Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Nanocrystals: A Strategic Approach for the Development of Futuristic Nano-formulations and their Patenting Applicability

Author(s): Surya Goel*, Vijay Agarwal and Monika Sachdeva

Volume 18, Issue 3, 2022

Published on: 06 July, 2021

Page: [291 - 303] Pages: 13

DOI: 10.2174/1573413717666210706114535

Price: $65

Abstract

Background: Nanocrystals have been found as potent, beneficial, and advantageous nanocarrier systems for ameliorating the solubility, bioavailability and permeability of those drug candidates that are less water-soluble and permeable. Such an approach possesses many complications that require more research work.

Objective: The main objective of the manuscript is to prepare a review on all the aspects of nanocrystals that includes their advantages, recent advancements, preparation methods, recent patents, marketed products, and some patents related to their characterization techniques.

Methods: This manuscript has been accrued through the help of online and offline journals, books, and other accessible sources. This field involves new developments or inventions in the novel nanocarrier system.

Results: Nanocrystals have been found to exhibit better potentiality to sort out different problems like poor drug absorption, drug-associated side effects, targeted drug delivery. In the last decade, these nanocarriers have been opted for resolving the problem produced due to less soluble drugs. By conducting more research, this field can be more beneficial to the health sector.

Conclusion: Nanocrystals contribute significantly to deliver several drugs via different routes like topical, oral ophthalmic, pulmonary and parenteral. This manuscript substantially shows the applicability and importance of nanocrystals as a drug delivery carrier to treat various health issues.

Keywords: Nanocrystals, solubility, drug moieties, bioavailability, nanocrystal approach, patents.

Graphical Abstract

[1]
Goel, S.; Sachdeva, M.; Agarwal, V. Development and characterization of oral nanosuspension using esomeprazole magnesium trihydrate. Nanosci. Nanotechnol. Asia, 2020, 6, 1-9.
[http://dx.doi.org/10.2174/2210681209666191111113850]
[2]
Al-Kassas, R.; Bansal, M.; Shaw, J. Nanosizing techniques for improving bioavailability of drugs. J. Control. Release, 2017, 260, 202-212.
[http://dx.doi.org/10.1016/j.jconrel.2017.06.003] [PMID: 28603030]
[3]
Malamatari, M.; Taylor, K.M.G.; Malamataris, S.; Douroumis, D.; Kachrimanis, K. Pharmaceutical nanocrystals: Production by wet milling and applications. Drug Discov. Today, 2018, 23(3), 534-547.
[http://dx.doi.org/10.1016/j.drudis.2018.01.016] [PMID: 29326082]
[4]
Mathew, K.; Singh, A.K.; Gabriel, J.J.; Choudhary, K.; Sinnott, S.B.; Davydov, A.V.; Tavazza, F.; Hennig, R.G. Mpinterfaces: A materials project based python tool for high-throughput computational screening of interfacial systems. Comput. Mater. Sci., 2016, 1-11.
[http://dx.doi.org/10.1016/j.commatsci.2016.05.020]
[5]
Fenske, D.; Persau, C.; Dehnen, S.; Anson, C.E. Syntheses and crystal structures of the Ag[bond]S cluster compounds [Ag70S20(SPh)28(dppm)10] (CF3CO2)2 and. [Ag262S100(StBu)62(dppb)6] Angew. Chem. Int. Ed. Engl., 2004, 43(3), 305-309.
[http://dx.doi.org/10.1002/anie.200352351] [PMID: 14705083]
[6]
Mirza, R.M.; Ahirrao, S.P.; Kshirsagar, S.J. A nanocrystal technology to enhance solubility of poorly water soluble drugs. J. Appl. Pharm. Res., 2017, 5(1), 1-13. Available at: https://www.japtronline.com/index.php/joapr/article/view/69
[7]
Balamarkonda, C.H.; Rao, V.S.; Adamkhan, P.; Nama, S.; Brahmaiah, B.; Sasikanth, K. A review on significance of nanocrystals in drug delivery. Int. J. Pharm., 2013, 3(2), 56-61. Available at: https://www.researchgate.net/publication/272565469_ [A_REVIEW_ON_SIGNIFICANCE_OF_NANOCRYSTALS_IN_DRUG_DELIVERY]
[8]
Chogale, M.M.; Ghodake, V.N.; Patravale, V.B. Performance parameters and characterizations of nanocrystals: A brief review. Pharmaceutics, 2016, 8(3), 1-18.
[http://dx.doi.org/10.3390/pharmaceutics8030026] [PMID: 27589788]
[9]
Elsayed, I.; Abdelbary, A.A.; Elshafeey, A.H. Nanosizing of a poorly soluble drug: Technique optimization, factorial analysis, and pharmacokinetic study in healthy human volunteers. Int. J. Nanomedicine, 2014, 9, 2943-2953.
[PMID: 24971006]
[10]
Chan, H.K.; Kwok, P.C. Production methods for nanodrug particles using the bottom-up approach. Adv. Drug Deliv. Rev., 2011, 63(6), 406-416.
[http://dx.doi.org/10.1016/j.addr.2011.03.011] [PMID: 21457742]
[11]
Jarvis, M.; Krishnan, V.; Mitragotri, S. Nanocrystals: A perspective on translational research and clinical studies. Bioeng. Transl. Med., 2018, 4(1), 5-16.
[http://dx.doi.org/10.1002/btm2.10122] [PMID: 30680314]
[12]
Pardeike, J.; Strohmeier, D.M.; Schrödl, N.; Voura, C.; Gruber, M.; Khinast, J.G.; Zimmer, A. Nanosuspensions as advanced printing ink for accurate dosing of poorly soluble drugs in personalized medicines. Int. J. Pharm., 2011, 420(1), 93-100.
[http://dx.doi.org/10.1016/j.ijpharm.2011.08.033] [PMID: 21889582]
[13]
Lai, F.; Pini, E.; Angioni, G.; Manca, M.L.; Perricci, J.; Sinico, C.; Fadda, A.M. Nanocrystals as tool to improve piroxicam dissolution rate in novel orally disintegrating tablets. Eur. J. Pharm. Biopharm., 2011, 79(3), 552-558.
[http://dx.doi.org/10.1016/j.ejpb.2011.07.005] [PMID: 21820052]
[14]
Sharma, P.; Denny, W.A.; Garg, S. Effect of wet milling process on the solid state of indomethacin and simvastatin. Int. J. Pharm., 2009, 380(1-2), 40-48.
[http://dx.doi.org/10.1016/j.ijpharm.2009.06.029] [PMID: 19576976]
[15]
Verma, S.; Gokhale, R.; Burgess, D.J. A comparative study of top-down and bottom-up approaches for the preparation of micro/nanosuspensions. Int. J. Pharm., 2009, 380(1-2), 216-222.
[http://dx.doi.org/10.1016/j.ijpharm.2009.07.005] [PMID: 19596059]
[16]
Moorthi, C.; Kathiresan, K. Fabrication of highly stable sonication assisted curcumin nanocrystals by nano-precipitation method. Drug Inv. Tod., 2013, 5, 66-69.
[http://dx.doi.org/10.1016/j.dit.2013.02.003]
[17]
Pawar, V.K.; Singh, Y.; Meher, J.G.; Gupta, S.; Chourasia, M.K. Engineered nanocrystal technology: In-vivo fate, targeting and applications in drug delivery. J. Control. Release, 2014, 183, 51-66.
[http://dx.doi.org/10.1016/j.jconrel.2014.03.030] [PMID: 24667572]
[18]
Müller, R.H.; Gohla, S.; Keck, C.M. State of the art of nanocrystals-special features, production, nanotoxicology aspects and intracellular delivery. Eur. J. Pharm. Biopharm., 2011, 78(1), 1-9.
[http://dx.doi.org/10.1016/j.ejpb.2011.01.007] [PMID: 21266197]
[19]
Gao, L.; Liu, G.; Ma, J.; Wang, X.; Zhou, L.; Li, X. Drug nanocrystals: In vivo performances. J. Control. Release, 2012, 160(3), 418-430.
[http://dx.doi.org/10.1016/j.jconrel.2012.03.013] [PMID: 22465393]
[20]
Junyaprasert, V.B.; Morakul, B. Nanocrystals for enhancement of oral bioavailability of poorly-water soluble drugs. Asian J. Pharm. Sci., 2015, 10, 13-23.
[http://dx.doi.org/10.1016/j.ajps.2014.08.005]
[21]
Owais, M.; Zia, Q.; Jamal, F.; Zubair, S. Nanocrystal based therapeutics: Scope and potential application in health sciences. Nanomed. Nanotech. J., 2019, 2(1), 1-16. Available at: https://scientificliterature.org/Nanomedicine/Nanomedicine-19-122.pdf
[22]
Kaur, J.; Kumar, S. Development of nanocrystal formulation with improved dissolution. J. Drug Deliv. Ther., 2018, 8(5), 118-129.
[http://dx.doi.org/10.22270/jddt.v8i5.1946]
[23]
Mazumdar, R.; Paul, S.D. Formulation and evaluation of atenolol nanocrystals using 3(2) full factorial design. Nanosci. Nanotechnol. Asia, 2020, 10(3), 306-315.
[http://dx.doi.org/10.2174/2210681209666190220120053]
[24]
Touzet, A.; Pfefferlé, F.; Lamprecht, A.; Pellequer, Y. Formulation of ketoconazole nanocrystals-based cryopellets. AAPS PharmSciTech, 2020, 21(2), 50.
[http://dx.doi.org/10.1208/s12249-019-1570-1] [PMID: 31900727]
[25]
Ma, J.; Yang, Y.; Sun, Y.; Sun, J. Optimization, characterization and in vitro/vivo evaluation of azilsartan nanocrystals. Asian J. Pharm. Sci., 2017, 12(4), 344-352.
[http://dx.doi.org/10.1016/j.ajps.2016.09.008] [PMID: 32104345]
[26]
Khatib, I.; Khanal, D.; Ruan, J.; Cipolla, D.; Dayton, F.; Blanchard, J.D.; Chan, H.K. Ciprofloxacin nanocrystals liposomal powders for controlled drug release via inhalation. Int. J. Pharm., 2019, 566, 641-651.
[http://dx.doi.org/10.1016/j.ijpharm.2019.05.068] [PMID: 31202900]
[27]
Yu, G.; Wang, Y.; Xu, L. Enhanced bioavailability of rebamipide nanocrystal tablets: Formulation and in vitro/in vivo evaluation. Asian J. Pharm. Sci., 2015, 10, 223-229.
[http://dx.doi.org/10.1016/j.ajps.2014.09.006]
[28]
Soisuwan, S.; Teeranachaideekul, V.; Wongrakpanich, A.; Langguth, P.; Junyaprasert, V.B. Impact of uncharged and charged stabilizers on in vitro drug performances of clarithromycin nanocrystals. Eur. J. Pharm. Biopharm., 2019, 137, 68-76.
[http://dx.doi.org/10.1016/j.ejpb.2019.02.004] [PMID: 30769087]
[29]
Sharma, M.; Mehta, I. Surface stabilized atorvastatin nanocrystals with improved bioavailability, safety and antihyperlipidemic potential. Sci. Rep., 2019, 9(1), 16105.
[http://dx.doi.org/10.1038/s41598-019-52645-0] [PMID: 31695118]
[30]
Shinde, G.; Patel, M.; Mehta, M.; Kesarla, R.; Bangale, G. Formulation, optimization, and characterization of repaglinide loaded nanocrystal for diabetes therapy. Adv. Pharm., 2015, 2015, 1-7.
[http://dx.doi.org/10.1155/2015/363061]
[31]
Ravouru, N.; Venna, R.S.A.; Penjuri, S.C.B.; Damineni, S.; Kotakadi, V.S.; Poreddy, S.R. Fabrication and characterization of gliclazide nanocrystals. Adv. Pharm. Bull., 2018, 8(3), 419-427.
[http://dx.doi.org/10.15171/apb.2018.049] [PMID: 30276138]
[32]
Jain, S.; Patel, K.; Arora, S.; Reddy, V.A.; Dora, C.P. Formulation, optimization, and in vitro-in vivo evaluation of olmesartan medoxomil nanocrystals. Drug Deliv. Transl. Res., 2017, 7(2), 292-303.
[http://dx.doi.org/10.1007/s13346-016-0355-2] [PMID: 28116656]
[33]
Sathali, A.H.; Gopinath, M. Formulation and evaluation of paliperidone nanocrystals. Bio. Med. Rx., 2013, 1(5), 422-438. Available at: https://www.academia.edu/20372538/Formulation_and_evaluation_of_Paliperidone_Nanocrystals
[34]
Diddi, N.; Kumar, S.; Pavani, S.; Neelima, P. Formulation and evaluation of liquid nanocrystals of sorafenib tosylate. Glob J. Pharm. Pharma. Sci., 2019, 7(5), 1-6. Available at: https://juniperpublishers.com/gjpps/pdf/GJPPS.MSID.555721.pdf
[35]
Dhole, R.; Path, U.; Jadhav, N. Stabilization of hydrochlorothiazide nanocrystals using fibroin. J. Res. Pharm., 2019, 23(6), 997-1008.
[http://dx.doi.org/10.35333/jrp.2019.64]
[36]
Yarraguntla, S.R.; Enturi, V.; Vyadana, R.; Bommala, S. Formulation and evaluation of lornoxicam nanocrystals with different stabilizers at different concentrations. Asian J. Pharm., 2016, 10(3), 198-207.
[37]
Merisko-Liversidge, E.; Liversidge, G.G.; Cooper, E.R. Nanosizing: A formulation approach for poorly-water-soluble compounds. Eur. J. Pharm. Sci., 2003, 18(2), 113-120.
[http://dx.doi.org/10.1016/S0928-0987(02)00251-8] [PMID: 12594003]
[38]
Langguth, P.; Hanafy, A.; Frenzel, D.; Grenier, P.; Nhamias, A.; Ohlig, T.; Vergnault, G.; Spahn-Langguth, H. Nanosuspension formulations for low-soluble drugs: Pharmacokinetic evaluation using spironolactone as model compound. Drug Dev. Ind. Pharm., 2005, 31(3), 319-329.
[http://dx.doi.org/10.1081/DDC-52182] [PMID: 15830727]
[39]
Agarwal, V.; Bajpai, M. Nanosuspension technology: A strategic approach for poorly soluble drug. Nanosci. Nanotechnol. Asia, 2013, 3, 72-85.
[http://dx.doi.org/10.2174/22106812112029990001]
[40]
Agarwal, V.; Bajpai, M. Nanosuspension technology for poorly soluble drugs: Recent researches, advances and patents. Recent Pat. Nanotechnol., 2015, 9(3), 178-194.
[http://dx.doi.org/10.2174/1872210510999151126112644] [PMID: 27009133]
[41]
Keck, C.M.; Müller, R.H. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur. J. Pharm. Biopharm., 2006, 62(1), 3-16.
[http://dx.doi.org/10.1016/j.ejpb.2005.05.009] [PMID: 16129588]
[42]
Verma, S.; Lan, Y.; Gokhale, R.; Burgess, D.J. Quality by design approach to understand the process of nanosuspension preparation. Int. J. Pharm., 2009, 377(1-2), 185-198.
[http://dx.doi.org/10.1016/j.ijpharm.2009.05.006] [PMID: 19446617]
[43]
Tsai, M.L.; Tseng, L.Z.; Chen, R.H. Two-stage microfluidization combined with ultrafiltration treatment for chitosan mass production and molecular weight manipulation. Carbohydr. Polym., 2009, 77(4), 767-772.
[http://dx.doi.org/10.1016/j.carbpol.2009.02.027]
[44]
Baba, K.; Nishida, K. Steroid nanocrystals prepared using the nano spray dryer B-90. Pharmaceutics, 2013, 5(1), 107-114.
[http://dx.doi.org/10.3390/pharmaceutics5010107] [PMID: 24300400]
[45]
Kahen, K. Shell and core structures for colloidal semiconductor nanocrystals. W.O. Patent 2019/055809Al, 2019.
[46]
Cordero, M.J.; Chen, Y.; Bawendi, M.G. Synthesis of nanocrystals. W.O. Patent 2017/041061Al, 2017.
[47]
Jang, E.J.; Jun, A.E.; Lee, S.H.; Park, J.J.; Kyung, T. Method for preparing multilayer of nanocrystals, and organic-inorganic hybrid electroluminescence device comprising multilayer of nanocrystals prepared by the method. U.S. Patent 2017/0190966A1, 2017.
[48]
Jun, A.E.; Jang, E.J.; Choi, S.J. Interfused nanocrystals and method of preparing the same. U.S. Patent 9637682B2, 2017.
[49]
Luong, J.H.; Lam, E.; Leung, C.W.; Hrapovic, S.; Keith, B. Chitin nanocrystals and process for preparation thereof. W.O. Patent 2015/070346A1, 2015.
[50]
Tonglei, L. Hybrid nanocrystals for treatment and bio-imaging of disease. U.S. Patent 9089619B2, 2015.
[51]
Petersen, R. Cosmetic formulations and method of production thereof nanocrystals for use in topical. U.S. Patent 9114077B2, 2015.
[52]
Kahen, K. Colloidal nanocrystals and method of making. U.S. Patent 9153731B2, 2015.
[53]
Keck, C. Nanocrystals and amorphous nanoparticles and method for production of the same by a low energy process. U.S. Patent 2013/0095198A1, 2013.
[54]
Chen, O.; Bawendi, M.G. Semconductor nanocrystals. U.S. Patent 2013/0240787A1, 2013.
[55]
Oner, L.; Gursoy, R.N. Method for the preparation of ezetimibe nanocrystals. W.O. Patent 2010/144066Al, 2010.
[56]
Goel, S.; Sachdeva, M.; Agarwal, V. Nanosuspension technology: Recent patents on drug delivery and their characterizations. Recent Pat. Drug Deliv. Formul., 2019, 13(2), 91-104.
[http://dx.doi.org/10.2174/1872211313666190614151615] [PMID: 31203813]
[57]
Pal, S.L.; Jana, U.; Manna, P.K.; Mohanta, G.P.; Manavalan, R. Nanoparticle: An overview of preparation and characterization. J. Appl. Pharm. Sci., 2011, 1, 228-234. Available at: https://www.japsonline.com/admin/php/uploads/159_pdf.pdf
[58]
Mourdikoudis, S.; Pallares, R.M.; Thanh, N.T.K. Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties. Nanoscale, 2018, 10(27), 12871-12934.
[http://dx.doi.org/10.1039/C8NR02278J] [PMID: 29926865]
[59]
Thodeti, S.; Reddy, R.M.; Kumar, J.S. Synthesis and characterization of pure and indium doped SnO2 nanoparticles by sol-gel methods. Int. J. Sci. Eng. Res., 2016, 7, 310-317.
[60]
Thodeti, S.; Bantikatla, H.B.; Kumar, Y.K.; Sathish, B. Synthesis and characterization of ZnO nanostructures by oxidation technique. Int. J. Adv. Res. Sci. Engin., 2017, 6, 539-544. Available at: https://www.ijser.org/researchpaper/Synthesis-and-characterization-of-Pure-and-Indium-doped-sno2-nanostructures-by-sol-gel-methods.pdf
[61]
Gupta, A.L.; Kumar, M. Group theory and spectroscopy; Pragati Prakashan: India, 2013.
[62]
Hidenori, O.; Yukio, N.; Kazunori, K. PEG-ylated nanoparticles for biological and pharmaceutical application. Adv. Drug Dev. Res., 2003, 24, 403-419.
[http://dx.doi.org/10.1016/s0169-409x(02)00226-0]
[63]
zur Mühlen, A.; zur Mühlen, E.; Niehus, H.; Mehnert, W. Atomic force microscopy studies of solid lipid nanoparticles. Pharm. Res., 1996, 13(9), 1411-1416.
[http://dx.doi.org/10.1023/A:1016042504830] [PMID: 8893284]
[64]
Shi, H.G.; Farber, L.; Michaels, J.N.; Dickey, A.; Thompson, K.C.; Shelukar, S.D.; Hurter, P.N.; Reynolds, S.D.; Kaufman, M.J. Characterization of crystalline drug nanoparticles using atomic force microscopy and complementary techniques. Pharm. Res., 2003, 20(3), 479-484.
[http://dx.doi.org/10.1023/A:1022676709565] [PMID: 12669972]
[65]
Berthomieu, C.; Hienerwadel, R. Fourier transform infrared (FTIR) spectroscopy. Photosynth. Res., 2009, 101(2-3), 157-170.
[http://dx.doi.org/10.1007/s11120-009-9439-x] [PMID: 19513810]
[66]
Margarita, P.; Quinteiro, R. Fourier transform infrared (FT-IR) technology for the identification of organisms. Clin. Microbiol. Newsl., 2000, 22(8), 57-61.
[http://dx.doi.org/10.1016/S0196-4399(00)88850-9]
[67]
Maquelin, K.; Kirschner, C.; Choo-Smith, L.P.; van den Braak, N.; Endtz, H.P.; Naumann, D.; Puppels, G.J. Identification of medically relevant microorganisms by vibrational spectroscopy. J. Microbiol. Methods, 2002, 51(3), 255-271.
[http://dx.doi.org/10.1016/S0167-7012(02)00127-6] [PMID: 12223286]
[68]
Lipkus, A.H.; Chittur, K.K.; Vesper, S.J.; Robinson, J.B.; Pierce, G.E. Evaluation of infrared spectroscopy as a bacterial identification method. J. Ind. Microbiol., 1990, 6(1), 71-75.
[http://dx.doi.org/10.1007/BF01576179] [PMID: 1366801]
[69]
Curk, M.C.; Peledan, F.; Hubert, J.C. Fourier transforms infrared (FT-IR) spectroscopy for identifying Lactobacillus species. FEMS Microbiol. Lett., 1994, 123, 241-248.
[http://dx.doi.org/10.1111/j.1574-6968.1994.tb07231.x]
[70]
Siebert, F. Infrared spectroscopy applied to biochemical and biological problems.Biochemical spectroscopy, meth. enzymol; Sauer, K., Ed.;; , 1995, 246, pp. 501-526.
[http://dx.doi.org/10.1016/0076-6879(95)46022-5]
[71]
Jackson, M.; Sowa, M.G.; Mantsch, H.H. Infrared spectroscopy: A new frontier in medicine. Biophys. Chem., 1997, 68(1-3), 109-125.
[http://dx.doi.org/10.1016/S0301-4622(97)80555-8] [PMID: 9468614]
[72]
Diem, M.; White, B. Infrared spectroscopy of cells and tissues: Shining light onto a novel subject. Appl. Spectrosc., 1999, 53, 148-161.
[http://dx.doi.org/10.1366/0003702991946712]
[73]
Wenning, M.; Seiler, H.; Scherer, S. Fourier-transform infrared microspectroscopy, a novel and rapid tool for identification of yeasts. Appl. Environ. Microbiol., 2002, 68(10), 4717-4721.
[http://dx.doi.org/10.1128/AEM.68.10.4717-4721.2002] [PMID: 12324312]
[74]
William, I.; Meredith, P. Analytical HPLC methods. W.O. Patent 2019/036683Al, 2019.
[75]
Keady, P.; Peterson, B.; Das, G.; Henry, C.; Dworkin, L.; Blackwood, J.; Stone, S.; Schmidt, M. High throughput tem preparation processes and hardware for backside thinning of cross-sectional view lamella. U.S Patent 9653260B2, 2017.
[76]
Udo, S; Eric, A.; Hendrik, H.; Erdinc, D.O. Tuned oscillator atomic force microscopy methods and apparatus. W.O. Patent 2016/106203A8, 2016.
[77]
Petegem, R.V.; Kakadjian, S.R.; Zamora, F. Method and system using zeta potential. altering compositions as aggregating reagents for sand control. U.S. Patent 8950493 B2, 2015.
[78]
Beiyao, S.; Jiongchong, W. The localization method of SEM/TEM sample. C.N. Patent 103267661B, 2015.
[79]
Sivasankar, S.; Li, H. System, apparatus, and method for simultaneous single-molecule atomic force microscopy and fluorescence measurements. U.S. Patent 8656510B1, 2014.
[80]
Hu, Y.; Hu, S.; Su, C. Method and apparatus of operating a scanning probe microscope. U.S. Patent 8739309B2, 2014.
[81]
Danley, R.L. Quasiadiabatic differential scanning calorimeter. W.O. Patent 2014/039376A3, 2014.
[82]
Shibata, N.; Inami, W.; Sawada, H. Transmission electron microscope. U.S. Patent 8431897B2, 2013.
[83]
Watson, F.M. Continuous particle and macro-molecular zeta potential measurements using field flow fractionation combined microelectrophoresis. U.S. Patent 8573404B2, 2013.
[84]
Haught, R.C.; Klinkhammer, G.P.; Bussell, F.J. Zero angle photon spectrophotometer for monitoring of water system. U.S. Patent 8102518B2, 2012.
[85]
Boughorbel, F.; Kooijman, C.S.; Lich, B.H.; Bosch, E.G. SEM imaging method. U.S Patent 8232523B2, 2012.
[86]
Jonge, N.D. Transmission electron microscopy for imaging live cells. U.S. Patent 2012/0120226, 2012.
[87]
Menard, K.P.; Diz, E.L.; Spragg, R. DSC-RAMEN analytical system and its method. U.S. Patent 2011/0170095, 2011.
[88]
Huikai, X.; Lei, W.; Andrea, P.; Robert, S.S. MEMS-based FTIR spectrometer. W.O. Patent 2010/096081, 2010.
[89]
Gendreau, K.; Martins, J.V.; Arzoumanian, Z. Instrument and method for X-ray diffraction, fluorescence, and crystal texture analysis without sample preparation. U.S. Patent US7796726B1, 2010.
[90]
Bierhoff, M.P.; Buijsse, B.; Kooijman, C.S.; Leeuwen, H.V.; Tappel, H.G.; Sanford, C.A.; Stoks, S.R.M.; Berger, S.; Bormans, B.J.; Driessen, K.A.W.; Persoon, J.A.H. Compact scanning electron microscope. U.S. Patent 2010/0230590, 2010.
[91]
Will, N.; Hielscher, B.; Becker, C.; Andres, B.; Rathke, C. Method for operating an FTIR spectrometer, and FTIR spectrometer. U.S. Patent 2010/0282958A1, 2010.
[92]
Duguet, E.; Vasseur, S.; Mornet, S.; Devoisselle, J.M. Magnetic nanoparticles and their applications in medicine. Nanomedicine (Lond.), 2006, 1(2), 157-168.
[http://dx.doi.org/10.2217/17435889.1.2.157] [PMID: 17716105]
[93]
Junghanns, J.U.; Müller, R.H. Nanocrystal technology, drug delivery and clinical applications. Int. J. Nanomedicine, 2008, 3(3), 295-309.
[PMID: 18990939]
[94]
Weissig, V.; Pettinger, T.K.; Murdock, N. Nanopharmaceuticals (part 1): Products on the market. Int. J. Nanomedicine, 2014, 9, 4357-4373.
[http://dx.doi.org/10.2147/IJN.S46900] [PMID: 25258527]
[95]
Mansour, H.M.; Park, C.W.; Bawa, R. Design and development of approved nanopharmaceutical products. Handbook of clinical nanomedicine from bench to bedside; Bawa, R.; Audette, G.F; Rubinstein, I., Ed.; Pan Stanford Publishing Pvt Ltd: Singapore, 2015, pp. 1-33.
[96]
Marcato, P.D.; Durán, N. New aspects of nanopharmaceutical delivery systems. J. Nanosci. Nanotechnol., 2008, 8(5), 2216-2229.
[http://dx.doi.org/10.1166/jnn.2008.274] [PMID: 18572633]
[97]
Verma, S.; Burgess, D. Solid nanosuspensions: The emerging technology and pharmaceutical applications as nanomedicine. Pharmaceutical suspensions; Kulshreshtha, A.; Singh, O; Wall, G., Ed.; Springer: New York, 2010.
[http://dx.doi.org/10.1007/978-1-4419-1087-5_10]
[98]
Shegokar, R.; Müller, R.H. Nanocrystals: Industrially feasible multifunctional formulation technology for poorly soluble actives. Int. J. Pharm., 2010, 399(1-2), 129-139.
[http://dx.doi.org/10.1016/j.ijpharm.2010.07.044] [PMID: 20674732]
[99]
Agarwal, V.; Bajpai, M. Stability issues related to nanosuspension: A review. Pharm. Nanotechnol., 2013, 1, 85-92.
[http://dx.doi.org/10.2174/2211738511301020004]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy