Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Research Article

A Torsion Relative Angle Measurement Method Based on Fiber-Loop Ring-Down with Intra-Cavity Amplification

Author(s): Tao Ma*, Yongsheng Tian, Shaohui Liu, Jiahe Ma, Heng Liu, Fang Wang and Ziqiang Zhou

Volume 14, Issue 3, 2022

Published on: 08 June, 2021

Page: [198 - 203] Pages: 6

DOI: 10.2174/1876402913666210608162229

Price: $65

Abstract

Background: The fiber-loop ring-down spectroscopy technique has the benefits of optical fiber sensors and also has many unique advantages. Combined with various sensor structures, the FLRD system can achieve different physical, chemical, and biological sensors.

Objective: To find a way to solve the problems of light fluctuation and low sensitivity, high sensitivity, and reliability torsion relative angle measurement system is necessary.

Methods: The torsion relative angle measurement is achieved by using the fiber loop ring-down intra- cavity amplification. The sensitivity, correlation coefficient, and repeatability are analyzed with the experiment.

Results: The sensitivity and correlation coefficient of the proposed system are 4.05 μs/° and 0.9996, respectively. The repeated experiments show that the standard deviation is 9.592×10-4.

Conclusion: The proposed measurement method provides a way to solve the problems of light fluctuation and low sensitivity and has promising applications in the optically active solutions, fiber radial stress birefringence and polarization state measurement of fiber lasers.

Keywords: Torsion relative angle, FLRD, sensitivity, correlation coefficient, repeatability, intra-cavity amplification.

Graphical Abstract

[1]
Stewart, G.; Atherton, K.; Yu, H.; Culshaw, B. An investigation of an optical fibre amplifier loop for intra-cavity and ring-down cavity loss measurements. Meas. Sci. Technol., 2001, 12, 843-849.
[http://dx.doi.org/10.1088/0957-0233/12/7/316]
[2]
Waechter, H.; Litman, J.; Cheung, A.H.; Barnes, J.A.; Loock, H.P. Chemical sensing using fiber cavity ring-down spectroscopy. Sensors (Basel), 2010, 10(3), 1716-1742.
[http://dx.doi.org/10.3390/s100301716] [PMID: 22294895]
[3]
Zhao, Y.; Bai, L.; Wang, Q. Gas concentration sensor based on fiber loop ring-down spectroscopy. Opt. Commun., 2013, 309, 328-332.
[http://dx.doi.org/10.1016/j.optcom.2013.07.073]
[4]
Yang, Y.; Yang, L.; Zhang, Z.; Yang, J.; Wang, J.; Zhang, L.; Deng, X.; Zhang, Z. Fiber loop ring down for static ice pressure detection. Opt. Fiber Technol., 2017, 36, 312-316.
[http://dx.doi.org/10.1016/j.yofte.2017.05.009]
[5]
Esenturk, O.; Kaya, M. Study of strain measurement by fiber optic sensors with a sensitive fiber loop ringdown spectrometer. Opt. Fiber Technol., 2020, 54, 102070.
[http://dx.doi.org/10.1016/j.yofte.2019.102070]
[6]
O’Keefe, A.; Deacon, D.A.G. Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources. Rev. Sci. Instrum., 1988, 59, 2544-2551.
[http://dx.doi.org/10.1063/1.1139895]
[7]
Bescherer, K.; Barnes, J.A.; Loock, H.P. Absorption measurements in liquid core waveguides using cavity ring-down spectroscopy. Anal. Chem., 2013, 85(9), 4328-4334.
[http://dx.doi.org/10.1021/ac4007073] [PMID: 23480430]
[8]
Ghimire, M.; Wang, C. Highly sensitive fiber loop ringdown strain sensor with low temperature sensitivity. Meas. Sci. Technol., 2017, 28, 105101.
[http://dx.doi.org/10.1088/1361-6501/aa82a3]
[9]
Ghimire, M.; Wang, C.; Dixon, K.; Serrato, M. In situ monitoring of prestressed concrete using embedded fiber loop ringdown strain sensor. Measurement, 2018, 124, 224-232.
[http://dx.doi.org/10.1016/j.measurement.2018.04.017]
[10]
Chen, Y.; Han, Q.; Yan, W.; Xu, M.; Liu, T. Magnetic field sensing based on a ferrofluid-coated multimode interferometer in a fiber-loop ring-down cavity. IEEE Sens. J., 2018, 18, 3206-3210.
[http://dx.doi.org/10.1109/JSEN.2018.2808406]
[11]
Liu, X.; Wang, Q.; Li, C.; Zhao, C.; Zhao, Y.; Hu, H.; Li, J. Refractive index sensor based on fiber loop ring-down spectroscopy. Instrum. Sci. Technol., 2016, 44, 241-248.
[http://dx.doi.org/10.1080/10739149.2015.1089276]
[12]
Yolalmaz, A.; Danışman, M.F.; Esenturk, O. Discrimination of chemicals via refractive index by EF-FLRD. Appl. Phys. B, 2019, 125, 156.
[http://dx.doi.org/10.1007/s00340-019-7261-5]
[13]
Niu, P.; Zhao, J.; Zhang, C.; Bai, H.; Sun, X.; Bai, J.; Chen, L. S fiber taper-based fiber loop ring-down refractometer. IEEE Sens. J., 2019, 19, 970-975.
[http://dx.doi.org/10.1109/JSEN.2018.2880800]
[14]
Yan, W.; Han, Q.; Chen, Y.; Song, H.; Tang, X.; Liu, T. Fiber-loop ring-down interrogated refractive index sensor based on an SNS fiber structure. Sensor Actuat. Biol. Chem., 2017, 255, 2018-2022.
[15]
Chen, Y.; Liu, T.; Han, Q.; Yan, W.; Yu, L. Fiber loop ring-down cavity integrated U-bent single-mode-fiber for magnetic field sensing. Photon. Res., 2016, 4, 322-326.
[http://dx.doi.org/10.1364/PRJ.4.000322]
[16]
Wang, Q.; Zhao, W.; Li, J.; Hu, H.; Zhao, Y. A voltage measurement system based on fiber loop cavity ring-down technology using polymer dispersed liquid crystal film as sensing device. T. I. Meas. Control., 2017, 40, 2303-2309.
[http://dx.doi.org/10.1177/0142331217701190]
[17]
Ghimire, M.; Guo, H.; Guo, J.; Wang, C. Surface plasmon-based fiber loop ringdown sensor. Sens. Lett., 2017, 15, 565-569.
[http://dx.doi.org/10.1166/sl.2017.3851]
[18]
Zhuang, Y.; Du, Y.; Zhu, C.; Ahmed, M.F.; Chen, Y.; Gerald, R.E.; Huang, J. A microwave photonics fiber loop ring-down system. IEEE Sens. J., 2017, 17, 6565-6570.
[http://dx.doi.org/10.1109/JSEN.2017.2745199]
[19]
Yang, L.; Yang, J.; Yang, Y.; Zhang, Z.; Wang, J.; Zhang, Z.; Xue, P.; Gong, Y.; Copner, N. Optical sensors using chaotic correlation fiber loop ring down. Opt. Express, 2017, 25(3), 2031-2037.
[http://dx.doi.org/10.1364/OE.25.002031] [PMID: 29519051]
[20]
Yang, J.; Yang, L.; Wang, J.; Zhang, Y.; Gong, Z.; Li, K. The stability of chaotic correlation fiber loop ring down system with loss compensation. IEEE Photonics Technol. Lett., 2019, 31, 471-474.
[http://dx.doi.org/10.1109/LPT.2019.2899220]
[21]
Kivilcim, Y.; Anil, Y. Analysis of a novel sensor interrogation technique based on fiber cavity ring-down (CRD) loop and OTDR. Opt. Fiber Technol., 2018, 43, 57-61.
[http://dx.doi.org/10.1016/j.yofte.2018.04.005]
[22]
Bowers, M.S.; Savage-Leuchs, M.; Liu, A.; Eisenberg, E.; Henrie, J.; Jenson, B.; Borschowa, L.; Miller, C. High peak power, short-pulse, eyesafe fiber laser for radar applications. Proc. SPIE, 2005, 5792, 34-38.
[http://dx.doi.org/10.1117/12.604037]
[23]
Miller, G.A.; Cranch, G.A.; Kirkendal, C.K. High-performance sensing using fiber lasers. Opt. Photonics News, 2012, 23, 30-36.
[http://dx.doi.org/10.1364/OPN.23.2.000030]
[24]
Zou, H.; Lou, S.; Ma, J.; Su, W.; Han, B.; Shen, X. Stable multi-wavelength fiber laser based on a compounded nonlinear polarization rotation effect. Laser Phys., 2014, 24, 115108.
[http://dx.doi.org/10.1088/1054-660X/24/11/115108]
[25]
Santos, D.J.; Otero, M. A phenomenological model of random birefringence in single-mode optical fibers. Microw. Opt. Technol. Lett., 2015, 27, 390-393.
[http://dx.doi.org/10.1002/1098-2760(20001220)27:6<390:AID-MOP6>3.0.CO;2-4]
[26]
Cao, S.; Zhang, M. Polarized and birefringence-dependent stimulated Brillouin scattering in single mode fiber. Optik (Stuttg.), 2017, 131, 374-382.
[http://dx.doi.org/10.1016/j.ijleo.2016.11.060]
[27]
Magalhães, R.; Silva, S.O.; Frazão, O. Fiber ring resonator using a cavity ring-down interrogation technique for curvature sensing. Micro. Opt. Techn. Let., 2015, 58, 267-270.
[http://dx.doi.org/10.1002/mop.29547]
[28]
Wang, F.; Lu, H. Wang, Liu, Y. F. Measurement of concentration and temperature using a fiber loop ring-down technique with core-offset structure. Opt. Commun., 2018, 410, 13-16.
[http://dx.doi.org/10.1016/j.optcom.2017.09.092]
[29]
Zhang, L.; Lin, H.; Du, C.; Liu, X.; Deng, X.; Cui, L. Performance investigation on pressure sensing from fiber Bragg grating loop ring-down cavity. Opt. Commun., 2020, 469, 125759.
[http://dx.doi.org/10.1016/j.optcom.2020.125759]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy