[http://dx.doi.org/10.1016/j.apsusc.2016.08.145]
[29]
Cao, M.; Wang, X.; Cao, W.; Fang, X.; Wen, B.; Yuan, J.; Transport, T.D.; Relaxation, S.S-P.E.E.C. Small, 2018, 14, 1800987.
[http://dx.doi.org/10.1002/smll.201800987]
[30]
Couselo, N.; Einschlag, F.S.G.; Candal, R.J.; Jobbágy, M. Tungsten-doped TiO2 vs pure TiO2 photocatalysts: Effects on photobleaching kinetics and mechanism. J. Phys. Chem. C, 2008, 112(4), 1094-1100.
[http://dx.doi.org/10.1021/jp0769781]
[31]
Yang, Z.; Zhong, W.; Chen, Y.; Wang, C.; Mo, S.; Zhang, J.; Shu, R.; Song, Q. Improving glycerol photoreforming hydrogen production over Ag2O- TiO2 catalysts by enhanced colloidal dispersion stability. Front Chem., 2020, 8, 342.
[http://dx.doi.org/10.3389/fchem.2020.00342] [PMID: 32509721]
[32]
Rhatigan, S.; Nolan, M. Activation of water on mnox-nanocluster-modified rutile (110) and anatase (101) TiO2 and the role of cation reduction. Front Chem., 2019, 7, 67.
[http://dx.doi.org/10.3389/fchem.2019.00067] [PMID: 30809521]
[33]
Xiang, Q.; Ma, X.; Zhang, D.; Zhou, H.; Liao, Y.; Zhang, H.; Xu, S.; Levchenko, I.; Bazaka, K. Interfacial modification of titanium dioxide to enhance photocatalytic efficiency towards H2 production. J. Colloid Interface Sci., 2019, 556, 376-385.
[http://dx.doi.org/10.1016/j.jcis.2019.08.033] [PMID: 31470352]
[34]
Cheng, L.; Zhang, D.; Liao, Y.; Li, F.; Zhang, H.; Xiang, Q. Constructing functionalized plasmonic gold/titanium dioxide nanosheets with small gold nanoparticles for efficient photocatalytic hydrogen evolution. J. Colloid Interface Sci., 2019, 555, 94-103.
[http://dx.doi.org/10.1016/j.jcis.2019.07.060] [PMID: 31377648]
[35]
Li, Y.; Feng, X.; Lu, Z.; Yin, H.; Liu, F.; Xiang, Q. Enhanced photocatalytic H2-production activity of C-dots modified g-C3N4/TiO2 nanosheets composites. J. Colloid Interface Sci., 2018, 513, 866-876.
[http://dx.doi.org/10.1016/j.jcis.2017.12.002] [PMID: 29227926]
[36]
Tian, H.; Ma, J.; Li, K.; Li, J. Photocatalytic degradation of methyl orange with w-doped TiO2 synthesized by a hydrothermal method. Mater. Chem. Phys., 2008, 112(1), 47-51.
[http://dx.doi.org/10.1016/j.matchemphys.2008.05.005]
[37]
Michalow, K.A.; Vital, A.; Heel, A.; Graule, T.; Reifler, F.A.; Ritter, A.; Zakrzewska, K.; Rekas, M. Photocatalytic activity of w-doped TiO2 nanopowders. J. Adv. Oxid. Technol., 2008, 11(1), 56-64.
[38]
Poorkarimi, A.; Karimi-Jashni, A.; Javadpour, S. Optimization of toluene removal over W-doped TiO2 nano-photocatalyst under visible light irradiation. Environ. Technol., 2018, 39(24), 3135-3148.
[http://dx.doi.org/10.1080/09593330.2017.1375021] [PMID: 28868967]
[39]
Samsudin, E.M.; Hamid, S.B.A.; Juan, J.C.; Basirun, W.J.; Kandjani, A.E. Surface modification of mixed-phase hydrogenated TiO2 and corresponding photocatalytic response. Applied Surface Science, 2015, 359, 883-896.
[40]
Samsudin, E.M.; Hamid, S.B.A.; Juan, J.C.; Basirun, W.J.; Centi, G. Synergetic effects in novel hydrogenated F-doped TiO2 photocatalysts. Appl. Surf. Sci., 2016, 370, 380-393.
[http://dx.doi.org/10.1016/j.apsusc.2016.02.172]
[41]
Motola, M.; Satrapinskyy, L.; Čaplovicová, M.; Roch, T.; Gregor, M.; Grančič, B.; Greguš, J.; Čaplovič, Ľ.; Plesch, G. Enhanced photocatalytic activity of hydrogenated and vanadium doped TiO2 nanotube arrays grown by anodization of sputtered Ti layers. Appl. Surf. Sci., 2018, 434, 1257-1265.
[http://dx.doi.org/10.1016/j.apsusc.2017.11.253]
[42]
Kumaravel, V.; Mathew, S.; Bartlett, J.; Pillai, S.C. Photocatalytic hydrogen production using metal doped TiO2: A review of recent advances. Appl. Catal. B, 2019, 244, 1021-1064.
[http://dx.doi.org/10.1016/j.apcatb.2018.11.080]
[43]
Zheng, J.; Liu, Z.; Liu, X.; Yan, X.; Li, D.; Chu, W. Facile hydrothermal synthesis and characteristics of B-doped TiO2 hybrid hollow microspheres with higher photo-catalytic activity. J. Alloys Compd., 2011, 509, 3771-3776.
[http://dx.doi.org/10.1016/j.jallcom.2010.12.152]
[44]
Simsek, E.B. Solvothermal synthesized boron doped TiO2 catalysts: Photocatalytic degradation of endocrine disrupting compounds and pharmaceuticals under visible light irradiation. Appl. Catal. B, 2017, 200, 309-322.
[http://dx.doi.org/10.1016/j.apcatb.2016.07.016]
[45]
Grabowska, E.; Zaleska, A.; Sobczak, J.W.; Gazda, M.; Hupka, J. Boron-doped TiO2: Characteristics and photoactivity under visible light. Procedia Chem., 2009, 1(2), 1553-1559.
[http://dx.doi.org/10.1016/j.proche.2009.11.003]
[46]
Jayadevan, K.; Kerkar, S.S. Microstructural characteristics of boron doped TiO2 nanocrystals. In: A.I.P. Conf. Proc; , 2019; p. 020011.
[http://dx.doi.org/10.1063/1.5130221]
[47]
Koysuren, O.; Koysuren, H.N. Photocatalytic activities of boron doped titanium dioxide nanoparticles and its composite with polyaniline. J. Macromol. Sci. B, 2019, 1-14.
[48]
Andrade Neto, N.F.; Zanatta, P.; Nascimento, L.E.; Nascimento, R.M.; Bomio, M.R.D.; Motta, F.V. Characterization and photoluminescent, photocatalytic and antimicrobial properties of boron-doped TiO2 nanoparticles obtained by microwave-assisted solvothermic method. J. Electron. Mater., 2019, 48(5), 3145-3156.
[http://dx.doi.org/10.1007/s11664-019-07076-y]
[49]
Nogueira, M.V.; Lustosa, G.M.M.M.; Kobayakawa, Y.; Kogler, W.; Ruiz, M.; Monteiro Filho, E.S.; Zaghete, M.A.; Perazolli, L.A. Nb-doped TiO2 photocatalysts used to reduction of CO2 to methanol. Adv. Mater. Sci. Eng., 2018, 2018, 1-8.
[http://dx.doi.org/10.1155/2018/7326240]
[50]
Dong, F.; Guo, S.; Wang, H.; Li, X.; Wu, Z. Enhancement of the visible light photocatalytic activity of c-doped TiO2 nanomaterials prepared by a green synthetic approach. J. Phys. Chem. C, 2011, 115(27), 13285-13292.
[http://dx.doi.org/10.1021/jp111916q]
[51]
Palanivelu, K.; Im, J.-S.; Lee, Y.-S. Carbon doping of TiO2 for visible light photo catalysis-a review. Carbon Lett., 2007, 8(3), 214-224.
[52]
Wu, G.; Nishikawa, T.; Ohtani, B.; Chen, A. Synthesis and characterization of carbon-doped TiO2 nanostructures with enhanced visible light response. Chem. Mater., 2007, 19(18), 4530-4537.
[http://dx.doi.org/10.1021/cm071244m]
[53]
Choi, Y.; Umebayashi, T.; Yoshikawa, M. Fabrication and characterization of c-doped anatase TiO2 photocatalysts. J. Mater. Sci., 2004, 39(5), 1837-1839.
[http://dx.doi.org/10.1023/B:JMSC.0000016198.73153.31]
[54]
Neville, E.M.; Mattle, M.J.; Loughrey, D.; Rajesh, B.; Rahman, M.; MacElroy, J.M.D.; Sullivan, J.A.; Thampi, K.R. Carbon-doped TiO2 and carbon, tungsten-codoped TiO2 through sol–gel processes in the presence of melamine borate: Reflections through photocatalysis. J. Phys. Chem. C, 2012, 116(31), 16511-16521.
[http://dx.doi.org/10.1021/jp303645p]
[55]
Tijani, J.O.; Fatoba, O.O.; Totito, T.; Roos, W.; Petrik, L. Synthesis and characterization of carbon doped TiO2 photocatalysts supported on stainless steel mesh by sol–gel method 2017.
[56]
Zou, Y.; Shi, J-W.; Ma, D.; Fan, Z.; Lu, L.; Niu, C. In situ synthesis of C-doped TiO2@g-C3N4 core-shell hollow nanospheres with enhanced visible-light photocatalytic activity for H2 evolution. Chem. Eng. J., 2017, 322, 435-444.
[http://dx.doi.org/10.1016/j.cej.2017.04.056]
[57]
Shi, J.W.; Zong, X.; Wu, X.; Cui, H.J.; Xu, B.; Wang, L.; Fu, M. Carbon-doped titania hollow spheres with tunable hierarchical macroporous channels and enhanced visible light-induced photocatalytic activity. ChemCatChem, 2012, 4(4), 488-491.
[http://dx.doi.org/10.1002/cctc.201200019]
[58]
Lavand, A.B.; Malghe, Y.S.; Singh, S.H. Synthesis, characterization, and investigation of visible light photocatalytic activity of C doped TiO2/Cds core-shell nanocomposite. Indian J. Mater. Sci., 2015, 2015, 1-9.
[http://dx.doi.org/10.1155/2015/690568]
[59]
Taziwa, R.; Meyer, E. Carbon doped nano-crystalline TiO2 photo-active thin film for solid state photochemical solar cells. Adv. Nanoparticles, 2014, 03, 54-63.
[http://dx.doi.org/10.4236/anp.2014.32008]
[60]
Helmy, E.T.; El Nemr, A.; Mousa, M.; Arafa, E.; Eldafrawy, S. Photocatalytic degradation of organic dyes pollutants in the industrial textile wastewater by using synthesized TiO2, C-doped TiO2, S-doped TiO2 and C, S Co-doped TiO2 nanoparticles. J. Water Environ. Nanotechnol., 2018, 3, 116-127.
[61]
Gebrezgiabher, M.; Gebreslassie, G.; Gebretsadik, T.; Yeabyo, G.; Elemo, F.; Bayeh, Y.; Thomas, M.; Linert, W. A C-doped TiO2/Fe3O4 nanocomposite for photocatalytic dye degradation under natural sunlight irradiation. J. Compos. Sci., 2019, 3(3), 75.
[http://dx.doi.org/10.3390/jcs3030075]
[62]
Yang, Z.; Qin, L.; Tian, P.; Zhang, Y. Review of n and metal co-doped TiO2 for water purification under visible light irradiation. IPCBEE, 2014, 78, 31-40.
[63]
Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001, 293(5528), 269-271.
[http://dx.doi.org/10.1126/science.1061051] [PMID: 11452117]
[64]
Asahi, R.; Morikawa, T.; Irie, H.; Ohwaki, T. Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: Designs, developments, and prospects. Chem. Rev., 2014, 114(19), 9824-9852.
[http://dx.doi.org/10.1021/cr5000738] [PMID: 25216232]
[65]
Ansari, S.A.; Khan, M.M.; Ansari, M.O.; Cho, M.H. Nitrogen-doped titanium dioxide (n-doped TiO2) for visible light photocatalysis. New J. Chem., 2016, 40(4), 3000-3009.
[http://dx.doi.org/10.1039/C5NJ03478G]
[66]
Gomes, J.; Lincho, J.; Domingues, E.; Quinta-Ferreira, R.M.; Martins, R.C. N-TiO2 photocatalysts: A review of their characteristics and capacity for emerging contaminants removal. Water, 2019, 11(2), 373.
[http://dx.doi.org/10.3390/w11020373]
[67]
Huang, F.; Yan, A.; Zhao, H. Influences of doping on photocatalytic properties of TiO2 photocatalyst. In: Semiconductor photocatalysis—materials, mechanisms and applications; Cao, W., Ed.;, 2016; p. 31-80.
[http://dx.doi.org/10.5772/63234]
[68]
Liu, G.; Sun, C.; Smith, S.C.; Wang, L.; Lu, G.Q.M.; Cheng, H.M. Sulfur doped anatase TiO2 single crystals with a high percentage of {0 0 1} facets. J. Colloid Interface Sci., 2010, 349(2), 477-483.
[http://dx.doi.org/10.1016/j.jcis.2010.05.076] [PMID: 20656103]
[69]
Ramacharyulu, P.V.R.K.; Praveen Kumar, J.P.; Prasad, G.K.; Sreedhar, B. Sulphur doped nano TiO2: Synthesis, characterization and photocatalytic degradation of a toxic chemical in presence of sunlight. Mater. Chem. Phys., 2014, 148(3), 692-698.
[http://dx.doi.org/10.1016/j.matchemphys.2014.08.036]
[70]
Ma, D.; Xin, Y.; Gao, M.; Wu, J. Fabrication and photocatalytic properties of cationic and anionic s-doped TiO2 nanofibers by electrospinning. Appl. Catal. B, 2014, 147, 49-57.
[http://dx.doi.org/10.1016/j.apcatb.2013.08.004]
[71]
Lin, X.; Fu, D.; Hao, L.; Ding, Z. Synthesis and enhanced visible-light responsive of C,N,S-tridoped TiO2 hollow spheres. J. Environ. Sci. (China), 2013, 25(10), 2150-2156.
[http://dx.doi.org/10.1016/S1001-0742(13)60414-3] [PMID: 24494503]
[72]
McManamon, C.; O’Connell, J.; Delaney, P.; Rasappa, S.; Holmes, J.D.; Morris, M.A. A facile route to synthesis of s-doped TiO2 nanoparticles for photocatalytic activity. J. Mol. Catal. Chem., 2015, 406, 51-57.
[http://dx.doi.org/10.1016/j.molcata.2015.05.002]
[73]
Cravanzola, S.; Cesano, F.; Gaziano, F.; Scarano, D. Sulfur-doped TiO2: Structure and surface properties. Catalysts, 2017, 7(7), 214.
[http://dx.doi.org/10.3390/catal7070214]
[74]
Le, K.H.; Pham, O.L.K.; Tran, T.T.; Le, V.M. Photocatalytic activities of sulfur doped sr TiO2 under simulated solar irradiation. Sci. Tech. Dev. J., 2016, 19(3), 176-184.
[http://dx.doi.org/10.32508/stdj.v19i3.581]
[75]
Zhu, M.; Zhai, C.; Qiu, L.; Lu, C.; Paton, A.S.; Du, Y.; Goh, M.C. New method to synthesize s-doped TiO2 with stable and highly efficient photocatalytic performance under indoor sunlight irradiation. ACS Sustain. Chem.& Eng., 2015, 3(12), 3123-3129.
[http://dx.doi.org/10.1021/acssuschemeng.5b01137]
[76]
Reszczynska, J.; Esteban, D.A.; Gazda, M.; Zaleska, A. Pr-doped TiO2. The effect of metal content on photocatalytic activity. Physicochem. Probl. Miner. Proces., 2014, 50, 515-524.
[77]
Danish, M.I.; Qazi, I.A.; Zeb, A.; Habib, A.; Awan, M.A.; Khan, Z. Arsenic removal from aqueous solution using pure and metal-doped titania nanoparticles coated on glass beads: Adsorption and column studies. J. Nanomater., 2013, 2013, 1-17.
[http://dx.doi.org/10.1155/2013/873694]
[78]
Estrellan, C.R.; Salim, C.; Hinode, H. Photocatalytic activity of sol–gel derived tio 2 co-doped with iron and niobium. React. Kinet. Catal. Lett., 2009, 98(1), 187-192.
[http://dx.doi.org/10.1007/s11144-009-0061-x]
[79]
Kumar, K.V.A.; Revathy, K.P.; Prathibha, V.; Sunil, T.; Biju, P.R.; Unnikrishnan, N.V. Structural and luminescence enhancement properties of Eu3+/Ag nanocrystallites doped SiO2-TiO2 matrices. J. Rare Earths, 2013, 31(5), 441-448.
[http://dx.doi.org/10.1016/S1002-0721(12)60301-9]
[80]
Barkhade, T.; Banerjee, I. Optical properties of fe doped TiO2 nanocomposites synthesized by sol-gel technique. Mater. Today Proc., 2019, 18, 1204-1209.
[http://dx.doi.org/10.1016/j.matpr.2019.06.582]
[81]
Daghrir, R.; Drogui, P. Advances in technologies for pharmaceuticals and personal care products removal. Robert IEC Res., 2017, 52, 3581-3599.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy