Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Photoresponsive Delivery of Nanovectors: A Review of Concepts and Applications

Author(s): Manisha Lalan*, Maanika Menon and Pranav Shah

Volume 18, Issue 2, 2022

Published on: 17 June, 2021

Page: [154 - 166] Pages: 13

DOI: 10.2174/1573413717666210617164920

Price: $65

Abstract

Stimuli-triggered nanovectors for drug delivery enhance the clinical efficacy and decrease the toxicity by specifically conveying the drugs to the site of target with a higher specificity and efficiency. Several stimuli were regarded, but light as an exogenous stimulus tenders several benefits in clinical usage like elevated spatial and temporal control economically. A number of photochemical mechanisms have been exploited in design of phototriggered nanocarriers for biomedical applications. Light in conjugation with photosensitizers or imaging agents in nanovectors can be truly rewarding to ensure precise diagnosis, drug delivery and improve therapeutic outcomes. Nanomedicine plays a key role in enhancing therapeutic efficacy and limiting the adverse effects. The review evaluates the multiple nanocarriers such as liposomes, polymersomes, micelles, nanogels etc., which have leveraged the advantages of phototargeting via photothermal, photochemical, photo isomerization and upconversion based activation strategies for efficient drug targeting to intracellular and other regions. The significant benefits and constraints, an overview of the implementation and latest developments for the most popular and recent photoresponsive drug delivery methods are discussed to critically judge its success and limitations and delve upon the possible future perspectives in the field.

Keywords: Photoresponsive nanovectors, photo triggered drug delivery, lightresponsive drug delivery, photoresponsive nanoparticles, phototriggered nanocarriers, biomedical application.

Graphical Abstract

[1]
Alexis, F.; Pridgen, E.; Molnar, L.K.; Farokhzad, O.C. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm., 2008, 5(4), 505-515.
[http://dx.doi.org/10.1021/mp800051m] [PMID: 18672949]
[2]
Liu, D.Z.; Chen, W.Y.; Tasi, L.M.; Yang, S.P. Microcalorimetric and shear studies on the effects of cholesterol on the physical stability of lipid vesicles. Colloids Surf. A Physicochem. Eng. Asp., 2000, 172(1-3), 57-67.
[http://dx.doi.org/10.1016/S0927-7757(00)00560-4]
[3]
Jeong, B.; Gutowska, A. Lessons from nature: Stimuli-responsive polymers and their biomedical applications. Trends Biotechnol., 2002, 20(7), 305-311.
[http://dx.doi.org/10.1016/S0167-7799(02)01962-5] [PMID: 12062976]
[4]
Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater., 2013, 12(11), 991-1003.
[http://dx.doi.org/10.1038/nmat3776] [PMID: 24150417]
[5]
Barolet, D.; Christiaens, F.; Hamblin, M.R. Infrared and skin: Friend or foe. J. Photochem. Photobiol. B, 2016, 155, 78-85.
[http://dx.doi.org/10.1016/j.jphotobiol.2015.12.014] [PMID: 26745730]
[6]
Clement, M.; Daniel, G.; Trelles, M. Optimising the design of a broad-band light source for the treatment of skin. J. Cosmet. Laser Ther., 2005, 7(3-4), 177-189.
[http://dx.doi.org/10.1080/14764170500344575] [PMID: 16414906]
[7]
Hussein, M.R. Ultraviolet radiation and skin cancer: Molecular mechanisms. J. Cutan. Pathol., 2005, 32(3), 191-205.
[http://dx.doi.org/10.1111/j.0303-6987.2005.00281.x] [PMID: 15701081]
[8]
Yang, J.; Lee, J.; Kang, J.; Oh, S.J.; Ko, H.J.; Son, J.H.; Lee, K.; Suh, J.S.; Huh, Y.M.; Haam, S. Smart drug-loaded polymer gold nanoshells for systemic and localized therapy of human epithelial cancer. Adv. Mater., 2009, 21(43), 4339-4342.
[http://dx.doi.org/10.1002/adma.200900334] [PMID: 26042940]
[9]
Beauté, L.; McClenaghan, N.; Lecommandoux, S. Photo-triggered polymer nanomedicines: From molecular mechanisms to therapeutic applications. Adv. Drug Deliv. Rev., 2019, 138, 148-166.
[http://dx.doi.org/10.1016/j.addr.2018.12.010] [PMID: 30553952]
[10]
Alkilany, A.M.; Thompson, L.B.; Boulos, S.P.; Sisco, P.N.; Murphy, C.J. Gold nanorods: Their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv. Drug Deliv. Rev., 2012, 64(2), 190-199.
[http://dx.doi.org/10.1016/j.addr.2011.03.005] [PMID: 21397647]
[11]
Gandhi, A; Paul, A; Sen, SO; Sen, KK Studies on thermoresponsive polymers: Phase behaviour, drug delivery and biomedical applications. Asian journal of pharmaceutical sciences, 2015, 10(2), 99-107.
[12]
Feil, H.; Bae, Y.H.; Feijen, J.; Kim, S.W. Effect of comonomer hydrophilicity and ionization on the lower critical solution temperature of N-isopropylacrylamide copolymers. Macromolecules, 1993, 26(10), 2496-2500.
[http://dx.doi.org/10.1021/ma00062a016]
[13]
Wang, F.; Banerjee, D.; Liu, Y.; Chen, X.; Liu, X. Upconversion nanoparticles in biological labeling, imaging, and therapy. Analyst (Lond.), 2010, 135(8), 1839-1854.
[http://dx.doi.org/10.1039/c0an00144a] [PMID: 20485777]
[14]
Zhao, H.; Sterner, E.S.; Coughlin, E.B.; Theato, P. o-Nitrobenzyl alcohol derivatives: Opportunities in polymer and materials science. Macromolecules, 2012, 45(4), 1723-1736.
[http://dx.doi.org/10.1021/ma201924h]
[15]
Weissleder, R. A clearer vision for in vivo imaging. Nat. Biotechnol., 2001, 19(4), 316-317.
[http://dx.doi.org/10.1038/86684] [PMID: 11283581]
[16]
Timko, B.P.; Dvir, T.; Kohane, D.S. Remotely triggerable drug delivery systems. Adv. Mater., 2010, 22(44), 4925-4943.
[http://dx.doi.org/10.1002/adma.201002072] [PMID: 20818618]
[17]
Bléger, D.; Schwarz, J.; Brouwer, A.M.; Hecht, S. o-Fluoroazobenzenes as readily synthesized photoswitches offering nearly quantitative two-way isomerization with visible light. J. Am. Chem. Soc., 2012, 134(51), 20597-20600.
[http://dx.doi.org/10.1021/ja310323y] [PMID: 23236950]
[18]
Kabanov, A.V.; Vinogradov, S.V. Nanogels as pharmaceutical carriers: Finite networks of infinite capabilities. Angew. Chem. Int. Ed. Engl., 2009, 48(30), 5418-5429.
[http://dx.doi.org/10.1002/anie.200900441] [PMID: 19562807]
[19]
Wu, W.; Shen, J.; Banerjee, P.; Zhou, S. Core-shell hybrid nanogels for integration of optical temperature-sensing, targeted tumor cell imaging, and combined chemo-photothermal treatment. Biomaterials, 2010, 31(29), 7555-7566.
[http://dx.doi.org/10.1016/j.biomaterials.2010.06.030] [PMID: 20643481]
[20]
Wang, Z.; Wang, P.; Tang, X. Synthesis of Light-Induced Expandable Photoresponsive Polymeric Nanoparticles for Triggered Release. ChemPlusChem, 2013, 78(10), 1273-1281.
[http://dx.doi.org/10.1002/cplu.201300212] [PMID: 31986780]
[21]
Allen, T.M.; Cullis, P.R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev., 2013, 65(1), 36-48.
[http://dx.doi.org/10.1016/j.addr.2012.09.037] [PMID: 23036225]
[22]
Leung, S.J.; Romanowski, M. NIR-activated content release from plasmon resonant liposomes for probing single-cell responses. ACS Nano, 2012, 6(11), 9383-9391.
[http://dx.doi.org/10.1021/nn304434a] [PMID: 23106797]
[23]
Zheng, K.; Liu, H.; Liu, X.; Jiang, L.; Li, L.; Wu, X.; Guo, N.; Ding, C.; Huang, M. Photo-triggered release of doxorubicin from liposomes formulated by amphiphilic phthalocyanines for combination therapy to enhance antitumor efficacy. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(35), 8022-8036.
[http://dx.doi.org/10.1039/D0TB01093F] [PMID: 32766661]
[24]
Mendoza, G.; Arruebo, M. Light-triggered nanoparticles for pain management. Expert Opin. Drug Deliv., 2020, 17(5), 627-633.
[http://dx.doi.org/10.1080/17425247.2020.1737670] [PMID: 32116072]
[25]
Yavuz, M.S.; Cheng, Y.; Chen, J.; Cobley, C.M.; Zhang, Q.; Rycenga, M.; Xie, J.; Kim, C.; Song, K.H.; Schwartz, A.G.; Wang, L.V.; Xia, Y. Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat. Mater., 2009, 8(12), 935-939.
[http://dx.doi.org/10.1038/nmat2564] [PMID: 19881498]
[26]
Li, X.; Zhang, F.; Zhao, D. Highly efficient lanthanide upconverting nanomaterials: Progresses and challenges. Nano Today, 2013, 8(6), 643-676.
[http://dx.doi.org/10.1016/j.nantod.2013.11.003]
[27]
Liang, H.; Li, Z.; Ren, Z.; Jia, Q.; Guo, L.; Li, S.; Zhang, H.; Hu, S.; Zhu, D.; Shen, D.; Yu, Z. Light-triggered NO-releasing nanoparticles for treating mice with liver fibrosis. Nano Res., 2020, 13(8), 2197-2202.
[28]
Yang, P.; Gai, S.; Lin, J. Functionalized mesoporous silica materials for controlled drug delivery. Chem. Soc. Rev., 2012, 41(9), 3679-3698.
[http://dx.doi.org/10.1039/c2cs15308d] [PMID: 22441299]
[29]
Colilla, M.; González, B.; Vallet-Regí, M. Mesoporous silica nanoparticles for the design of smart delivery nanodevices. Biomater. Sci., 2013, 1(2), 114-134.
[http://dx.doi.org/10.1039/C2BM00085G] [PMID: 32481793]
[30]
Yang, L.; Wang, J.; Yang, S.; Lu, Q.; Li, P.; Li, N. Rod-shape MSN@ MoS2 nanoplatform for FL/MSOT/CT imaging-guided photothermal and photodynamic therapy. Theranostics, 2019, 9(14), 3992-4005.
[http://dx.doi.org/10.7150/thno.32715] [PMID: 31281527]
[31]
Wang, X.; Hu, J.; Liu, G.; Tian, J.; Wang, H.; Gong, M.; Liu, S. Reversibly switching bilayer permeability and release modules of photochromic polymersomes stabilized by cooperative noncovalent interactions. J. Am. Chem. Soc., 2015, 137(48), 15262-15275.
[http://dx.doi.org/10.1021/jacs.5b10127] [PMID: 26583385]
[32]
Geng, S.; Wang, Y.; Wang, L.; Kouyama, T.; Gotoh, T.; Wada, S.; Wang, J.Y. A light-responsive self-assembly formed by a cationic azobenzene derivative and SDS as a drug delivery system. Sci. Rep., 2017, 7(1), 39202.
[http://dx.doi.org/10.1038/srep39202] [PMID: 28051069]
[33]
Tong, R.; Hemmati, H.D.; Langer, R.; Kohane, D.S. Photoswitchable nanoparticles for triggered tissue penetration and drug delivery. J. Am. Chem. Soc., 2012, 134(21), 8848-8855.
[http://dx.doi.org/10.1021/ja211888a] [PMID: 22385538]
[34]
Nishimura, T.; Takara, M.; Mukai, S.A.; Sawada, S.; Sasaki, Y.; Akiyoshi, K. A light sensitive self-assembled nanogel as a tecton for protein patterning materials. Chem. Commun. (Camb.), 2016, 52(6), 1222-1225.
[http://dx.doi.org/10.1039/C5CC08416D] [PMID: 26610266]
[35]
Li, Q.; Cao, Z.; Wang, G. Diazonaphthoquinone-based amphiphilic polymer assemblies for NIR/UV light-and pH-responsive controlled release. Polym. Chem., 2018, 9(4), 463-471.
[http://dx.doi.org/10.1039/C7PY01822C]
[36]
Ji, W.; Li, N.; Chen, D.; Qi, X.; Sha, W.; Jiao, Y.; Xu, Q.; Lu, J. Coumarin-containing photo-responsive nanocomposites for NIR light-triggered controlled drug release via a two-photon process. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(43), 5942-5949.
[http://dx.doi.org/10.1039/c3tb21206h] [PMID: 32261061]
[37]
Jalani, G.; Naccache, R.; Rosenzweig, D.H.; Haglund, L.; Vetrone, F.; Cerruti, M. Photocleavable hydrogel-coated upconverting nanoparticles: A multifunctional theranostic platform for NIR imaging and on-demand macromolecular delivery. J. Am. Chem. Soc., 2016, 138(3), 1078-1083.
[http://dx.doi.org/10.1021/jacs.5b12357] [PMID: 26708288]
[38]
Zhou, Y.; Chen, R.; Yang, H.; Bao, C.; Fan, J.; Wang, C.; Lin, Q.; Zhu, L. Light-responsive polymersomes with a charge-switch for targeted drug delivery. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(4), 727-735.
[http://dx.doi.org/10.1039/C9TB02411E] [PMID: 31894822]
[39]
Vivero-Escoto, J.L.; Slowing, I.I.; Wu, C.W.; Lin, V.S. Photoinduced intracellular controlled release drug delivery in human cells by gold-capped mesoporous silica nanosphere. J. Am. Chem. Soc., 2009, 131(10), 3462-3463.
[http://dx.doi.org/10.1021/ja900025f] [PMID: 19275256]
[40]
Tan, H.; Liu, Y.; Xie, J.; Gao, Y.; Li, Y.; Ma, L.; Zhang, L.; Tang, T.; Zhu, J. Light-triggered disassembly of photo-responsive gold nanovesicles for controlled drug release. Mater. Chem. Front., 2020, 4(9), 2805-2811.
[http://dx.doi.org/10.1039/D0QM00268B]
[41]
Duan, Y.; Wang, Y.; Li, X.; Zhang, G.; Zhang, G.; Hu, J. Light-triggered nitric oxide (NO) release from photoresponsive polymersomes for corneal wound healing. Chem. Sci. (Camb.), 2019, 11(1), 186-194.
[http://dx.doi.org/10.1039/C9SC04039K] [PMID: 32110370]
[42]
Kang, T.Y.; Park, K.; Kwon, S.H.; Chae, W.S. Surface-engineered nanoporous gold nanoparticles for light-triggered drug release. Opt. Mater., 2020, 106, 109985.
[http://dx.doi.org/10.1016/j.optmat.2020.109985]
[43]
Kong, L.; Chen, Q.; Campbell, F.; Snaar-Jagalska, E.; Kros, A. Light-triggered cancer cell specific targeting and liposomal drug delivery in a zebrafish xenograft model. Adv. Healthc. Mater., 2020, 9(6), e1901489.
[http://dx.doi.org/10.1002/adhm.201901489] [PMID: 32052583]
[44]
Eriksson, V.; Andersson Trojer, M.; Vavra, S.; Hulander, M.; Nordstierna, L. Formulation of polyphthalaldehyde microcapsules for immediate UV-light triggered release. J. Colloid Interface Sci., 2020, 579, 645-653.
[http://dx.doi.org/10.1016/j.jcis.2020.06.024] [PMID: 32650196]
[45]
Paasonen, L.; Sipilä, T.; Subrizi, A.; Laurinmäki, P.; Butcher, S.J.; Rappolt, M.; Yaghmur, A.; Urtti, A.; Yliperttula, M. Gold-embedded photosensitive liposomes for drug delivery: Triggering mechanism and intracellular release. J. Control. Release, 2010, 147(1), 136-143.
[http://dx.doi.org/10.1016/j.jconrel.2010.07.095] [PMID: 20624434]
[46]
Bozuyuk, U.; Yasa, O.; Yasa, I.C.; Ceylan, H.; Kizilel, S.; Sitti, M. Light-triggered drug release from 3D-printed magnetic chitosan microswimmers. ACS Nano, 2018, 12(9), 9617-9625.
[http://dx.doi.org/10.1021/acsnano.8b05997] [PMID: 30203963]
[47]
Wang, T.; Jiang, H.; Wan, L.; Zhao, Q.; Jiang, T.; Wang, B.; Wang, S. Potential application of functional porous TiO2 nanoparticles in light-controlled drug release and targeted drug delivery. Acta Biomater., 2015, 13, 354-363.
[http://dx.doi.org/10.1016/j.actbio.2014.11.010] [PMID: 25462846]
[48]
Liu, Q.; Wang, H.; Li, G.; Liu, M.; Ding, J.; Huang, X.; Gao, W.; Huayue, W. A photocleavable low molecular weight hydrogel for light-triggered drug delivery. Chin. Chem. Lett., 2019, 30(2), 485-488.
[http://dx.doi.org/10.1016/j.cclet.2018.06.009]
[49]
Sreejivungsa, K.; Suchaichit, N.; Moosophon, P.; Chompoosor, A. Light-regulated release of entrapped drugs from photoresponsive gold nanoparticles. J. Nanomater., 2016, 2016, 496493.
[http://dx.doi.org/10.1155/2016/4964693]
[50]
Yu, L.; Lv, C.; Wu, L.; Tung, C.; Lv, W.; Li, Z.; Tang, X. Photosensitive cross-linked block copolymers with controllable release. Photochem. Photobiol., 2011, 87(3), 646-652.
[http://dx.doi.org/10.1111/j.1751-1097.2011.00894.x] [PMID: 21223286]
[51]
Härtner, S.; Kim, H.C.; Hampp, N. Photodimerized 7-hydroxycoumarin with improved solubility in PMMA: Single-photon and two-photon-induced photocleavage in solution and PMMA films. J. Photochem. Photobiol. Chem., 2007, 187(2-3), 242-246.
[http://dx.doi.org/10.1016/j.jphotochem.2006.10.015]
[52]
Johnson, J.A.; Lu, Y.Y.; Burts, A.O.; Lim, Y.H.; Finn, M.G.; Koberstein, J.T.; Turro, N.J.; Tirrell, D.A.; Grubbs, R.H. Core-clickable PEG-branch-azide bivalent-bottle-brush polymers by ROMP: Grafting-through and clicking-to. J. Am. Chem. Soc., 2011, 133(3), 559-566.
[http://dx.doi.org/10.1021/ja108441d] [PMID: 21142161]
[53]
Koçer, A.; Walko, M.; Meijberg, W.; Feringa, B.L. A light-actuated nanovalve derived from a channel protein. Science, 2005, 309(5735), 755-758.
[http://dx.doi.org/10.1126/science.1114760] [PMID: 16051792]
[54]
Lee, H.I.; Wu, W.; Oh, J.K.; Mueller, L.; Sherwood, G.; Peteanu, L.; Kowalewski, T.; Matyjaszewski, K. Light-induced reversible formation of polymeric micelles. Angew. Chem. Int. Ed. Engl., 2007, 46(14), 2453-2457.
[http://dx.doi.org/10.1002/anie.200604278] [PMID: 17310482]
[55]
Jiang, J.; Tong, X.; Morris, D.; Zhao, Y. Toward photocontrolled release using light-dissociable block copolymer micelles. Macromolecules, 2006, 39(13), 4633-4640.
[http://dx.doi.org/10.1021/ma060142z]
[56]
Kano, K.; Tanaka, Y.; Ogawa, T.; Shimomura, M.; Okahata, Y.; Kunitake, T. Photoresponsive membranes. Regulation of membrane properties by photoreversible cis–trans isomerization of azobenzenes. Chem. Lett., 1980, 9(4), 421-424.
[http://dx.doi.org/10.1246/cl.1980.421]
[57]
Smith, A.M.; Harris, J.J.; Shelton, R.M.; Perrie, Y. 3D culture of bone-derived cells immobilised in alginate following light-triggered gelation. J. Control. Release, 2007, 119(1), 94-101.
[http://dx.doi.org/10.1016/j.jconrel.2007.01.011] [PMID: 17331613]
[58]
Orihara, Y.; Matsumura, A.; Saito, Y.; Ogawa, N.; Saji, T.; Yamaguchi, A.; Sakai, H.; Abe, M. Reversible release control of an oily substance using photoresponsive micelles. Langmuir, 2001, 17(20), 6072-6076.
[http://dx.doi.org/10.1021/la010360f]
[59]
Patnaik, S.; Sharma, A.K.; Garg, B.S.; Gandhi, R.P.; Gupta, K.C. Photoregulation of drug release in azo-dextran nanogels. Int. J. Pharm., 2007, 342(1-2), 184-193.
[http://dx.doi.org/10.1016/j.ijpharm.2007.04.038] [PMID: 17574354]
[60]
Niikura, K.; Iyo, N.; Matsuo, Y.; Mitomo, H.; Ijiro, K. Sub-100 nm gold nanoparticle vesicles as a drug delivery carrier enabling rapid drug release upon light irradiation. ACS Appl. Mater. Interfaces, 2013, 5(9), 3900-3907.
[http://dx.doi.org/10.1021/am400590m] [PMID: 23566248]
[61]
Knežević, N.Ž.; Trewyn, B.G.; Lin, V.S. Functionalized mesoporous silica nanoparticle-based visible light responsive controlled release delivery system. Chem. Commun. (Camb.), 2011, 47(10), 2817-2819.
[http://dx.doi.org/10.1039/c0cc04424e] [PMID: 21240408]
[62]
Wang, D.; Wu, S. Red-light-responsive supramolecular valves for photocontrolled drug release from mesoporous nanoparticles. Langmuir, 2016, 32(2), 632-636.
[http://dx.doi.org/10.1021/acs.langmuir.5b04399] [PMID: 26700509]
[63]
Basuki, J.S.; Qie, F.; Mulet, X.; Suryadinata, R.; Vashi, A.V.; Peng, Y.Y.; Li, L.; Hao, X.; Tan, T.; Hughes, T.C. Photo‐modulated therapeutic protein release from a hydrogel depot using visible light. Angew. Chem. Int. Ed. Engl., 2017, 56(4), 966-971.
[http://dx.doi.org/10.1002/anie.201610618] [PMID: 27918129]
[64]
Peyret, A.; Ibarboure, E.; Tron, A.; Beauté, L.; Rust, R.; Sandre, O.; McClenaghan, N.D.; Lecommandoux, S. Polymersome popping by light-induced osmotic shock under temporal, spatial, and spectral control. Angew. Chem. Int. Ed. Engl., 2017, 56(6), 1566-1570.
[http://dx.doi.org/10.1002/anie.201609231] [PMID: 27981689]
[65]
Sershen, S.R.; Westcott, S.L.; Halas, N.J.; West, J.L. Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery. J. Biomed. Mater. Res., 2000, 51(3), 293-298.
[http://dx.doi.org/10.1002/1097-4636(20000905)51:3<293:AID-JBM1>3.0.CO;2-T] [PMID: 10880069]
[66]
Kamaly, N.; Xiao, Z.; Valencia, P.M.; Radovic-Moreno, A.F.; Farokhzad, O.C. Targeted polymeric therapeutic nanoparticles: Design, development and clinical translation. Chem. Soc. Rev., 2012, 41(7), 2971-3010.
[http://dx.doi.org/10.1039/c2cs15344k] [PMID: 22388185]
[67]
Pourjavadi, A.; Bagherifard, M.; Doroudian, M. Synthesis of micelles based on chitosan functionalized with gold nanorods as a light sensitive drug delivery vehicle. Int. J. Biol. Macromol., 2020, 149, 809-818.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.01.162] [PMID: 31958558]
[68]
Pei, P.; Sun, C.; Tao, W.; Li, J.; Yang, X.; Wang, J. ROS-sensitive thioketal-linked polyphosphoester-doxorubicin conjugate for precise phototriggered locoregional chemotherapy. Biomaterials, 2019, 188, 74-82.
[http://dx.doi.org/10.1016/j.biomaterials.2018.10.010] [PMID: 30336287]
[69]
Yang, G.; Sun, X.; Liu, J.; Feng, L.; Liu, Z. Light‐responsive, singlet‐oxygen‐triggered on‐demand drug release from photosensitizer‐doped mesoporous silica nanorods for cancer combination therapy. Adv. Funct. Mater., 2016, 26(26), 4722-4732.
[http://dx.doi.org/10.1002/adfm.201600722]
[70]
Wang, G.; Dong, J.; Yuan, T.; Zhang, J.; Wang, L.; Wang, H. Visible light and pH responsive polymer‐coated mesoporous silica nanohybrids for controlled release. Macromol. Biosci., 2016, 16(7), 990-994.
[http://dx.doi.org/10.1002/mabi.201600008] [PMID: 26938147]
[71]
Yang, X.; Shi, X.; Zhang, Y.; Xu, J.; Ji, J.; Ye, L.; Yi, F.; Zhai, G. Photo-triggered self-destructive ROS-responsive nanoparticles of high paclitaxel/chlorin e6 co-loading capacity for synergetic chemo-photodynamic therapy. J. Control. Release, 2020, 323, 333-349.
[http://dx.doi.org/10.1016/j.jconrel.2020.04.027] [PMID: 32325174]
[72]
Liu, J.; Bu, W.; Pan, L.; Shi, J. NIR-triggered anticancer drug delivery by upconverting nanoparticles with integrated azobenzene-modified mesoporous silica. Angew. Chem. Int. Ed. Engl., 2013, 52(16), 4375-4379.
[http://dx.doi.org/10.1002/anie.201300183] [PMID: 23495013]
[73]
Yang, L.; Wang, J.; Yang, S.; Lu, Q.; Li, P.; Li, N. Rod-shape msn@mos2 nanoplatform for fl/msot/ct imaging-guided photothermal and photodynamic therapy. Theranostics, 2019, 9(14), 3992-4005.
[http://dx.doi.org/10.7150/thno.32715] [PMID: 31281527]
[74]
Zhang, Y.; Hou, Z.; Ge, Y.; Deng, K.; Liu, B.; Li, X.; Li, Q.; Cheng, Z.; Ma, P.; Li, C.; Lin, J. DNA-hybrid-gated photothermal mesoporous silica nanoparticles for NIR-responsive and aptamer-targeted drug delivery. ACS Appl. Mater. Interfaces, 2015, 7(37), 20696-20706.
[http://dx.doi.org/10.1021/acsami.5b05522] [PMID: 26325285]
[75]
Sun, Q.; You, Q.; Wang, J.; Liu, L.; Wang, Y.; Song, Y.; Cheng, Y.; Wang, S.; Tan, F.; Li, N. Theranostic nanoplatform: Triple-modal imaging-guided synergistic cancer therapy based on liposome-conjugated mesoporous silica nanoparticles. ACS Appl. Mater. Interfaces, 2018, 10(2), 1963-1975.
[http://dx.doi.org/10.1021/acsami.7b13651] [PMID: 29276824]
[76]
Li, W.P.; Liao, P.Y.; Su, C.H.; Yeh, C.S. Formation of oligonucleotide-gated silica shell-coated Fe3O4-Au core-shell nanotrisoctahedra for magnetically targeted and near-infrared light-responsive theranostic platform. J. Am. Chem. Soc., 2014, 136(28), 10062-10075.
[http://dx.doi.org/10.1021/ja504118q] [PMID: 24953310]
[77]
Li, Y.; Hong, W.; Zhang, H.; Zhang, T.T.; Chen, Z.; Yuan, S.; Peng, P.; Xiao, M.; Xu, L. Photothermally triggered cytosolic drug delivery of glucose functionalized polydopamine nanoparticles in response to tumor microenvironment for the GLUT1-targeting chemo-phototherapy. J. Control. Release, 2020, 317, 232-245.
[http://dx.doi.org/10.1016/j.jconrel.2019.11.031] [PMID: 31783048]
[78]
Nazari, M.; Rubio‐Martinez, M.; Tobias, G.; Barrio, J.P.; Babarao, R.; Nazari, F.; Konstas, K.; Muir, B.W.; Collins, S.F.; Hill, A.J.; Duke, M.C. Metal‐organic‐framework‐coated optical fibers as light‐triggered drug delivery vehicles. Adv. Funct. Mater., 2016, 26(19), 3244-3249.
[http://dx.doi.org/10.1002/adfm.201505260]
[79]
Xu, J.; Zhou, X.; Gao, Z.; Song, Y.Y.; Schmuki, P. Visible‐light‐triggered drug release from TiO2 nanotube arrays: A controllable antibacterial platform. Angew. Chem. Int. Ed. Engl., 2016, 55(2), 593-597.
[http://dx.doi.org/10.1002/anie.201508710] [PMID: 26592984]
[80]
Radt, B.; Smith, T.A.; Caruso, F. Optically addressable nanostructured capsules. Adv. Mater., 2004, 16(23‐24), 2184-2189.
[http://dx.doi.org/10.1002/adma.200400920]
[81]
Wu, G.; Mikhailovsky, A.; Khant, H.A.; Fu, C.; Chiu, W.; Zasadzinski, J.A. Remotely triggered liposome release by near-infrared light absorption via hollow gold nanoshells. J. Am. Chem. Soc., 2008, 130(26), 8175-8177.
[http://dx.doi.org/10.1021/ja802656d] [PMID: 18543914]
[82]
Oishi, M.; Nakamura, T.; Jinji, Y.; Matsuishi, K.; Nagasaki, Y. Multi-stimuli-triggered release of charged dye from smart PEGylated nanogels containing gold nanoparticles to regulate fluorescence signals. J. Mater. Chem., 2009, 19(33), 5909-5912.
[http://dx.doi.org/10.1039/b910060a]
[83]
Wu, W.; Shen, J.; Banerjee, P.; Zhou, S. Water-dispersible multifunctional hybrid nanogels for combined curcumin and photothermal therapy. Biomaterials, 2011, 32(2), 598-609.
[http://dx.doi.org/10.1016/j.biomaterials.2010.08.112] [PMID: 20933280]
[84]
Huschka, R.; Neumann, O.; Barhoumi, A.; Halas, N.J. Visualizing light-triggered release of molecules inside living cells. Nano Lett., 2010, 10(10), 4117-4122.
[http://dx.doi.org/10.1021/nl102293b] [PMID: 20857946]
[85]
You, J.; Zhang, G.; Li, C. Exceptionally high payload of doxorubicin in hollow gold nanospheres for near-infrared light-triggered drug release. ACS Nano, 2010, 4(2), 1033-1041.
[http://dx.doi.org/10.1021/nn901181c] [PMID: 20121065]
[86]
You, J.; Shao, R.; Wei, X.; Gupta, S.; Li, C. Near-infrared light triggers release of Paclitaxel from biodegradable microspheres: Photothermal effect and enhanced antitumor activity. Small, 2010, 6(9), 1022-1031.
[http://dx.doi.org/10.1002/smll.201000028] [PMID: 20394071]
[87]
Angelos, S.; Choi, E.; Vögtle, F.; De Cola, L.; Zink, J.I. Photo-driven expulsion of molecules from mesostructured silica nanoparticles. J. Phys. Chem. C, 2007, 111(18), 6589-6592.
[http://dx.doi.org/10.1021/jp070721l]
[88]
Yavlovich, A.; Singh, A.; Blumenthal, R.; Puri, A. A novel class of photo-triggerable liposomes containing DPPC:DC(8,9)PC as vehicles for delivery of doxorubcin to cells. Biochim. Biophys. Acta, 2011, 1808(1), 117-126.
[http://dx.doi.org/10.1016/j.bbamem.2010.07.030] [PMID: 20691151]
[89]
Anderson, V.C.; Thompson, D.H. Triggered release of hydrophilic agents from plasmologen liposomes using visible light or acid. Biochimica et Biophysica Acta (BBA)-. Biomembranes, 1992, 1109(1), 33-42.
[http://dx.doi.org/10.1016/0005-2736(92)90183-M] [PMID: 1504078]
[90]
Febvay, S.; Marini, D.M.; Belcher, A.M.; Clapham, D.E. Targeted cytosolic delivery of cell-impermeable compounds by nanoparticle-mediated, light-triggered endosome disruption. Nano Lett., 2010, 10(6), 2211-2219.
[http://dx.doi.org/10.1021/nl101157z] [PMID: 20446663]
[91]
Nishiyama, N.; Iriyama, A.; Jang, W.D.; Miyata, K.; Itaka, K.; Inoue, Y.; Takahashi, H.; Yanagi, Y.; Tamaki, Y.; Koyama, H.; Kataoka, K. Light-induced gene transfer from packaged DNA enveloped in a dendrimeric photosensitizer. Nat. Mater., 2005, 4(12), 934-941.
[http://dx.doi.org/10.1038/nmat1524] [PMID: 16299510]
[92]
Kaplan, J.H.; Forbush, B., III; Hoffman, J.F. Rapid photolytic release of adenosine 5¢-triphosphate from a protected analog: Utilization by the sodium: Potassium pump of human red blood cell ghosts. Biochemistry, 1978, 17(10), 1929-1935.
[http://dx.doi.org/10.1021/bi00603a020] [PMID: 148906]
[93]
Lin, W.; Peng, D.; Wang, B.; Long, L.; Guo, C.; Yuan, J. A model for light‐triggered porphyrin anticancer prodrugs based on an o‐nitrobenzyl photolabile group. Eur. J. Org. Chem., 2008, 2008(5), 793-796.
[http://dx.doi.org/10.1002/ejoc.200700972]
[94]
Rao, J.; Khan, A. Enzyme sensitive synthetic polymer micelles based on the azobenzene motif. J. Am. Chem. Soc., 2013, 135(38), 14056-14059.
[http://dx.doi.org/10.1021/ja407514z] [PMID: 24033317]
[95]
Parodi, S.; Taningher, M.; Boero, P.; Santi, L. Quantitative correlation with carcinogenic potency of different short term tests. Toxicol. Pathol., 1984, 12(3), 247-255.
[http://dx.doi.org/10.1177/019262338401200307] [PMID: 6515278]
[96]
Goodman, C.M.; McCusker, C.D.; Yilmaz, T.; Rotello, V.M. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug. Chem., 2004, 15(4), 897-900.
[http://dx.doi.org/10.1021/bc049951i] [PMID: 15264879]
[97]
Vihola, H.; Laukkanen, A.; Valtola, L.; Tenhu, H.; Hirvonen, J. Cytotoxicity of thermosensitive polymers poly(N-isopropylacrylamide), poly(N-vinylcaprolactam) and amphiphilically modified poly(N-vinylcaprolactam). Biomaterials, 2005, 26(16), 3055-3064.
[http://dx.doi.org/10.1016/j.biomaterials.2004.09.008] [PMID: 15603800]
[98]
Kost, J.; Langer, R. Responsive polymeric delivery systems. Adv. Drug Deliv. Rev., 2012, 64, 327-341.
[http://dx.doi.org/10.1016/j.addr.2012.09.014] [PMID: 11259837]
[99]
Liu, Q.; Zhan, C.; Kohane, D.S. Phototriggered drug delivery using inorganic nanomaterials. Bioconjug. Chem., 2017, 28(1), 98-104.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00448] [PMID: 27661196]
[100]
El Founi, M.; Soliman, S.M.A.; Vanderesse, R.; Acherar, S.; Guedon, E.; Chevalot, I.; Babin, J.; Six, J.L. Light-sensitive dextran-covered PNBA nanoparticles as triggered drug delivery systems: Formulation, characteristics and cytotoxicity. J. Colloid Interface Sci., 2018, 514, 289-298.
[http://dx.doi.org/10.1016/j.jcis.2017.12.036] [PMID: 29275247]
[101]
Hernández-Montoto, A.; Gorbe, M.; Llopis-Lorente, A.; Terrés, J.M.; Montes, R.; Cao-Milán, R.; Díaz de Greñu, B.; Alfonso, M.; Orzaez, M.; Marcos, M.D.; Martínez-Máñez, R.; Sancenón, F. A NIR light-triggered drug delivery system using core-shell gold nanostars-mesoporous silica nanoparticles based on multiphoton absorption photo-dissociation of 2-nitrobenzyl PEG. Chem. Commun. (Camb.), 2019, 55(61), 9039-9042.
[http://dx.doi.org/10.1039/C9CC04260A] [PMID: 31292589]
[102]
Linsley, C.S.; Wu, B.M. Recent advances in light-responsive on-demand drug-delivery systems. Ther. Deliv., 2017, 8(2), 89-107.
[http://dx.doi.org/10.4155/tde-2016-0060] [PMID: 28088880]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy