Review Article

肠道微生物群和炎症性疾病

卷 23, 期 2, 2022

发表于: 23 June, 2021

页: [156 - 169] 页: 14

弟呕挨: 10.2174/1389450122666210623125603

价格: $65

摘要

肠道已被细菌、真菌、病毒、古细菌、真核生物定殖。 人类和细菌细胞的比例为 1:1,而肠道菌群多样性的差异可能导致生态失调。 肠道菌群失调可能导致各种病理表现。 有益的肠道微生物群可以合成短链脂肪酸,如醋酸盐、丁酸盐、丙酸盐。 革兰氏阴性菌是 LPS 的主要来源,LPS 是一种有效的促炎介质。 肠道微生物群和微生物产物都可能参与免疫调节和炎症。 益生元和益生菌正在被探索作为治疗各种炎症和自身免疫性疾病的药物。 在这里,我们讨论了肠道细菌介导的各种炎症和自身免疫性疾病调节的分子机制。

关键词: 微生物群、食物过敏、关节炎、IBD、糖尿病、SLE

图形摘要

[1]
Alam A, Neish A. Role of gut microbiota in intestinal wound healing and barrier function. Tissue Barriers 2018; 6(3): 1539595.
[http://dx.doi.org/10.1080/21688370.2018.1539595] [PMID: 30404570]
[2]
Cheng H-Y, Ning M-X, Chen D-K, Ma W-TJFi. Interactions between the gut microbiota and the host innate immune response against pathogens. Front Immunol 2019; 10: 607.
[http://dx.doi.org/10.3389/fimmu.2019.00607] [PMID: 30984184]
[3]
Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 2016; 14(8): e1002533.
[http://dx.doi.org/10.1371/journal.pbio.1002533] [PMID: 27541692]
[4]
Hugon P, Dufour J-C, Colson P, Fournier P-E, Sallah K, Raoult D. A comprehensive repertoire of prokaryotic species identified in human beings. Lancet Infect Dis 2015; 15(10): 1211-9.
[http://dx.doi.org/10.1016/S1473-3099(15)00293-5] [PMID: 26311042]
[5]
Fouhy F, Ross RP, Fitzgerald GF, Stanton C, Cotter PD. Composition of the early intestinal microbiota: Knowledge, knowledge gaps and the use of high-throughput sequencing to address these gaps. Gut Microbes 2012; 3(3): 203-20.
[http://dx.doi.org/10.4161/gmic.20169] [PMID: 22572829]
[6]
Marques TM, Wall R, Ross RP, Fitzgerald GF, Ryan CA, Stanton C. Programming infant gut microbiota: Influence of dietary and environmental factors. Curr Opin Biotechnol 2010; 21(2): 149-56.
[http://dx.doi.org/10.1016/j.copbio.2010.03.020] [PMID: 20434324]
[7]
Ng KM, Ferreyra JA, Higginbottom SK, et al. Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature 2013; 502(7469): 96-9.
[http://dx.doi.org/10.1038/nature12503] [PMID: 23995682]
[8]
Jakobsson HE, Jernberg C, Andersson AF, Sjölund-Karlsson M, Jansson JK, Engstrand L. Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS One 2010; 5(3): e9836.
[http://dx.doi.org/10.1371/journal.pone.0009836] [PMID: 20352091]
[9]
Willing BP, Russell SL, Finlay BB. Shifting the balance: Antibiotic effects on host-microbiota mutualism. Nat Rev Microbiol 2011; 9(4): 233-43.
[http://dx.doi.org/10.1038/nrmicro2536] [PMID: 21358670]
[10]
Becattini S, Taur Y, Pamer EG. Antibiotic-induced changes in the intestinal microbiota and disease. Trends Mol Med 2016; 22(6): 458-78.
[http://dx.doi.org/10.1016/j.molmed.2016.04.003] [PMID: 27178527]
[11]
Louis P, Hold GL, Flint HJ. The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol 2014; 12(10): 661-72.
[http://dx.doi.org/10.1038/nrmicro3344] [PMID: 25198138]
[12]
Lamichhane S, Sen P, Dickens AM, Orešič M, Bertram HCJM. Gut metabolome meets microbiome: A methodological perspective to understand the relationship between host and microbe. Methods 2018; 149: 3-12.
[http://dx.doi.org/10.1016/j.ymeth.2018.04.029] [PMID: 29715508]
[13]
Ratajczak W, Rył A, Mizerski A, Walczakiewicz K, Sipak O, Laszczyńska M. Immunomodulatory potential of gut microbiome-derived short-chain fatty acids (SCFAs). Acta Biochim Pol 2019; 66(1): 1-12.
[http://dx.doi.org/10.18388/abp.2018_2648] [PMID: 30831575]
[14]
Mou H, Wu S, Zhao G, Wang J, Medicine T. Changes of Th17/Treg ratio in the transition of chronic hepatitis B to liver cirrhosis and correlations with liver function and inflammation. Exp Ther Med 2019; 17(4): 2963-8.
[http://dx.doi.org/10.3892/etm.2019.7299] [PMID: 30936966]
[15]
Forbes JD, Chen CY, Knox NC, et al. A comparative study of the gut microbiota in immune-mediated inflammatory diseases-does a common dysbiosis exist? Microbiome 2018; 6(1): 221.
[http://dx.doi.org/10.1186/s40168-018-0603-4] [PMID: 30545401]
[16]
Aitoro R, Paparo L, Amoroso A, et al. Gut microbiota as a target for preventive and therapeutic intervention against food allergy. Nutrients 2017; 9(7): 672.
[http://dx.doi.org/10.3390/nu9070672] [PMID: 28657607]
[17]
Abrahamsson TR, Jakobsson HE, Andersson AF, Björkstén B, Engstrand L, Jenmalm MC. Low diversity of the gut microbiota in infants with atopic eczema. J Allergy Clin Immunol 2012; 129(2): 434-40.
[http://dx.doi.org/10.1016/j.jaci.2011.10.025]
[18]
Abrahamsson TR, Jakobsson HE, Andersson AF, Björkstén B, Engstrand L, Jenmalm MC. Low gut microbiota diversity in early infancy precedes asthma at school age. Clin Exp Allergy 2014; 44(6): 842-50.
[http://dx.doi.org/10.1111/cea.12253] [PMID: 24330256]
[19]
Bisgaard H, Li N, Bonnelykke K, et al. Reduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age. J Allergy Clin Immunol 2011; 128(3): 646-52.
[http://dx.doi.org/10.1016/j.jaci.2011.04.060]
[20]
Malmström V, Catrina AI, Klareskog L. The immunopathogenesis of seropositive rheumatoid arthritis: From triggering to targeting. Nat Rev Immunol 2017; 17(1): 60-75.
[http://dx.doi.org/10.1038/nri.2016.124] [PMID: 27916980]
[21]
Taneja V. Cytokines pre-determined by genetic factors are involved in pathogenesis of Rheumatoid arthritis. Cytokine 2015; 75(2): 216-21.
[http://dx.doi.org/10.1016/j.cyto.2014.11.028] [PMID: 25541434]
[22]
Espinoza LR, García-Valladares I. Of bugs and joints: The relationship between infection and joints. Reumatol Clin 2013; 9(4): 229-38.
[http://dx.doi.org/10.1016/j.reuma.2012.06.008] [PMID: 22944142]
[23]
Luu M, Visekruna A. Short-chain fatty acids: Bacterial messengers modulating the immunometabolism of T cells. Eur J Immunol 2019; 49(6): 842-8.
[http://dx.doi.org/10.1002/eji.201848009] [PMID: 31054154]
[24]
Holers VM. Autoimmunity to citrullinated proteins and the initiation of rheumatoid arthritis. Curr Opin Immunol 2013; 25(6): 728-35.
[http://dx.doi.org/10.1016/j.coi.2013.09.018] [PMID: 24215742]
[25]
Maeda Y, Kurakawa T, Umemoto E, et al. Dysbiosis contributes to arthritis development via activation of autoreactive T cells in the intestine. Arthritis Rheumatol 2016; 68(11): 2646-61.
[http://dx.doi.org/10.1002/art.39783] [PMID: 27333153]
[26]
Lourido L, Blanco FJ, Ruiz-Romero C. Defining the proteomic landscape of rheumatoid arthritis: Progress and prospective clinical applications. Expert Rev Proteomics 2017; 14(5): 431-44.
[http://dx.doi.org/10.1080/14789450.2017.1321481] [PMID: 28425787]
[27]
Lee N, Kim W-U. Microbiota in T-cell homeostasis and inflammatory diseases. Exp Mol Med 2017; 49(5): e340-0.
[http://dx.doi.org/10.1038/emm.2017.36] [PMID: 28546563]
[28]
Luckey D, Gomez A, Murray J, White B, Taneja V. Bugs & us: The role of the gut in autoimmunity. Indian J Med Res 2013; 138(5): 732-43.
[PMID: 24434325]
[29]
Amdekar S, Singh V, Singh R, Sharma P, Keshav P, Kumar A. Lactobacillus casei reduces the inflammatory joint damage associated with collagen-induced arthritis (CIA) by reducing the pro-inflammatory cytokines: Lactobacillus casei: COX-2 inhibitor. J Clin Immunol 2011; 31(2): 147-54.
[http://dx.doi.org/10.1007/s10875-010-9457-7] [PMID: 20838859]
[30]
Wu H-J, Ivanov II, Darce J, et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 2010; 32(6): 815-27.
[http://dx.doi.org/10.1016/j.immuni.2010.06.001] [PMID: 20620945]
[31]
Ivanov II, Atarashi K, Manel N, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 2009; 139(3): 485-98.
[http://dx.doi.org/10.1016/j.cell.2009.09.033] [PMID: 19836068]
[32]
Scher JU, Abramson SB. The microbiome and rheumatoid arthritis. Nat Rev Rheumatol 2011; 7(10): 569-78.
[http://dx.doi.org/10.1038/nrrheum.2011.121] [PMID: 21862983]
[33]
Marietta EV, Murray JA, Luckey DH, et al. Suppression of inflammatory arthritis by human gut-derived Prevotella histicola in humanized mice. Arthritis Rheumatol 2016; 68(12): 2878-88.
[http://dx.doi.org/10.1002/art.39785] [PMID: 27337150]
[34]
Wei F, Xu H, Yan C, Rong C, Liu B, Zhou H. Changes of intestinal flora in patients with systemic lupus erythematosus in northeast China. PLoS One 2019; 14(3): e0213063.
[http://dx.doi.org/10.1371/journal.pone.0213063] [PMID: 30870437]
[35]
Luo XM, Edwards MR, Mu Q, et al. Gut microbiota in human systemic lupus erythematosus and a mouse model of lupus. Appl Environ Microbiol 2018; 84(4): e02288-17.
[http://dx.doi.org/10.1128/AEM.02288-17] [PMID: 29196292]
[36]
Pacheco G V, Cruz D C, Herrera L J G, et al. Copy number variation of TLR-7 gene and its association with the development of systemic lupus erythematosus in female patients from Yucatan Mexico. Genet Epigenet 2014; 6: 31-6.
[http://dx.doi.org/10.4137/GEG.S16707]
[37]
Manfredo Vieira S, Hiltensperger M, Kumar V, et al. Translocation of a gut pathobiont drives autoimmunity in mice and humans. Science 2018; 359(6380): 1156-61.
[http://dx.doi.org/10.1126/science.aar7201] [PMID: 29590047]
[38]
Choi JY, Ho JHe, Pasoto SG, et al. Circulating follicular helper-like T cells in systemic lupus erythematosus: Association with disease activity. Arthritis Rheumatol 2015; 67(4): 988-99.
[http://dx.doi.org/10.1002/art.39020] [PMID: 25581113]
[39]
von Spee-Mayer C, Siegert E, Abdirama D, et al. Low-dose interleukin-2 selectively corrects regulatory T cell defects in patients with systemic lupus erythematosus. Ann Rheum Dis 2016; 75(7): 1407-15.
[http://dx.doi.org/10.1136/annrheumdis-2015-207776] [PMID: 26324847]
[40]
Li Y, Wang H-F, Li X, et al. Disordered intestinal microbes are associated with the activity of Systemic Lupus Erythematosus. Clin Sci (Lond) 2019; 133(7): 821-38.
[http://dx.doi.org/10.1042/CS20180841] [PMID: 30872359]
[41]
Mu Q, Zhang H, Liao X, et al. Control of lupus nephritis by changes of gut microbiota. Microbiome 2017; 5(1): 73.
[http://dx.doi.org/10.1186/s40168-017-0300-8] [PMID: 28697806]
[42]
Hevia A, Milani C, López P, et al. Intestinal dysbiosis associated with systemic lupus erythematosus. MBio 2014; 5(5): e01548-14.
[http://dx.doi.org/10.1128/mBio.01548-14] [PMID: 25271284]
[43]
Rosenbaum JT, Silverman GJ. The microbiome and systemic lupus erythematosus. N Engl J Med 2018; 378(23): 2236-7.
[http://dx.doi.org/10.1056/NEJMcibr1804368] [PMID: 29874543]
[44]
Silverman GJ. The microbiome in SLE pathogenesis. Nat Rev Rheumatol 2019; 15(2): 72-4.
[http://dx.doi.org/10.1038/s41584-018-0152-z] [PMID: 30607012]
[45]
Zhang X, Deeke SA, Ning Z, et al. Metaproteomics reveals associations between microbiome and intestinal extracellular vesicle proteins in pediatric inflammatory bowel disease. Nat Commun 2018; 9(1): 2873.
[http://dx.doi.org/10.1038/s41467-018-05357-4] [PMID: 30030445]
[46]
Zhou Y, Xu ZZ, He Y, et al. Gut microbiota offers universal biomarkers across ethnicity in inflammatory bowel disease diagnosis and infliximab response prediction. mSystems 2018; 3(1): e00188-17.
[http://dx.doi.org/10.1128/mSystems.00188-17] [PMID: 29404425]
[47]
Belkaid Y, Bouladoux N, Hand TW. Effector and memory T cell responses to commensal bacteria. Trends Immunol 2013; 34(6): 299-306.
[http://dx.doi.org/10.1016/j.it.2013.03.003] [PMID: 23643444]
[48]
Morgan XC, Tickle TL, Sokol H, et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol 2012; 13(9): R79.
[http://dx.doi.org/10.1186/gb-2012-13-9-r79] [PMID: 23013615]
[49]
Kang S, Denman SE, Morrison M, et al. Dysbiosis of fecal microbiota in Crohn’s disease patients as revealed by a custom phylogenetic microarray. Inflamm Bowel Dis 2010; 16(12): 2034-42.
[http://dx.doi.org/10.1002/ibd.21319] [PMID: 20848492]
[50]
Gkouskou KK, Deligianni C, Tsatsanis C, Eliopoulos AG. The gut microbiota in mouse models of inflammatory bowel disease. Front Cell Infect Microbiol 2014; 4: 28.
[http://dx.doi.org/10.3389/fcimb.2014.00028] [PMID: 24616886]
[51]
Mondot S, Kang S, Furet J-P, et al. Highlighting new phylogenetic specificities of Crohn’s disease microbiota. Inflamm Bowel Dis 2011; 17(1): 185-92.
[http://dx.doi.org/10.1002/ibd.21436] [PMID: 20722058]
[52]
Hedin CR, McCarthy NE, Louis P, et al. Altered intestinal microbiota and blood T cell phenotype are shared by patients with Crohn’s disease and their unaffected siblings. Gut 2014; 63(10): 1578-86.
[http://dx.doi.org/10.1136/gutjnl-2013-306226] [PMID: 24398881]
[53]
Nguyen GC. Editorial: Bugs and drugs: Insights into the pathogenesis of inflammatory bowel disease. Am J Gastroenterol 2011; 106(12): 2143-5.
[http://dx.doi.org/10.1038/ajg.2011.308] [PMID: 22138941]
[54]
Li J, Butcher J, Mack D, Stintzi A. Functional impacts of the intestinal microbiome in the pathogenesis of inflammatory bowel disease. Inflamm Bowel Dis 2015; 21(1): 139-53.
[http://dx.doi.org/10.1097/MIB.0000000000000215] [PMID: 25248007]
[55]
Bien J, Palagani V, Bozko P. The intestinal microbiota dysbiosis and Clostridium difficile infection: Is there a relationship with inflammatory bowel disease? Therap Adv Gastroenterol 2013; 6(1): 53-68.
[http://dx.doi.org/10.1177/1756283X12454590] [PMID: 23320050]
[56]
Feng Q, Chen W-D, Wang YD. Gut microbiota: An integral moderator in health and disease. Front Microbiol 2018; 9: 151.
[http://dx.doi.org/10.3389/fmicb.2018.00151] [PMID: 29515527]
[57]
Yang HE, Li Y, Nishimura A, et al. Synthesized enone fatty acids resembling metabolites from gut microbiota suppress macrophage-mediated inflammation in adipocytes. Mol Nutr Food Res 2017; 61(10): 1700064.
[http://dx.doi.org/10.1002/mnfr.201700064]
[58]
Singh N, Gurav A, Sivaprakasam S, et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 2014; 40(1): 128-39.
[http://dx.doi.org/10.1016/j.immuni.2013.12.007] [PMID: 24412617]
[59]
Atarashi K, Tanoue T, Oshima K, et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 2013; 500(7461): 232-6.
[http://dx.doi.org/10.1038/nature12331] [PMID: 23842501]
[60]
Wilson A, Teft WA, Morse BL, et al. Trimethylamine-N-oxide: A novel biomarker for the identification of inflammatory bowel disease. Dig Dis Sci 2015; 60(12): 3620-30.
[http://dx.doi.org/10.1007/s10620-015-3797-3] [PMID: 26160437]
[61]
Brockmann L, Soukou S, Steglich B, et al. Molecular and functional heterogeneity of IL-10-producing CD4+ T cells. Nat Commun 2018; 9(1): 5457.
[http://dx.doi.org/10.1038/s41467-018-07581-4] [PMID: 30575716]
[62]
Atarashi K, Tanoue T, Shima T, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 2011; 331(6015): 337-41.
[http://dx.doi.org/10.1126/science.1198469] [PMID: 21205640]
[63]
Luo Y, de Lange KM, Jostins L, et al. Exploring the genetic architecture of inflammatory bowel disease by whole-genome sequencing identifies association at ADCY7. Nat Genet 2017; 49(2): 186-92.
[http://dx.doi.org/10.1038/ng.3761] [PMID: 28067910]
[64]
Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell 2014; 157(1): 121-41.
[http://dx.doi.org/10.1016/j.cell.2014.03.011] [PMID: 24679531]
[65]
Varga J, Trojanowska M, Kuwana MJJS, Disorders R. Pathogenesis of systemic sclerosis: Recent insights of molecular and cellular mechanisms and therapeutic opportunities. J Scleroderma Relat Disord 2017; 2(3): 137-52.
[http://dx.doi.org/10.5301/jsrd.5000249]
[66]
Hochberg M, Silman A, Smolen J, Weinblatt M, Weisman MJR. Epidemiology and classification of scleroderma. Rheumatology 2010.
[67]
Walker UA, Tyndall A, Czirják L, et al. Clinical risk assessment of organ manifestations in systemic sclerosis: A report from the EULAR Scleroderma Trials And Research group database. Ann Rheum Dis 2007; 66(6): 754-63.
[http://dx.doi.org/10.1136/ard.2006.062901] [PMID: 17234652]
[68]
Gyger G, Baron M. Gastrointestinal manifestations of scleroderma: Recent progress in evaluation, pathogenesis, and management. Curr Rheumatol Rep 2012; 14(1): 22-9.
[http://dx.doi.org/10.1007/s11926-011-0217-3] [PMID: 22105546]
[69]
Volkmann ER, Chang YL, Barroso N, et al. Association of systemic sclerosis with a unique colonic microbial consortium. Arthritis Rheumatol 2016; 68(6): 1483-92.
[http://dx.doi.org/10.1002/art.39572] [PMID: 26749064]
[70]
Slobodin G, Rimar D. Regulatory T cells in systemic sclerosis: A comprehensive review. Clin Rev Allergy Immunol 2017; 52(2): 194-201.
[http://dx.doi.org/10.1007/s12016-016-8563-6] [PMID: 27318947]
[71]
van den Hoogen F, Khanna D, Fransen J, et al. 2013 classification criteria for systemic sclerosis: an American College of Rheumatology/European League against Rheumatism collaborative initiative. Arthritis Rheum 2013; 65(11): 2737-47.
[http://dx.doi.org/10.1002/art.38098] [PMID: 24122180]
[72]
Joseph CG, Darrah E, Shah AA, et al. Association of the autoimmune disease scleroderma with an immunologic response to cancer. Science 2014; 343(6167): 152-7.
[http://dx.doi.org/10.1126/science.1246886] [PMID: 24310608]
[73]
Levkovich T, Poutahidis T, Smillie C, et al. Probiotic bacteria induce a ‘glow of health’. PLoS One 2013; 8(1): e53867.
[http://dx.doi.org/10.1371/journal.pone.0053867] [PMID: 23342023]
[74]
O’Neill CA, Monteleone G, McLaughlin JT, Paus R. The gut-skin axis in health and disease: A paradigm with therapeutic implications. BioEssays 2016; 38(11): 1167-76.
[http://dx.doi.org/10.1002/bies.201600008] [PMID: 27554239]
[75]
Parisi R, Symmons DP, Griffiths CE, Ashcroft DM. Global epidemiology of psoriasis: A systematic review of incidence and prevalence. J Invest Dermatol 2013; 133(2): 377-85.
[http://dx.doi.org/10.1038/jid.2012.339] [PMID: 23014338]
[76]
Global report on psoriasis.World Health Organization. Geneva: Global 2016.
[77]
Gisondi P, Fostini AC, Fossà I, Girolomoni G, Targher G. Psoriasis and the metabolic syndrome. Clin Dermatol 2018; 36(1): 21-8.
[http://dx.doi.org/10.1016/j.clindermatol.2017.09.005] [PMID: 29241748]
[78]
McKenzie C, Tan J, Macia L, Mackay CR. The nutrition-gut microbiome-physiology axis and allergic diseases. Immunol Rev 2017; 278(1): 277-95.
[http://dx.doi.org/10.1111/imr.12556] [PMID: 28658542]
[79]
Mazidi M, Rezaie P, Kengne AP, Mobarhan MG, Ferns GA. Gut microbiome and metabolic syndrome. Diabetes Metab Syndr 2016; 10(2)(Suppl. 1): S150-7.
[http://dx.doi.org/10.1016/j.dsx.2016.01.024] [PMID: 26916014]
[80]
Eppinga H, Konstantinov SR, Peppelenbosch MP, Thio HB. The microbiome and psoriatic arthritis. Curr Rheumatol Rep 2014; 16(3): 407.
[http://dx.doi.org/10.1007/s11926-013-0407-2] [PMID: 24474190]
[81]
Verstockt B, Van Assche G, Vermeire S, Ferrante M. Biological therapy targeting the IL-23/IL-17 axis in inflammatory bowel disease. Expert Opin Biol Ther 2017; 17(1): 31-47.
[http://dx.doi.org/10.1080/14712598.2017.1258399] [PMID: 27817215]
[82]
Scher JU, Ubeda C, Artacho A, et al. Decreased bacterial diversity characterizes the altered gut microbiota in patients with psoriatic arthritis, resembling dysbiosis in inflammatory bowel disease. Arthritis Rheumatol 2015; 67(1): 128-39.
[http://dx.doi.org/10.1002/art.38892] [PMID: 25319745]
[83]
Shapiro J, Cohen NA, Shalev V, Uzan A, Koren O, Maharshak N. Psoriatic patients have a distinct structural and functional fecal microbiota compared with controls. J Dermatol 2019; 46(7): 595-603.
[http://dx.doi.org/10.1111/1346-8138.14933] [PMID: 31141234]
[84]
Eppinga H, Sperna Weiland CJ, Thio HB, et al. Similar depletion of protective Faecalibacterium prausnitzii in psoriasis and inflammatory bowel disease, but not in hidradenitis suppurativa. J Crohn’s Colitis 2016; 10(9): 1067-75.
[http://dx.doi.org/10.1093/ecco-jcc/jjw070] [PMID: 26971052]
[85]
Tan L, Zhao S, Zhu W, et al. The Akkermansia muciniphila is a gut microbiota signature in psoriasis. Exp Dermatol 2018; 27(2): 144-9.
[http://dx.doi.org/10.1111/exd.13463] [PMID: 29130553]
[86]
Groeger D, O’Mahony L, Murphy EF, et al. Bifidobacterium infantis 35624 modulates host inflammatory processes beyond the gut. Gut Microbes 2013; 4(4): 325-39.
[http://dx.doi.org/10.4161/gmic.25487] [PMID: 23842110]
[87]
Huang BL, Chandra S, Shih DQ. Skin manifestations of inflammatory bowel disease. Front Physiol 2012; 3: 13.
[http://dx.doi.org/10.3389/fphys.2012.00013] [PMID: 22347192]
[88]
Takeshita J, Grewal S, Langan SM, et al. Psoriasis and comorbid diseases: Epidemiology. J Am Acad Dermatol 2017; 76(3): 377-90.
[http://dx.doi.org/10.1016/j.jaad.2016.07.064] [PMID: 28212759]
[89]
Simpson EL, Chalmers JR, Hanifin JM, et al. Emollient enhancement of the skin barrier from birth offers effective atopic dermatitis prevention. J Allergy Clin Immunol 2014; 134(4): 818-23.
[http://dx.doi.org/10.1016/j.jaci.2014.08.005] [PMID: 25282563]
[90]
Seite S, Bieber T. Barrier function and microbiotic dysbiosis in atopic dermatitis. Clin Cosmet Investig Dermatol 2015; 8: 479-83.
[http://dx.doi.org/10.2147/CCID.S91521] [PMID: 26396539]
[91]
Bin L, Leung DY. Genetic and epigenetic studies of atopic dermatitis. Allergy Asthma Clin Immunol 2016; 12(1): 52.
[http://dx.doi.org/10.1186/s13223-016-0158-5] [PMID: 27777593]
[92]
Johnson CC, Ownby DR. The infant gut bacterial microbiota and risk of pediatric asthma and allergic diseases. Transl Res 2017; 179: 60-70.
[http://dx.doi.org/10.1016/j.trsl.2016.06.010] [PMID: 27469270]
[93]
Purchiaroni F, Tortora A, Gabrielli M, et al. The role of intestinal microbiota and the immune system. Eur Rev Med Pharmacol Sci 2013; 17(3): 323-33.
[PMID: 23426535]
[94]
Lee E, Lee S-Y, Kang M-J, et al. Clostridia in the gut and onset of atopic dermatitis via eosinophilic inflammation. Ann Allergy, Asthma Immunol 2016; 117(1): 91-2.
[http://dx.doi.org/10.1016/j.anai.2016.04.019]
[95]
Nylund L, Nermes M, Isolauri E, Salminen S, de Vos WM, Satokari R. Severity of atopic disease inversely correlates with intestinal microbiota diversity and butyrate-producing bacteria. Allergy 2015; 70(2): 241-4.
[http://dx.doi.org/10.1111/all.12549] [PMID: 25413686]
[96]
Geuking MB, Cahenzli J, Lawson MA, et al. Intestinal bacterial colonization induces mutualistic regulatory T cell responses. Immunity 2011; 34(5): 794-806.
[http://dx.doi.org/10.1016/j.immuni.2011.03.021] [PMID: 21596591]
[97]
Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013; 504(7480): 446-50.
[http://dx.doi.org/10.1038/nature12721] [PMID: 24226770]
[98]
Salem I, Ramser A, Isham N, Ghannoum MA. The gut microbiome as a major regulator of the gut-skin axis. Front Microbiol 2018; 9: 1459.
[http://dx.doi.org/10.3389/fmicb.2018.01459] [PMID: 30042740]
[99]
Won TJ, Kim B, Lim YT, et al. Oral administration of Lactobacillus strains from Kimchi inhibits atopic dermatitis in NC / Nga mice. J Appl Microbiol 2011; 110(5): 1195-202.
[http://dx.doi.org/10.1111/j.1365-2672.2011.04981.x] [PMID: 21338447]
[100]
Lee SH, Yoon JM, Kim YH, Jeong DG, Park S, Kang DJ. Therapeutic effect of tyndallized Lactobacillus rhamnosus IDCC 3201 on atopic dermatitis mediated by down-regulation of immunoglobulin E in NC/Nga mice. Microbiol Immunol 2016; 60(7): 468-76.
[http://dx.doi.org/10.1111/1348-0421.12390] [PMID: 27240551]
[101]
Arrieta M-C, Stiemsma L T, Dimitriu P A, et al. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci Transl Med 2015; 7(307): 307ra152.
[http://dx.doi.org/10.1126/scitranslmed.aab2271]
[102]
Iweala OI, Burks AW. Food allergy: Our evolving understanding of its pathogenesis, prevention, and treatment. Curr Allergy Asthma Rep 2016; 16(5): 37.
[http://dx.doi.org/10.1007/s11882-016-0616-7] [PMID: 27041704]
[103]
Yu W, Freeland DMH, Nadeau KCJNRI. Food allergy: Immune mechanisms, diagnosis and immunotherapy. Nat Rev Immunol 2016; 16(12): 751-65.
[http://dx.doi.org/10.1038/nri.2016.111] [PMID: 27795547]
[104]
Jeebhay MF, Moscato G, Bang BE, et al. Food processing and occupational respiratory allergy- An EAACI position paper. Allergy 2019; 74(10): 1852-71.
[http://dx.doi.org/10.1111/all.13807] [PMID: 30953601]
[105]
Sampath V, Tupa D, Graham MT, Chatila TA, Spergel JM, Nadeau KCJAA. Deciphering the black box of food allergy mechanisms. Ann Allergy Asthma Immunol 2017; 118(1): 21-7.
[http://dx.doi.org/10.1016/j.anai.2016.10.017] [PMID: 28007085]
[106]
Hadis U, Wahl B, Schulz O, et al. Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria. Immunity 2011; 34(2): 237-46.
[http://dx.doi.org/10.1016/j.immuni.2011.01.016] [PMID: 21333554]
[107]
Yokota-Nakatsuma A, Takeuchi H, Ohoka Y, et al. Retinoic acid prevents mesenteric lymph node dendritic cells from inducing IL-13-producing inflammatory Th2 cells. Mucosal Immunol 2014; 7(4): 786-801.
[http://dx.doi.org/10.1038/mi.2013.96] [PMID: 24220301]
[108]
Stefka AT, Feehley T, Tripathi P, et al. Commensal bacteria protect against food allergen sensitization. Proc Natl Acad Sci USA 2014; 111(36): 13145-50.
[http://dx.doi.org/10.1073/pnas.1412008111] [PMID: 25157157]
[109]
Fyhrquist N, Ruokolainen L, Suomalainen A, et al. Acinetobacter species in the skin microbiota protect against allergic sensitization and inflammation. J Allergy Clin Immunol 2014; 134(6): 1301-9.
[http://dx.doi.org/10.1016/j.jaci.2014.07.059]
[110]
Christiansen SC, Zuraw BL. Treatment of hypertension in patients with asthma. N Engl J Med 2019; 381(11): 1046-57.
[http://dx.doi.org/10.1056/NEJMra1800345] [PMID: 31509675]
[111]
Marsland BJ, Trompette A, Gollwitzer ES. The gut–lung axis in respiratory disease. Ann Am Thorac Soc 2015; 12(Suppl. 2): S150-6.
[PMID: 26595731]
[112]
Sze MA, Tsuruta M, Yang S-WJ, et al. Changes in the bacterial microbiota in gut, blood, and lungs following acute LPS instillation into mice lungs. PLoS One 2014; 9(10): e111228.
[http://dx.doi.org/10.1371/journal.pone.0111228] [PMID: 25333938]
[113]
Arrieta M-C, Arévalo A, Stiemsma L, et al. Associations between infant fungal and bacterial dysbiosis and childhood atopic wheeze in a nonindustrialized setting. J Allergy Clin Immunol 2018; 142(2): 424-34.
[http://dx.doi.org/10.1016/j.jaci.2017.08.041]
[114]
Roduit C, Frei R, Ferstl R, et al. High levels of butyrate and propionate in early life are associated with protection against atopy. Allergy 2019; 74(4): 799-809.
[http://dx.doi.org/10.1111/all.13660] [PMID: 30390309]
[115]
White DL, Kanwal F, Jiao L, El-Serag HB. Epidemiology of hepatocellular carcinoma.Hepatocellular Carcinoma. Springer 2016; pp. 3-24.
[http://dx.doi.org/10.1007/978-3-319-34214-6_1]
[116]
Wong MC, Jiang JY, Goggins WB, et al. International incidence and mortality trends of liver cancer: A global profile. Sci Rep 2017; 7: 45846.
[http://dx.doi.org/10.1038/srep45846] [PMID: 28361988]
[117]
Wieland A, Frank DN, Harnke B, Bambha K. Systematic review: Microbial dysbiosis and nonalcoholic fatty liver disease. Aliment Pharmacol Ther 2015; 42(9): 1051-63.
[http://dx.doi.org/10.1111/apt.13376] [PMID: 26304302]
[118]
Tilg H, Cani PD, Mayer EA. Gut microbiome and liver diseases. Gut 2016; 65(12): 2035-44.
[http://dx.doi.org/10.1136/gutjnl-2016-312729] [PMID: 27802157]
[119]
Acharya C, Bajaj JS. Gut microbiota and complications of liver disease. Gastroenterol Clin North Am 2017; 46(1): 155-69.
[http://dx.doi.org/10.1016/j.gtc.2016.09.013] [PMID: 28164848]
[120]
Henao-Mejia J, Elinav E, Thaiss CA, Flavell RA. The intestinal microbiota in chronic liver disease.Advances in immunology. Elsevier 2013; Vol. 117: pp. 73-97.
[121]
Compare D, Coccoli P, Rocco A, et al. Gut--liver axis: The impact of gut microbiota on non alcoholic fatty liver disease. Nutr Metab Cardiovasc Dis 2012; 22(6): 471-6.
[http://dx.doi.org/10.1016/j.numecd.2012.02.007] [PMID: 22546554]
[122]
Sherman M. Hepatocellular carcinoma: Epidemiology, surveillance, and diagnosis, Seminars in liver disease. Thieme Medical Publishers 2010; pp. 003-16.
[123]
Thaiss CA, Zmora N, Levy M, Elinav E. The microbiome and innate immunity. Nature 2016; 535(7610): 65-74.
[http://dx.doi.org/10.1038/nature18847] [PMID: 27383981]
[124]
Chassaing B, Etienne-Mesmin L, Gewirtz AT. Microbiota-liver axis in hepatic disease. Hepatology 2014; 59(1): 328-39.
[http://dx.doi.org/10.1002/hep.26494] [PMID: 23703735]
[125]
Yu L-X, Schwabe RFJNG. hepatology, The gut microbiome and liver cancer: mechanisms and clinical translation. Gastroenterol Hepatol (N Y) 2017; 14(9): 527.
[PMID: 29038643]
[126]
Betrapally NS, Gillevet PM, Bajaj JS. Gut microbiome and liver disease. Transl Res 2017; 179: 49-59.
[http://dx.doi.org/10.1016/j.trsl.2016.07.005] [PMID: 27477080]
[127]
Brandi G, De Lorenzo S, Candela M, et al. Microbiota, NASH, HCC and the potential role of probiotics. Carcinogenesis 2017; 38(3): 231-40.
[http://dx.doi.org/10.1093/carcin/bgx007] [PMID: 28426878]
[128]
Miura K, Kodama Y, Inokuchi S, et al. Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1β in mice. Gastroenterology 2010; 139(1): 323-34.
[http://dx.doi.org/10.1053/j.gastro.2010.03.052]
[129]
Arpaia N, Campbell C, Fan X, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 2013; 504(7480): 451-5.
[http://dx.doi.org/10.1038/nature12726] [PMID: 24226773]
[130]
Kverka M, Zakostelska Z, Klimesova K, et al. Oral administration of Parabacteroides distasonis antigens attenuates experimental murine colitis through modulation of immunity and microbiota composition. Clin Exp Immunol 2011; 163(2): 250-9.
[http://dx.doi.org/10.1111/j.1365-2249.2010.04286.x] [PMID: 21087444]
[131]
Raparelli V, Basili S, Carnevale R, et al. Low-grade endotoxemia and platelet activation in cirrhosis. Hepatology 2017; 65(2): 571-81.
[http://dx.doi.org/10.1002/hep.28853] [PMID: 27641757]
[132]
Liu Q, Li F, Zhuang Y, et al. Alteration in gut microbiota associated with hepatitis B and non-hepatitis virus related hepatocellular carcinoma. Gut Pathog 2019; 11(1): 1-13.
[http://dx.doi.org/10.1186/s13099-018-0281-6] [PMID: 30675188]
[133]
Yamada S, Takashina Y, Watanabe M, et al. Bile acid metabolism regulated by the gut microbiota promotes non-alcoholic steatohepatitis-associated hepatocellular carcinoma in mice. Oncotarget 2018; 9(11): 9925-39.
[http://dx.doi.org/10.18632/oncotarget.24066] [PMID: 29515780]
[134]
Dapito DH, Mencin A, Gwak G-Y, et al. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell 2012; 21(4): 504-16.
[http://dx.doi.org/10.1016/j.ccr.2012.02.007] [PMID: 22516259]
[135]
Zhang H-L, Yu L-X, Yang W, et al. Profound impact of gut homeostasis on chemically-induced pro-tumorigenic inflammation and hepatocarcinogenesis in rats. J Hepatol 2012; 57(4): 803-12.
[http://dx.doi.org/10.1016/j.jhep.2012.06.011] [PMID: 22727732]
[136]
Arora T, Bäckhed F. The gut microbiota and metabolic disease: current understanding and future perspectives. J Intern Med 2016; 280(4): 339-49.
[http://dx.doi.org/10.1111/joim.12508] [PMID: 27071815]
[137]
Le Chatelier E, Nielsen T, Qin J, et al. Richness of human gut microbiome correlates with metabolic markers. Nature 2013; 500(7464): 541-6.
[http://dx.doi.org/10.1038/nature12506] [PMID: 23985870]
[138]
Mekkes MC, Weenen TC, Brummer RJ, Claassen E. The development of probiotic treatment in obesity: A review. Benef Microbes 2014; 5(1): 19-28.
[http://dx.doi.org/10.3920/BM2012.0069] [PMID: 23886977]
[139]
Caricilli AM, Picardi PK, de Abreu LL, et al. Gut microbiota is a key modulator of insulin resistance in TLR 2 knockout mice. PLoS Biol 2011; 9(12): e1001212.
[http://dx.doi.org/10.1371/journal.pbio.1001212] [PMID: 22162948]
[140]
Kim K-A, Gu W, Lee I-A, Joh E-H, Kim D-H. High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway. PLoS One 2012; 7(10): e47713.
[http://dx.doi.org/10.1371/journal.pone.0047713] [PMID: 23091640]
[141]
Garidou L, Pomié C, Klopp P, et al. The gut microbiota regulates intestinal CD4 T cells expressing RORγt and controls metabolic disease. Cell Metab 2015; 22(1): 100-12.
[http://dx.doi.org/10.1016/j.cmet.2015.06.001] [PMID: 26154056]
[142]
Matijašić BB, Obermajer T, Lipoglavšek L, Grabnar I, Avguštin G, Rogelj I. Association of dietary type with fecal microbiota in vegetarians and omnivores in Slovenia. Eur J Nutr 2014; 53(4): 1051-64.
[http://dx.doi.org/10.1007/s00394-013-0607-6] [PMID: 24173964]
[143]
Sun B, Jia Y, Yang S, et al. Sodium butyrate protects against high-fat diet-induced oxidative stress in rat liver by promoting expression of nuclear factor E2-related factor 2. Br J Nutr 2019; 122(4): 400-10.
[http://dx.doi.org/10.1017/S0007114519001399] [PMID: 31204637]
[144]
Ben Salah R, Trabelsi I, Hamden K, Chouayekh H, Bejar S. Lactobacillus plantarum TN8 exhibits protective effects on lipid, hepatic and renal profiles in obese rat. Anaerobe 2013; 23: 55-61.
[http://dx.doi.org/10.1016/j.anaerobe.2013.07.003] [PMID: 23891961]
[145]
Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 2016; 7(3): 189-200.
[http://dx.doi.org/10.1080/19490976.2015.1134082] [PMID: 26963409]
[146]
Gonzalez FJ, Jiang C, Xie C, Patterson ADJDD. Intestinal farnesoid X receptor signaling modulates metabolic disease. Dig Dis 2017; 35(3): 178-84.
[http://dx.doi.org/10.1159/000450908] [PMID: 28249275]
[147]
Kimura I, Miyamoto J, Ohue-Kitano R, et al. Maternal gut microbiota in pregnancy influences offspring metabolic phenotype in mice. Science 2020; 367(6481): eaaw8429.
[http://dx.doi.org/10.1126/science.aaw8429] [PMID: 32108090]
[148]
Hill C, Guarner F, Reid G, et al. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 2014; 11(8): 506-14.
[http://dx.doi.org/10.1038/nrgastro.2014.66] [PMID: 24912386]
[149]
Bik EM, Ugalde JA, Cousins J, Goddard AD, Richman J, Apte ZSJBJP. Microbial biotransformations in the human distal gut. Br J Pharmacol 2018; 175(24): 4404-14.
[http://dx.doi.org/10.1111/bph.14085] [PMID: 29116650]
[150]
Diether NE, Willing BPJM. Microbial fermentation of dietary protein: An important factor in diet–microbe–host interaction. Microorganisms 2019; 7(1): 19.
[http://dx.doi.org/10.3390/microorganisms7010019] [PMID: 30642098]
[151]
Russell WR, Hoyles L, Flint HJ, Dumas M-E. Colonic bacterial metabolites and human health. Curr Opin Microbiol 2013; 16(3): 246-54.
[http://dx.doi.org/10.1016/j.mib.2013.07.002] [PMID: 23880135]
[152]
Venkatesh M, Mukherjee S, Wang H, et al. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4. Immunity 2014; 41(2): 296-310.
[http://dx.doi.org/10.1016/j.immuni.2014.06.014] [PMID: 25065623]
[153]
Gensollen T, Iyer SS, Kasper DL, Blumberg RSJS. How colonization by microbiota in early life shapes the immune system. Science 2016; 352(6285): 539-44.
[http://dx.doi.org/10.1126/science.aad9378] [PMID: 27126036]
[154]
Kriegel MA, Sefik E, Hill JA, Wu H-J, Benoist C, Mathis D. Naturally transmitted segmented filamentous bacteria segregate with diabetes protection in nonobese diabetic mice. Proc Natl Acad Sci USA 2011; 108(28): 11548-53.
[http://dx.doi.org/10.1073/pnas.1108924108] [PMID: 21709219]
[155]
Russell JT, Roesch LFW, Ördberg M, et al. Genetic risk for autoimmunity is associated with distinct changes in the human gut microbiome. Nat Commun 2019; 10(1): 3621.
[http://dx.doi.org/10.1038/s41467-019-11460-x] [PMID: 31399563]
[156]
Voigt RM, Forsyth CB, Green SJ, et al. Circadian disorganization alters intestinal microbiota. PLoS One 2014; 9(5): e97500.
[http://dx.doi.org/10.1371/journal.pone.0097500] [PMID: 24848969]
[157]
Voigt R, Forsyth C, Green S, Engen P, Keshavarzian A. Circadian rhythm and the gut microbiome.International review of neurobiology. Elsevier 2016; Vol. 131: pp. 193-205.
[158]
Vatanen T, Kostic AD, d’Hennezel E, et al. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell 2016; 165(4): 842-53.
[http://dx.doi.org/10.1016/j.cell.2016.04.007] [PMID: 27133167]
[159]
Gülden E, Ihira M, Ohashi A, et al. Toll-like receptor 4 deficiency accelerates the development of insulin-deficient diabetes in non-obese diabetic mice. PLoS One 2013; 8(9): e75385.
[http://dx.doi.org/10.1371/journal.pone.0075385] [PMID: 24086519]
[160]
Alkanani AK, Hara N, Gottlieb PA, et al. Alterations in intestinal microbiota correlate with susceptibility to type 1 diabetes. Diabetes 2015; 64(10): 3510-20.
[http://dx.doi.org/10.2337/db14-1847] [PMID: 26068542]
[161]
Leiva-Gea I, Sánchez-Alcoholado L, Martín-Tejedor B, et al. Gut microbiota differs in composition and functionality between children with type 1 diabetes and MODY2 and healthy control subjects: a case-control study. Diabetes Care 2018; 41(11): 2385-95.
[http://dx.doi.org/10.2337/dc18-0253] [PMID: 30224347]
[162]
Pellegrini S, Sordi V, Bolla AM, et al. Metabolism, Duodenal mucosa of patients with type 1 diabetes shows distinctive inflammatory profile and microbiota. J Clin Endocrinol Metab 2017; 102(5): 1468-77.
[http://dx.doi.org/10.1210/jc.2016-3222] [PMID: 28324102]
[163]
Higuchi BS, Rodrigues N, Gonzaga MI, et al. Intestinal dysbiosis in autoimmune diabetes is correlated with poor glycemic control and increased interleukin-6: A pilot study. Front Immunol 2018; 9: 1689.
[http://dx.doi.org/10.3389/fimmu.2018.01689] [PMID: 30090100]
[164]
Kostic AD, Gevers D, Siljander H, et al. The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. Cell Host Microbe 2015; 17(2): 260-73.
[http://dx.doi.org/10.1016/j.chom.2015.01.001] [PMID: 25662751]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy