Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

An Overview of Zinc Oxide Nanoparticles Produced by Plant Extracts for Anti-tuberculosis Treatments

Author(s): Farahnaz Behzad, Erfan Sefidgar , Azam Samadi , Wensen Lin , Iman Pouladi* and Jiang Pi*

Volume 29, Issue 1, 2022

Published on: 14 June, 2021

Page: [86 - 98] Pages: 13

DOI: 10.2174/0929867328666210614122109

Price: $65

Abstract

Tuberculosis (TB), induced by Mycobacterium tuberculosis (MTB), is a fatal infectious disease that kills millions of lives worldwide. The emergence of drug-resistant and multidrug-resistant cases is regarded as one of the most challenging threats to TB control due to the low cure rate. Therefore, TB and drug-resistant TB epidemic urge us to explore more effective therapies. The increasing knowledge of nanotechnology has extended the use of some nanomedicines for disease treatment in clinics, which also provide novel possibilities for nano-based medicines for TB treatment. Zinc oxide nanoparticles (ZnO NPs) have gained increasing attention for anti-bacterial uses based on their strong ability to induce reactive oxidative species (ROS) and release bactericidal Zinc ions (Zn2+), which are expected to act as novel strategies for TB and drug-resistant TB treatment. Some plant extracts, always from active herbal medicines, have been widely reported to show attractive anti-bacterial activity for infectious treatment, including TB. Here, we summarize the synthesis of ZnO NPs using plant extracts (green synthesized ZnO NPs), and further discuss their potentials for anti-TB treatments. This is the first review article discussing the anti-TB activity of ZnO NPs produced using plant extracts, which might contribute to the further applications of green synthesized ZnO NPs for anti-TB and drugresistant TB treatment

Keywords: Anti-tuberculosis, drug-resistant, Mycobacterium tuberculosis, plant extract, tuberculosis, metal oxide nanoparticles, ZnO nanoparticles

« Previous
[1]
Yu, G.; Shen, Y.; Ye, B.; Chen, D.; Xu, K. Comparison of capitalbio™ mycobacterium nucleic acid detection test and Xpert MTB/RIF assay for rapid diagnosis of extrapulmonary tuberculosis. J. Microbiol. Methods, 2020, 168105780
[http://dx.doi.org/10.1016/j.mimet.2019.105780] [PMID: 31751598]
[2]
Pietersen, R-D.; du Preez, I.; Loots, D.T.; van Reenen, M.; Beukes, D.; Leisching, G.; Baker, B. Tween 80 induces a carbon flux rerouting in Mycobacterium tuberculosis. J. Microbiol. Methods, 2020, 170105795
[http://dx.doi.org/10.1016/j.mimet.2019.105795] [PMID: 31785333]
[3]
Shetty, P.; Ghosh, D.; Paul, D. Thermal lysis and isothermal amplification of Mycobacterium tuberculosis H37Rv in one tube. J. Microbiol. Methods, 2017, 143, 1-5.
[http://dx.doi.org/10.1016/j.mimet.2017.09.013] [PMID: 28935157]
[4]
Irshad, S. Green tea leaves mediated ZnO nanoparticles and its antimicrobial activity. Cogent Chemistry, 2018, 4(1)1469207
[http://dx.doi.org/10.1080/23312009.2018.1469207]
[5]
de Araujo, L.S.; Vaas, L.A.; Ribeiro-Alves, M.; Geffers, R.; Mello, F.C.; de Almeida, A.S.; Moreira, A.D.; Kritski, A.L.; Lapa, E. Silva, J.R.; Moraes, M.O.; Pessler, F.; Saad, M.H. transcriptomic biomarkers for tuberculosis: Evaluation of DOCK9. EPHA4, and NPC2 mRNA expression in peripheral blood. Front. Microbiol., 2016, 7, 1586.
[http://dx.doi.org/10.3389/fmicb.2016.01586] [PMID: 27826286]
[6]
Taranath, T.C.; Patil, B.N. Limonia acidissima L. leaf mediated synthesis of zinc oxide nanoparticles: A potent tool against Mycobacterium tuberculosis. Int. J. Mycobacteriol., 2016, 5(2), 197-204.
[http://dx.doi.org/10.1016/j.ijmyco.2016.03.004] [PMID: 27242232]
[7]
Heidary, M.; Zaker Bostanabad, S.; Amini, S.M.; Jafari, A.; Ghalami Nobar, M.; Ghodousi, A.; Kamalzadeh, M.; Darban-Sarokhalil, D. The anti-mycobacterial activity of Ag, ZnO, And Ag-ZnO nanoparticles against MDR-and XDR-Mycobacterium tuberculosis. Infect. Drug Resist., 2019, 12, 3425-3435.
[http://dx.doi.org/10.2147/IDR.S221408] [PMID: 31807033]
[8]
Shahriari, M.; Jafari, A.; Movahedzadeh, F.; Foumani, A.; Falahatkar, S Evaluation of mixture magnesium oxide and zinc oxide nanoparticles against multi-drug-resistance mycobacterium tuberculosis by microplate alamar blue assay 2019.
[http://dx.doi.org/10.21203/rs.2.13541/v1]
[9]
Behzad, F.; Naghib, S.M.; Tabatabaei, S.N.; Zare, Y.; Rhee, K.Y. An overview of the plant-mediated green synthesis of noble metal nanoparticles for antibacterial applications. J. Ind. Eng. Chem., 2021, 94(25), 92-104.
[10]
Nasirmoghadas, P. Nanoparticles in cancer immunotherapies; an innovative strategy. Biotechnol. Prog., 2020.
[http://dx.doi.org/10.1002/btpr.3070] [PMID: 32829506]
[11]
Ahmad, Z.; Pandey, R.; Sharma, S.; Khuller, G.K. Alginate nanoparticles as antituberculosis drug carriers: Formulation development, pharmacokinetics and therapeutic potential. Indian J. Chest Dis. Allied Sci., 2006, 48(3), 171-176.
[PMID: 18610673]
[12]
Rajan, M.; Raj, V. Encapsulation, characterisation and in-vitro release of anti-tuberculosis drug using chitosan-poly ethylene glycol nanoparticles. Int. J. Pharm. Pharm. Sci., 2012, 4(4), 255-259.
[13]
Leidinger, P.; Treptow, J.; Hagens, K.; Eich, J.; Zehethofer, N.; Schwudke, D.; Oehlmann, W.; Lünsdorf, H.; Goldmann, O.; Schaible, U.E.; Dittmar, K.E.; Feldmann, C. Isoniazid@ Fe2O3 nanocontainers and their antibacterial effect on tuberculosis Mycobacteria. Angew. Chem. Int. Ed. Engl., 2015, 54(43), 12597-12601.
[http://dx.doi.org/10.1002/anie.201505493] [PMID: 26332072]
[14]
Choi, S.R.; Britigan, B.E.; Narayanasamy, P. Ga (III) nanoparticles inhibit growth of both Mycobacterium tuberculosis and HIV and release of interleukin-6 (IL-6) and IL-8 in coinfected macrophages. Antimicrob. Agents Chemother., 2017, 61(4), e02505.
[http://dx.doi.org/10.1128/AAC.02505-16] [PMID: 28167548]
[15]
Tăbăran, A-F.; Matea, C.T.; Mocan, T.; Tăbăran, A.; Mihaiu, M.; Iancu, C.; Mocan, L. Silver nanoparticles for the therapy of tuberculosis. Int. J. Nanomedicine, 2020, 15, 2231-2258.
[http://dx.doi.org/10.2147/IJN.S241183] [PMID: 32280217]
[16]
Estevez, H.; Palacios, A.; Gil, D.; Anguita, J.; Vallet-Regi, M.; González, B.; Prados-Rosales, R.; Luque-Garcia, J.L. Antimycobacterial effect of selenium nanoparticles on mycobacterium tuberculosis. Front. Microbiol., 2020, 11, 800.
[http://dx.doi.org/10.3389/fmicb.2020.00800] [PMID: 32425916]
[17]
Montalvo-Quirós, S.; Gómez-Graña, S.; Vallet-Regí, M.; Prados-Rosales, R.C.; González, B.; Luque-Garcia, J.L. Mesoporous silica nanoparticles containing silver as novel antimycobacterial agents against Mycobacterium tuberculosis. Colloids Surf. B Biointerfaces, 2021, 197111405
[http://dx.doi.org/10.1016/j.colsurfb.2020.111405] [PMID: 33130523]
[18]
Pi, J.; Shen, L.; Shen, H.; Yang, E.; Wang, W.; Wang, R.; Huang, D.; Lee, B.S.; Hu, C.; Chen, C.; Jin, H.; Cai, J.; Zeng, G.; Chen, Z.W. Mannosylated graphene oxide as macrophage-targeted delivery system for enhanced intracellular M.tuberculosis killing efficiency. Mater. Sci. Eng. C, 2019, 103109777
[http://dx.doi.org/10.1016/j.msec.2019.109777] [PMID: 31349400]
[19]
Pi, J.; Shen, L.; Yang, E.; Shen, H.; Huang, D.; Wang, R.; Hu, C.; Jin, H.; Cai, H.; Cai, J.; Zeng, G.; Chen, Z.W. Macrophage-targeted isoniazid-selenium nanoparticles promote antimicrobial immunity and synergize bactericidal destruction of tuberculosis bacilli. Angew. Chem. Int. Ed. Engl., 2020, 59(8), 3226-3234.
[http://dx.doi.org/10.1002/anie.201912122] [PMID: 31756258]
[20]
Ahmad, Z.; Sharma, S.; Khuller, G.K. Chemotherapeutic evaluation of alginate nanoparticle-encapsulated azole antifungal and antitubercular drugs against murine tuberculosis. Nanomedicine (Lond.), 2007, 3(3), 239-243.
[http://dx.doi.org/10.1016/j.nano.2007.05.001] [PMID: 17652032]
[21]
Pandey, R.; Zahoor, A.; Sharma, S.; Khuller, G.K. Nanoparticle encapsulated antitubercular drugs as a potential oral drug delivery system against murine tuberculosis. Tuberculosis (Edinb.), 2003, 83(6), 373-378.
[http://dx.doi.org/10.1016/j.tube.2003.07.001] [PMID: 14623168]
[22]
Huang, X.; Cai, H. Cobalt oxide nanoparticle-synergized protein degradation and phototherapy for enhanced anticancer therapeutics. Acta Biomater., 2021, 121, 605-620.
[PMID: 33259958]
[23]
Mallakpour, S.; Madani, M. A review of current coupling agents for modification of metal oxide nanoparticles. Prog. Org. Coat., 2015, 86, 194-207.
[http://dx.doi.org/10.1016/j.porgcoat.2015.05.023]
[24]
Mitra, S. Porous ZnO nanorod for targeted delivery of doxorubicin: In vitro and in vivo response for therapeutic applications. J. Mater. Chem., 2012, 22(45), 24145-24154.
[http://dx.doi.org/10.1039/c2jm35013k]
[25]
Zhang, P.; Liu, W. ZnO QD@PMAA-co-PDMAEMA nonviral vector for plasmid DNA delivery and bioimaging. Biomaterials, 2010, 31(11), 3087-3094.
[PMID: 20096454]
[26]
Umrani, R.D.; Paknikar, K.M. Zinc oxide nanoparticles show antidiabetic activity in streptozotocin-induced Type 1 and 2 diabetic rats. Nanomedicine (Lond.), 2014, 9(1), 89-104.
[http://dx.doi.org/10.2217/nnm.12.205] [PMID: 23427863]
[27]
Barui, A.K.; Kotcherlakota, R.; Patra, C.R. Biomedical applications of zinc oxide nanoparticles.Inorganic frameworks as smart nanomedicines; Elsevier, 2018, pp. 239-278.
[http://dx.doi.org/10.1016/B978-0-12-813661-4.00006-7]
[28]
Rajeshkumar, S.; Sandhiya, D. Biomedical applications of zinc oxide nanoparticles synthesized using eco-friendly method. Nanoparticles and their biomedical applications; , 2020, pp. 65-93;
[http://dx.doi.org/10.1007/978-981-15-0391-7_3]
[29]
Jiang, J.; Pi, J.; Cai, J. The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorg.anic chemistry and applications, 2018, 2018
[http://dx.doi.org/10.1155/2018/1062562]
[30]
Kaviyarasu, K.; Kanimozhi, K.; Matinise, N.; Maria Magdalane, C.; Mola, G.T.; Kennedy, J.; Maaza, M. Antiproliferative effects on human lung cell lines A549 activity of cadmium selenide nanoparticles extracted from cytotoxic effects: Investigation of bio-electronic application. Mater. Sci. Eng. C, 2017, 76, 1012-1025.
[http://dx.doi.org/10.1016/j.msec.2017.03.210] [PMID: 28482464]
[31]
Cui, J. ZnO nano-cages derived from ZIF-8 with enhanced anti mycobacterium-tuberculosis activities. J. Alloys Compd., 2018, 766, 619-625.
[http://dx.doi.org/10.1016/j.jallcom.2018.06.339]
[32]
Jafari, A.; Mosavari, N.; Movahedzadeh, F.; Nodooshan, S.J.; Safarkar, R.; Moro, R.; Kamalzadeh, M.; Majidpour, A.; Boustanshenas, M.; Mosavi, T. Bactericidal impact of Ag, ZnO and mixed AgZnO colloidal nanoparticles on H37Rv Mycobacterium tuberculosis phagocytized by THP-1 cell lines. Microb. Pathog., 2017, 110, 335-344.
[http://dx.doi.org/10.1016/j.micpath.2017.07.010] [PMID: 28710015]
[33]
Kovacevic, M.; Mojet, B.L.; van Ommen, J.G.; Lefferts, L. Effects of morphology of cerium oxide catalysts for reverse water gas shift reaction. Catal. Lett., 2016, 146(4), 770-777.
[http://dx.doi.org/10.1007/s10562-016-1697-6]
[34]
Vijayakumar, S.; Nilavukkarasi, M.; Sakthivel, B. Bio-synthesized zinc oxide nanoparticles for anti-tuberculosis agent: Scientifically unexplored. Gene Rep., 2020, 20100764
[http://dx.doi.org/10.1016/j.genrep.2020.100764]
[35]
Muthukrishnan, S.; Bhakya, S.; Kumar, T.S.; Rao, M. Biosynthesis, characterization and antibacterial effect of plant-mediated silver nanoparticles using Ceropegia thwaitesii–An endemic species. Ind. Crops Prod., 2015, 63, 119-124.
[http://dx.doi.org/10.1016/j.indcrop.2014.10.022]
[36]
Mahendra, C. Phyto-fabricated ZnO nanoparticles from Canthium dicoccum (L.) for antimicrobial, anti-tuberculosis and antioxidant activity. Process Biochem., 2020, 89, 220-226.
[http://dx.doi.org/10.1016/j.procbio.2019.10.020]
[37]
Edalatpanah, Y.; Rostampur, S.; Pouladi, I.; Rajaeenejad, S. Evaluation of Antifungal Effects of Prangos ferulace and Plantago major L Plants Against Fluconazole-resistant Candida albicans Species in Extracorporeal Conditions. Navid No, 2020, 23(74), 44-52.
[38]
Chinsembu, K.C. Tuberculosis and nature’s pharmacy of putative anti-tuberculosis agents. Acta Trop., 2016, 153, 46-56.
[http://dx.doi.org/10.1016/j.actatropica.2015.10.004] [PMID: 26464047]
[39]
Haroon, M.; Zaidi, A.; Ahmed, B.; Rizvi, A.; Khan, M.S.; Musarrat, J. Effective inhibition of phytopathogenic microbes by eco-friendly leaf extract mediated silver nanoparticles (AgNPs). Indian J. Microbiol., 2019, 59(3), 273-287.
[http://dx.doi.org/10.1007/s12088-019-00801-5] [PMID: 31388204]
[40]
Sundrarajan, M.; Ambika, S.; Bharathi, K. Plant-extract mediated synthesis of ZnO nanoparticles using Pongamia pinnata and their activity against pathogenic bacteria. Adv. Powder Technol., 2015, 26(5), 1294-1299.
[http://dx.doi.org/10.1016/j.apt.2015.07.001]
[41]
Gupta, A.; Pandey, S.; Yadav, J.S. A review on recent trends in green synthesis of gold nanoparticles for tuberculosis. Adv. Pharm. Bull., 2021, 11(1), 10-27.
[http://dx.doi.org/10.34172/apb.2021.002] [PMID: 33747849]
[42]
Veena, S.; Devasena, T.; Sathak, S.; Yasasve, M.; Vishal, L. Green synthesis of gold nanoparticles from vitex negundo leaf extract: Characterization and in vitro evaluation of antioxidant–antibacterial activity. J. Cluster Sci., 2019, 30(6), 1591-1597.
[http://dx.doi.org/10.1007/s10876-019-01601-z]
[43]
Taranath, T.C.; Patil, B.N.; Santosh, T.U.; Sharath, B.S. Cytotoxicity of zinc nanoparticles fabricated by Justicia adhatoda L. on root tips of Allium cepa L.-a model approach. Environ. Sci. Pollut. Res. Int., 2015, 22(11), 8611-8617.
[http://dx.doi.org/10.1007/s11356-014-4043-9] [PMID: 25586613]
[44]
Aziz, P. Constituents and antibacterial activity of leaf essential oil of Plectranthus scutellarioides. Plant biosystemsan international journal dealing with all aspects of plant biology; , 2020, pp. 1-11;
[http://dx.doi.org/10.1080/11263504.2020.1837279]
[45]
Grange, J.M.; Zumla, A. The global emergency of tuberculosis: What is the cause? J. R. Soc. Promot. Health, 2002, 122(2), 78-81.
[http://dx.doi.org/10.1177/146642400212200206] [PMID: 12134771]
[46]
Hari, B.N.; Chitra, K.P.; Bhimavarapu, R.; Karunakaran, P.; Muthukrishnan, N.; Rani, B.S. Novel technologies: A weapon against tuberculosis. Indian J. Pharmacol., 2010, 42(6), 338-344.
[http://dx.doi.org/10.4103/0253-7613.71887] [PMID: 21189901]
[47]
Nasiruddin, M.; Neyaz, M.; Das, S. Nanotechnology-based approach in tuberculosis treatment. Tuberculosis research and treatment,, 2017, 2017, 12.
[http://dx.doi.org/10.1155/2017/4920209]
[48]
Banyal, S.; Malik, P.; Tuli, H.S.; Mukherjee, T.K. Advances in nanotechnology for diagnosis and treatment of tuberculosis. Curr. Opin. Pulm. Med., 2013, 19(3), 289-297.
[http://dx.doi.org/10.1097/MCP.0b013e32835eff08] [PMID: 23429097]
[49]
Hafez Ghoran, S. Biosynthesis of Zinc Ferrite Nanoparticles Using Polyphenol-rich extract of Citrus aurantium flowers. Nanomed. Res. J., 2020, 5(1), 20-28.
[50]
Behzad, F.; Jafarirad, S.; Samadi, A.; Barzegar, A. A systematic investigation on spectroscopic, conformational, and interactional properties of polypeptide/nanomaterial complex: Effects of bio-based synthesized maghemite nanocomposites on human serum albumin. Soft Mater., 2020, 18(4), 471-486.
[http://dx.doi.org/10.1080/1539445X.2020.1716800]
[51]
Bala, N. Green synthesis of zinc oxide nanoparticles using Hibiscus subdariffa leaf extract: Effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity. RSC Advances, 2015, 5(7), 4993-5003.
[http://dx.doi.org/10.1039/C4RA12784F]
[52]
Basnet, P.; Inakhunbi Chanu, T.; Samanta, D.; Chatterjee, S. A review on bio-synthesized zinc oxide nanoparticles using plant extracts as reductants and stabilizing agents. J. Photochem. Photobiol. B, 2018, 183, 201-221.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.04.036] [PMID: 29727834]
[53]
Agarwal, H.; Kumar, S.; Rajeshkumar, S. A review on green synthesis of zinc oxide nanoparticles: An eco-friendly approach. Resour Effic Technol, 2017, 3(4), 406-413.
[54]
Vickers, N.J. Animal communication: When i’m calling you, will you answer too? Curr. Biol., 2017, 27(14), R713-R715.
[http://dx.doi.org/10.1016/j.cub.2017.05.064] [PMID: 28743020]
[55]
Mahanty, A.; Mishra, S.; Bosu, R.; Maurya, U.; Netam, S.P.; Sarkar, B. Phytoextracts-synthesized silver nanoparticles inhibit bacterial fish pathogen Aeromonas hydrophila. Indian J. Microbiol., 2013, 53(4), 438-446.
[http://dx.doi.org/10.1007/s12088-013-0409-9] [PMID: 24426148]
[56]
Santhoshkumar, J.; Kumar, S.V.; Rajeshkumar, S. Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Resource-Efficient Technologies, 2017, 3(4), 459-465.
[http://dx.doi.org/10.1016/j.reffit.2017.05.001]
[57]
Dobrucka, R.; Długaszewska, J. Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi J. Biol. Sci., 2016, 23(4), 517-523.
[http://dx.doi.org/10.1016/j.sjbs.2015.05.016] [PMID: 27298586]
[58]
Velsankar, K.; Sudhahar, S.; Parvathy, G.; Kaliammal, R. Effect of cytotoxicity and aAntibacterial activity of biosynthesis of ZnO hexagonal shaped nanoparticles by Echinochloa frumentacea grains extract as a reducing agent. Mater. Chem. Phys., 2020, 239121976
[http://dx.doi.org/10.1016/j.matchemphys.2019.121976]
[59]
Demissie, M.G.; Sabir, F.K.; Edossa, G.D.; Gonfa, B.A. Synthesis of zinc oxide nanoparticles using leaf extract of lippia adoensis (koseret) and evaluation of its antibacterial activity. Journal of chemistry,, 2020, 2020
[http://dx.doi.org/10.1155/2020/7459042]
[60]
Ngoepe, N.; Mbita, Z.; Mathipa, M.; Mketo, N.; Ntsendwana, B.; Hintsho-Mbita, N. Biogenic synthesis of ZnO nanoparticles using Monsonia burkeana for use in photocatalytic, antibacterial and anticancer applications. Ceram. Int., 2018, 44(14), 16999-17006.
[http://dx.doi.org/10.1016/j.ceramint.2018.06.142]
[61]
Jafari, A.; Jafari Nodooshan, S.; Safarkar, R.; Movahedzadeh, F.; Mosavari, N.; Novin Kashani, A.; Dehghanpour, M.; Kamalzadeh, M.; Rasouli Koohi, S.; Fathizadeh, S.; Majidpour, A. Toxicity effects of AgZnO nanoparticles and rifampicin on Mycobacterium tuberculosis into the macrophage. J. Basic Microbiol., 2018, 58(1), 41-51.
[http://dx.doi.org/10.1002/jobm.201700289] [PMID: 29105782]
[62]
Soto-Robles, C. Biosynthesis, characterization and photocatalytic activity of ZnO nanoparticles using extracts of Justicia spicigera for the degradation of methylene blue. J. Mol. Struct., 2021, 1225129101
[http://dx.doi.org/10.1016/j.molstruc.2020.129101]
[63]
Rambabu, K.; Bharath, G.; Banat, F.; Show, P.L. Green synthesis of zinc oxide nanoparticles using Phoenix dactylifera waste as bioreductant for effective dye degradation and antibacterial performance in wastewater treatment. J. Hazard. Mater., 2021, 402123560
[http://dx.doi.org/10.1016/j.jhazmat.2020.123560] [PMID: 32759001]
[64]
Fahimmunisha, B.A.; Ishwarya, R.; AlSalhi, M.S.; Devanesan, S.; Govindarajan, M.; Vaseeharan, B. Green fabrication, characterization and antibacterial potential of zinc oxide nanoparticles using Aloe socotrina leaf extract: A novel drug delivery approach. J. Drug Deliv. Sci. Technol., 2020, 55101465
[http://dx.doi.org/10.1016/j.jddst.2019.101465]
[65]
Selim, Y.A.; Azb, M.A.; Ragab, I. H M Abd El-Azim, M. Green synthesis of zinc oxide nanoparticles using aqueous extract of deverra tortuosa and their cytotoxic activities. Sci. Rep., 2020, 10(1), 3445.
[http://dx.doi.org/10.1038/s41598-020-60541-1] [PMID: 32103090]
[66]
Narayana, A.; Bhat, S.A.; Fathima, A.; Lokesh, S.; Surya, S.G.; Yelamaggad, C. Green and low-cost synthesis of zinc oxide nanoparticles and their application in transistor-based carbon monoxide sensing. RSC Advances, 2020, 10(23), 13532-13542.
[http://dx.doi.org/10.1039/D0RA00478B]
[67]
Naseer, M.; Aslam, U.; Khalid, B.; Chen, B. Green route to synthesize zinc oxide nanoparticles using leaf extracts of cassia fistula and melia azadarach and their antibacterial potential. Sci. Rep., 2020, 10(1), 9055.
[http://dx.doi.org/10.1038/s41598-020-65949-3] [PMID: 32493935]
[68]
Shwetha, U.; Latha, M.; Kumar, C.; Kiran, M.; Betageri, V.S. Facile synthesis of zinc oxide nanoparticles using novel areca catechu leaves extract and their in vitro antidiabetic and anticancer studies. J. Inorg. Organomet. Polym. Mater., 2020, 30, 4876-4883.
[http://dx.doi.org/10.1007/s10904-020-01575-w]
[69]
Moghaddas, S.M.T.H.; Elahi, B.; Javanbakht, V. Biosynthesis of pure zinc oxide nanoparticles using Quince seed mucilage for photocatalytic dye degradation. J. Alloys Compd., 2020, 821153519
[http://dx.doi.org/10.1016/j.jallcom.2019.153519]
[70]
Ahmad, H.; Venugopal, K.; Rajagopal, K.; De Britto, S.; Nandini, B.; Pushpalatha, H.G.; Konappa, N.; Udayashankar, A.C.; Geetha, N.; Jogaiah, S. Green synthesis and characterization of zinc oxide nanoparticles using Eucalyptus globules and their fungicidal ability against pathogenic fungi of apple orchards. Biomolecules, 2020, 10(3), 425.
[http://dx.doi.org/10.3390/biom10030425] [PMID: 32182874]
[71]
Sohail, M.F. Green synthesis of zinc oxide nanoparticles by Neem extract as multi-facet therapeutic agents. J. Drug Deliv. Sci. Technol., 2020, 59101911
[http://dx.doi.org/10.1016/j.jddst.2020.101911]
[72]
Shaik, A.M.; David Raju, M.; Rama Sekhara Reddy, D. Green synthesis of zinc oxide nanoparticles using aqueous root extract of Sphagneticola trilobata Lin and investigate its role in toxic metal removal, sowing germination and fostering of plant growth Inorganic and nano-metal chemistry 2020, pp. 1-11.,
[73]
Dulta, K.; Ağçeli, G.K.; Chauhan, P.; Jasrotia, R.; Chauhan, P. A novel approach of synthesis zinc oxide nanoparticles by bergenia ciliata rhizome extract: Antibacterial and anticancer potential. J. Inorg. Organomet. Polym. Mater., 2020, 1-11.
[http://dx.doi.org/10.1007/s10904-020-01684-6]
[74]
Gao, Y.; Xu, D.; Ren, D.; Zeng, K.; Wu, X. Green synthesis of zinc oxide nanoparticles using Citrus sinensis peel extract and application to strawberry preservation: A comparison study. L WT, 2020.109297
[75]
Abbasi, B.A.; Iqbal, J.; Ahmad, R.; Zia, L.; Kanwal, S.; Mahmood, T.; Wang, C.; Chen, J.T. Bioactivities of Geranium wallichianum leaf extracts conjugated with zinc oxide nanoparticles. Biomolecules, 2019, 10(1), 38.
[http://dx.doi.org/10.3390/biom10010038] [PMID: 31888037]
[76]
Zafar, S. Eco-friendly synthesis of antibacterial zinc nanoparticles using Sesamum indicum L. extract. Journal of King Saud University-Science, 2020, 32(1), 1116-1122.
[http://dx.doi.org/10.1016/j.jksus.2019.10.017]
[77]
Kumar, H.N. Phyto-mediated synthesis of zinc oxide nanoparticles using aqueous plant extract of Ocimum americanum and evaluation of its bioactivity. SN Applied Sciences, 2019, 1(6), 651.
[http://dx.doi.org/10.1007/s42452-019-0671-5]
[78]
Ogunyemi, S.O.; Abdallah, Y.; Zhang, M.; Fouad, H.; Hong, X.; Ibrahim, E.; Masum, M.M.I.; Hossain, A.; Mo, J.; Li, B. Green synthesis of zinc oxide nanoparticles using different plant extracts and their antibacterial activity against Xanthomonas oryzae pv. oryzae. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 341-352.
[http://dx.doi.org/10.1080/21691401.2018.1557671] [PMID: 30691311]
[79]
Hu, D.; Si, W.; Qin, W.; Jiao, J.; Li, X.; Gu, X.; Hao, Y. Cucurbita pepo leaf extract induced synthesis of zinc oxide nanoparticles, characterization for the treatment of femoral fracture. J. Photochem. Photobiol. B, 2019, 195, 12-16.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.04.001] [PMID: 31029913]
[80]
Khan, Z.U.H.; Sadiq, H.M.; Shah, N.S.; Khan, A.U.; Muhammad, N.; Hassan, S.U.; Tahir, K.; Safi, S.Z.; Khan, F.U.; Imran, M.; Ahmad, N.; Ullah, F.; Ahmad, A.; Sayed, M.; Khalid, M.S.; Qaisrani, S.A.; Ali, M.; Zakir, A. Greener synthesis of zinc oxide nanoparticles using Trianthema portulacastrum extract and evaluation of its photocatalytic and biological applications. J. Photochem. Photobiol. B, 2019, 192, 147-157.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.01.013] [PMID: 30738346]
[81]
Agarwal, H.; Nakara, A.; Menon, S.; Shanmugam, V. Eco-friendly synthesis of zinc oxide nanoparticles using Cinnamomum Tamala leaf extract and its promising effect towards the antibacterial activity. J. Drug Deliv. Sci. Technol., 2019, 53101212
[http://dx.doi.org/10.1016/j.jddst.2019.101212]
[82]
Darvishi, E.; Kahrizi, D.; Arkan, E. Comparison of different properties of zinc oxide nanoparticles synthesized by the green (using Juglans regia L. leaf extract) and chemical methods. J. Mol. Liq., 2019, 286110831
[http://dx.doi.org/10.1016/j.molliq.2019.04.108]
[83]
Vijayakumar, S.; Mahadevan, S.; Arulmozhi, P.; Sriram, S.; Praseetha, P. Green synthesis of zinc oxide nanoparticles using Atalantia monophylla leaf extracts: Characterization and antimicrobial analysis. Mater. Sci. Semicond. Process., 2018, 82, 39-45.
[http://dx.doi.org/10.1016/j.mssp.2018.03.017]
[84]
Mohammadi, F.M.; Ghasemi, N. Influence of temperature and concentration on biosynthesis and characterization of zinc oxide nanoparticles using cherry extract. Journal of Nanostructure in Chem.istry, 2018, 8(1), 93-102.
[http://dx.doi.org/10.1007/s40097-018-0257-6]
[85]
Sharmila, G. Biosynthesis, characterization, and antibacterial activity of zinc oxide nanoparticles derived from Bauhinia tomentosa leaf extract. Journal of Nanostructure in Chemistry, 2018, 8(3), 293-299.
[http://dx.doi.org/10.1007/s40097-018-0271-8]
[86]
Rajakumar, G.; Thiruvengadam, M.; Mydhili, G.; Gomathi, T.; Chung, I-M. Green approach for synthesis of zinc oxide nanoparticles from Andrographis paniculata leaf extract and evaluation of their antioxidant, anti-diabetic, and anti-inflammatory activities. Bioprocess Biosyst. Eng., 2018, 41(1), 21-30.
[http://dx.doi.org/10.1007/s00449-017-1840-9] [PMID: 28916855]
[87]
Mahendiran, D.; Subash, G.; Selvan, D.A.; Rehana, D.; Kumar, R.S.; Rahiman, A.K. Biosynthesis of zinc oxide nanoparticles using plant extracts of Aloe vera and Hibiscus sabdariffa: Phytochemical, antibacterial, antioxidant and anti-proliferative studies. Bionanoscience, 2017, 7(3), 530-545.
[http://dx.doi.org/10.1007/s12668-017-0418-y]
[88]
Chaudhuri, S.K.; Malodia, L. Biosynthesis of zinc oxide nanoparticles using leaf extract of calotropis gigantea: Characterization and its evaluation on tree seedling growth in nursery stage. Appl. Nanosci., 2017, 7(8), 501-512.
[http://dx.doi.org/10.1007/s13204-017-0586-7]
[89]
Nava, O. Fruit peel extract mediated green synthesis of zinc oxide nanoparticles. J. Mol. Struct., 2017, 1147, 1-6.
[http://dx.doi.org/10.1016/j.molstruc.2017.06.078]
[90]
Ali, K.; Dwivedi, S.; Azam, A.; Saquib, Q.; Al-Said, M.S.; Alkhedhairy, A.A.; Musarrat, J. Aloe vera extract functionalized zinc oxide nanoparticles as nanoantibiotics against multi-drug resistant clinical bacterial isolates. J. Colloid Interface Sci., 2016, 472, 145-156.
[http://dx.doi.org/10.1016/j.jcis.2016.03.02] [PMID: 27031596]
[91]
Jafarirad, S.; Mehrabi, M.; Divband, B.; Kosari-Nasab, M. Biofabrication of zinc oxide nanoparticles using fruit extract of Rosa canina and their toxic potential against bacteria: A mechanistic approach. Mater. Sci. Eng. C, 2016, 59, 296-302.
[http://dx.doi.org/10.1016/j.msec.2015.09.089] [PMID: 26652376]
[92]
Elumalai, K.; Velmurugan, S. Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica (L.). Appl. Surf. Sci., 2015, 345, 329-336.
[http://dx.doi.org/10.1016/j.apsusc.2015.03.176]
[93]
Zheng, Y. Green biosynthesis and characterization of zinc oxide nanoparticles using Corymbia citriodora leaf extract and their photocatalytic activity. Green Chem. Lett. Rev., 2015, 8(2), 59-63.
[http://dx.doi.org/10.1080/17518253.2015.1075069]
[94]
Anbuvannan, M.; Ramesh, M.; Viruthagiri, G.; Shanmugam, N.; Kannadasan, N. Anisochilus carnosus leaf extract mediated synthesis of zinc oxide nanoparticles for antibacterial and photocatalytic activities. Mater. Sci. Semicond. Process., 2015, 39, 621-628.
[http://dx.doi.org/10.1016/j.mssp.2015.06.005]
[95]
Punjabi, K.; Mehta, S.; Chavan, R.; Chitalia, V.; Deogharkar, D.; Deshpande, S. Efficiency of biosynthesized silver and zinc nanoparticles against multi-drug resistant pathogens. Front. Microbiol., 2018, 9, 2207.
[http://dx.doi.org/10.3389/fmicb.2018.02207] [PMID: 30294309]
[96]
Amer, M.W.; Awwad, A.M. Green synthesis of copper nanoparticles by Citrus limon fruits extract, characterization and antibacterial activity. Chem. Int., 2021, 7, 1-8.
[97]
Benassai, E.; Del Bubba, M.; Ancillotti, C.; Colzi, I.; Gonnelli, C.; Calisi, N.; Salvatici, M.C.; Casalone, E.; Ristori, S. Green and cost-effective synthesis of copper nanoparticles by extracts of non-edible and waste plant materials from Vaccinium species: Characterization and antimicrobial activity. Mater. Sci. Eng. C, 2021, 119111453
[http://dx.doi.org/10.1016/j.msec.2020.111453] [PMID: 33321590]
[98]
Akhtar, M.S.; Ameen, S.; Ansari, S.A.; Yang, O. Synthesis and characterization of ZnO nanorods and balls nanomaterials for dye sensitized solar cells. Journal of Nanoengineering and Nanomanufacturing, 2011, 1(1), 71-76.
[http://dx.doi.org/10.1166/jnan.2011.1004]
[99]
Feng, Q.L.; Wu, J.; Chen, G.Q.; Cui, F.Z.; Kim, T.N.; Kim, J.O. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus.J. Biomed. Mater. Res., 2000, 52(4), 662-668.,
[http://dx.doi.org/10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3] [PMID: 11033548]
[100]
Yamanaka, M.; Hara, K.; Kudo, J. Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl. Environ. Microbiol., 2005, 71(11), 7589-7593.
[http://dx.doi.org/10.1128/AEM.71.11.7589-7593.2005] [PMID: 16269810]
[101]
Kumar, A.; Vemula, P.K.; Ajayan, P.M.; John, G. Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nat. Mater., 2008, 7(3), 236-241.
[http://dx.doi.org/10.1038/nmat2099] [PMID: 18204453]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy