Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

A Pan-cancer Analysis Reveals the Abnormal Expression and Drug Sensitivity of CSF1

Author(s): Xiaoshuo Dai, Xinhuan Chen, Wei Chen, Yihuan Chen, Jun Zhao, Qiushuang Zhang and Jing Lu*

Volume 22, Issue 7, 2022

Published on: 08 June, 2021

Page: [1296 - 1312] Pages: 17

DOI: 10.2174/1871520621666210608105357

Price: $65

Abstract

Background: Colony-stimulating factor-1 (CSF1) is a cytokine that is closely related to normal organ growth and development as well as tumor progression.

Objective: We aimed to summarize and clarify the reasons for the abnormal expression of CSF1 in tumors and explore the role of CSF1 in tumor progression. Furthermore, drug response analysis could provide a reference for clinical medication.

Methods: The expression of CSF1 was analyzed by TCGA and CCLE. Besides, cBioPortal and MethSurv databases were used to conduct mutation and DNA methylation analyses. Further, correlations between CSF1 expression and tumor stage, survival, immune infiltration, drug sensitivity and enrichment analyses were validated via UALCAN, Kaplan-Meier plotter, TIMER, CTRP and Coexperia databases.

Results: CSF1 is expressed in a variety of tissues; meaningfully, it can be detected in the blood. Compared with normal tissues, CSF1 expression was significantly decreased in most tumors. The missense mutation and DNA methylation of CSF1 might cause the downregulated expression. Moreover, decreased CSF1 expression was related to higher tumor stage and worse survival. Further, the promoter DNA methylation level of CSF1 was prognostically significant in most tumors. Besides, CSF1 was closely related to immune infiltration, especially macrophages. Importantly, CSF1 expression was associated with a good response to VEGFRs inhibitors, which may be due to the possible involvement of CSF1 in tumor angiogenesis and metastasis processes.

Conclusion: The abnormal expression of CSF1 could serve as a promising biomarker of tumor progression and prognosis in pan-cancer. Significantly, angiogenesis and metastasis inhibitors may show a good response to CSF1-related tumors.

Keywords: CSF1, pan-cancer, mutation, DNA methylation, immune infiltration, drug sensitivity.

Graphical Abstract

[1]
Stanley, E.R.; Chen, D.M.; Lin, H.S. Induction of macrophage production and proliferation by a purified colony stimulating factor. Nature, 1978, 274(5667), 168-170.
[http://dx.doi.org/10.1038/274168a0] [PMID: 307187]
[2]
Irvine, K.M.; Caruso, M.; Cestari, M.F.; Davis, G.M.; Keshvari, S.; Sehgal, A.; Pridans, C.; Hume, D.A. Analysis of the impact of CSF-1 administration in adult rats using a novel Csf1r-mApple reporter gene. J. Leukoc. Biol., 2020, 107(2), 221-235.
[http://dx.doi.org/10.1002/JLB.MA0519-149R] [PMID: 31397014]
[3]
Easley-Neal, C.; Foreman, O.; Sharma, N.; Zarrin, A.A.; Weimer, R.M. CSF1R ligands IL-34 and CSF1 are differentially required for mi-croglia development and maintenance in white and gray matter brain regions. Front. Immunol., 2019, 10, 2199.
[http://dx.doi.org/10.3389/fimmu.2019.02199] [PMID: 31616414]
[4]
Leblond, A.L.; Klinkert, K.; Martin, K.; Turner, E.C.; Kumar, A.H.; Browne, T.; Caplice, N.M. Systemic and cardiac depletion of M2 mac-rophage through CSF-1R signaling inhibition alters cardiac function post myocardial infarction. PLoS One, 2015, 10(9), e0137515.
[http://dx.doi.org/10.1371/journal.pone.0137515] [PMID: 26407006]
[5]
Brady, N.J.; Chuntova, P.; Schwertfeger, K.L. Macrophages: Regulators of the inflammatory microenvironment during mammary gland development and breast cancer. Mediators Inflamm., 2016, 2016, 4549676.
[http://dx.doi.org/10.1155/2016/4549676] [PMID: 26884646]
[6]
Huynh, D.; Akçora, D.; Malaterre, J.; Chan, C.K.; Dai, X.M.; Bertoncello, I.; Stanley, E.R.; Ramsay, R.G. CSF-1 receptor-dependent colon development, homeostasis and inflammatory stress response. PLoS One, 2013, 8(2), e56951.
[http://dx.doi.org/10.1371/journal.pone.0056951] [PMID: 23451116]
[7]
Banaei-Bouchareb, L.; Peuchmaur, M.; Czernichow, P.; Polak, M. A transient microenvironment loaded mainly with macrophages in the early developing human pancreas. J. Endocrinol., 2006, 188(3), 467-480.
[http://dx.doi.org/10.1677/joe.1.06225] [PMID: 16522727]
[8]
Dakhlallah, D.; Wang, Y.; Bobo, T.A.; Ellis, E.; Mo, X.; Piper, M.G.; Eubank, T.D.; Marsh, C.B. Constitutive AKT activity predisposes lung fibrosis by regulating macrophage, myofibroblast and fibrocyte recruitment and changes in autophagy. Adv. Biosci. Biotechnol., 2019, 10(10), 346-373.
[http://dx.doi.org/10.4236/abb.2019.1010027] [PMID: 31750010]
[9]
Arnold, T.; Betsholtz, C. The importance of microglia in the development of the vasculature in the central nervous system. Vasc. Cell, 2013, 5(1), 4.
[http://dx.doi.org/10.1186/2045-824X-5-4] [PMID: 23422217]
[10]
Ochsenbein, A.M.; Karaman, S.; Proulx, S.T.; Goldmann, R.; Chittazhathu, J.; Dasargyri, A.; Chong, C.; Leroux, J.C.; Stanley, E.R.; Detmar, M. Regulation of lymphangiogenesis in the diaphragm by macrophages and VEGFR-3 signaling. Angiogenesis, 2016, 19(4), 513-524.
[http://dx.doi.org/10.1007/s10456-016-9523-8] [PMID: 27464987]
[11]
Ivanov, S.; Gallerand, A.; Gros, M.; Stunault, M.I.; Merlin, J.; Vaillant, N.; Yvan-Charvet, L.; Guinamard, R.R. Mesothelial cell CSF1 sus-tains peritoneal macrophage proliferation. Eur. J. Immunol., 2019, 49(11), 2012-2018.
[http://dx.doi.org/10.1002/eji.201948164] [PMID: 31251389]
[12]
Jacome-Galarza, C.E.; Percin, G.I.; Muller, J.T.; Mass, E.; Lazarov, T.; Eitler, J.; Rauner, M.; Yadav, V.K.; Crozet, L.; Bohm, M.; Loyher, P.L.; Karsenty, G.; Waskow, C.; Geissmann, F. Developmental origin, functional maintenance and genetic rescue of osteoclasts. Nature, 2019, 568(7753), 541-545.
[http://dx.doi.org/10.1038/s41586-019-1105-7] [PMID: 30971820]
[13]
Sidorkiewicz, I.; Piskór, B.; Dąbrowska, E.; Guzińska-Ustymowicz, K.; Pryczynicz, A.; Zbucka-Krętowska, M.; Ławicki, S. Plasma levels and tissue expression of selected cytokines, metalloproteinases and tissue inhibitors in patients with cervical cancer. Anticancer Res., 2019, 39(11), 6403-6412.
[http://dx.doi.org/10.21873/anticanres.13854] [PMID: 31704874]
[14]
Baert, T.; Vankerckhoven, A.; Riva, M.; Van Hoylandt, A.; Thirion, G.; Holger, G.; Mathivet, T.; Vergote, I.; Coosemans, A. Myeloid derived suppressor cells: Key drivers of immunosuppression in ovarian cancer. Front. Immunol., 2019, 10, 1273.
[http://dx.doi.org/10.3389/fimmu.2019.01273] [PMID: 31214202]
[15]
Ho, J.; Peters, T.; Dickson, B.C.; Swanson, D.; Fernandez, A.; Frova-Seguin, A.; Valentin, M.A.; Schramm, U.; Sultan, M.; Nielsen, T.O.; Demicco, E.G. Detection of CSF1 rearrangements deleting the 3¢ UTR in tenosynovial giant cell tumors. Genes Chromosomes Cancer, 2020, 59(2), 96-105.
[http://dx.doi.org/10.1002/gcc.22807] [PMID: 31469468]
[16]
Lau, C.P.; Kwok, J.S.; Tsui, J.C.; Huang, L.; Yang, K.Y.; Tsui, S.K.; Kumta, S.M. Genome-wide transcriptome profiling of the neoplastic giant cell tumor of bone stromal cells by rna sequencing. J. Cell. Biochem., 2017, 118(6), 1349-1360.
[http://dx.doi.org/10.1002/jcb.25792] [PMID: 27862217]
[17]
Hua, F.; Tian, Y.; Gao, Y.; Li, C.; Liu, X. Colony stimulating factor 1 receptor inhibition blocks macrophage infiltration and endometrial cancer cell proliferation. Mol. Med. Rep., 2019, 19(4), 3139-3147.
[http://dx.doi.org/10.3892/mmr.2019.9963] [PMID: 30816518]
[18]
Pestell, T.G.; Jiao, X.; Kumar, M.; Peck, A.R.; Prisco, M.; Deng, S.; Li, Z.; Ertel, A.; Casimiro, M.C.; Ju, X.; Di Rocco, A.; Di Sante, G.; Katiyar, S.; Shupp, A.; Lisanti, M.P.; Jain, P.; Wu, K.; Rui, H.; Hooper, D.C.; Yu, Z.; Goldman, A.R.; Speicher, D.W.; Laury-Kleintop, L.; Pestell, R.G. Stromal cyclin D1 promotes heterotypic immune signaling and breast cancer growth. Oncotarget, 2017, 8(47), 81754-81775.
[http://dx.doi.org/10.18632/oncotarget.19953] [PMID: 29137220]
[19]
Sánchez-González, I.; Bobien, A.; Molnar, C.; Schmid, S.; Strotbek, M.; Boerries, M.; Busch, H.; Olayioye, M.A. miR-149 suppresses breast cancer metastasis by blocking paracrine interactions with macrophages. Cancer Res., 2020, 80(6), 1330-1341.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-1934] [PMID: 31911555]
[20]
Ke, M.; Zhang, Z.; Cong, L.; Zhao, S.; Li, Y.; Wang, X.; Lv, Y.; Zhu, Y.; Dong, J. MicroRNA-148b-colony-stimulating factor-1 signaling-induced tumor-associated macrophage infiltration promotes hepatocellular carcinoma metastasis. Biomed. Pharmacother., 2019, 120, 109523.
[http://dx.doi.org/10.1016/j.biopha.2019.109523] [PMID: 31655310]
[21]
Zhang, D.; Rennhack, J.; Andrechek, E.R.; Rockwell, C.E.; Liby, K.T. Identification of an unfavorable immune signature in advanced lung tumors from Nrf2-deficient mice. Antioxid. Redox Signal., 2018, 29(16), 1535-1552.
[http://dx.doi.org/10.1089/ars.2017.7201] [PMID: 29634345]
[22]
Aversa, J.; Song, M.; Shimazu, T.; Inoue, M.; Charvat, H.; Yamaji, T.; Sawada, N.; Pfeiffer, R.M.; Karimi, P.; Dawsey, S.M.; Rabkin, C.S.; Tsugane, S.; Camargo, M.C. Prediagnostic circulating inflammation biomarkers and esophageal squamous cell carcinoma: A case-cohort study in Japan. Int. J. Cancer, 2020, 147(3), 686-691.
[http://dx.doi.org/10.1002/ijc.32763] [PMID: 31671219]
[23]
Hsu, W.C.; Lee, Y.C.; Liang, P.I.; Chang, L.L.; Huang, A.M.; Lin, H.H.; Wu, W.J.; Li, C.C.; Li, W.M.; Jhan, J.H.; Ke, H.L. CSF-1 Overex-pression predicts poor prognosis in upper tract urothelial carcinomas. Dis. Markers, 2019, 2019, 2724948.
[http://dx.doi.org/10.1155/2019/2724948] [PMID: 31565097]
[24]
Baldi, G.G.; Gronchi, A.; Stacchiotti, S. Pexidartinib for the treatment of adult symptomatic patients with tenosynovial giant cell tumors. Expert Rev. Clin. Pharmacol., 2020, 13(6), 571-576.
[http://dx.doi.org/10.1080/17512433.2020.1771179] [PMID: 32478598]
[25]
Tap, W.D.; Gelderblom, H.; Palmerini, E.; Desai, J.; Bauer, S.; Blay, J.Y.; Alcindor, T.; Ganjoo, K.; Martín-Broto, J.; Ryan, C.W.; Thomas, D.M.; Peterfy, C.; Healey, J.H.; van de Sande, M.; Gelhorn, H.L.; Shuster, D.E.; Wang, Q.; Yver, A.; Hsu, H.H.; Lin, P.S.; Tong-Starksen, S.; Stacchiotti, S.; Wagner, A.J. Pexidartinib versus placebo for advanced tenosynovial giant cell tumour (ENLIVEN): A randomised phase 3 trial. Lancet, 2019, 394(10197), 478-487.
[http://dx.doi.org/10.1016/S0140-6736(19)30764-0] [PMID: 31229240]
[26]
Peng, X.; Hou, P.; Chen, Y.; Dai, Y.; Ji, Y.; Shen, Y.; Su, Y.; Liu, B.; Wang, Y.; Sun, D.; Jiang, Y.; Zha, C.; Xie, Z.; Ding, J.; Geng, M.; Ai, J. Preclinical evaluation of 3D185, a novel potent inhibitor of FGFR1/2/3 and CSF-1R, in FGFR-dependent and macrophage-dominant can-cer models. J. Exp. Clin. Cancer Res., 2019, 38(1), 372.
[http://dx.doi.org/10.1186/s13046-019-1357-y] [PMID: 31438996]
[27]
Yin, M.; Guo, Y.; Hu, R.; Cai, W.L.; Li, Y.; Pei, S.; Sun, H.; Peng, C.; Li, J.; Ye, R.; Yang, Q.; Wang, N.; Tao, Y.; Chen, X.; Yan, Q. Potent BRD4 inhibitor suppresses cancer cell-macrophage interaction. Nat. Commun., 2020, 11(1), 1833.
[http://dx.doi.org/10.1038/s41467-020-15290-0] [PMID: 32286255]
[28]
Uhlén, M.; Fagerberg, L.; Hallström, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, Å.; Kampf, C.; Sjöstedt, E.; Asplund, A.; Olsson, I.; Edlund, K.; Lundberg, E.; Navani, S.; Szigyarto, C.A.; Odeberg, J.; Djureinovic, D.; Takanen, J.O.; Hober, S.; Alm, T.; Edqvist, P.H.; Berling, H.; Tegel, H.; Mulder, J.; Rockberg, J.; Nilsson, P.; Schwenk, J.M.; Hamsten, M.; von Feilitzen, K.; Forsberg, M.; Persson, L.; Johansson, F.; Zwahlen, M.; von Heijne, G.; Nielsen, J.; Pontén, F. Proteomics. Tissue-based map of the human proteome. Science, 2015, 347(6220), 1260419.
[http://dx.doi.org/10.1126/science.1260419] [PMID: 25613900]
[29]
Li, B.; Severson, E.; Pignon, J.C.; Zhao, H.; Li, T.; Novak, J.; Jiang, P.; Shen, H.; Aster, J.C.; Rodig, S.; Signoretti, S.; Liu, J.S.; Liu, X.S. Comprehensive analyses of tumor immunity: Implications for cancer immunotherapy. Genome Biol., 2016, 17(1), 174.
[http://dx.doi.org/10.1186/s13059-016-1028-7] [PMID: 27549193]
[30]
Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; Cerami, E.; Sand-er, C.; Schultz, N. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal., 2013, 6(269), pl1.
[http://dx.doi.org/10.1126/scisignal.2004088] [PMID: 23550210]
[31]
Modhukur, V.; Iljasenko, T.; Metsalu, T.; Lokk, K.; Laisk-Podar, T.; Vilo, J. MethSurv: A web tool to perform multivariable survival analysis using DNA methylation data. Epigenomics, 2018, 10(3), 277-288.
[http://dx.doi.org/10.2217/epi-2017-0118] [PMID: 29264942]
[32]
Chandrashekar, D.S.; Bashel, B.; Balasubramanya, S.A.H.; Creighton, C.J.; Ponce-Rodriguez, I.; Chakravarthi, B.V.S.K.; Varambally, S. UALCAN: A portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia, 2017, 19(8), 649-658.
[http://dx.doi.org/10.1016/j.neo.2017.05.002] [PMID: 28732212]
[33]
Nagy, Á.; Lánczky, A.; Menyhárt, O.; Győrffy, B. Validation of miRNA prognostic power in hepatocellular carcinoma using expression data of independent datasets. Sci. Rep., 2018, 8(1), 9227.
[http://dx.doi.org/10.1038/s41598-018-27521-y] [PMID: 29907753]
[34]
Seashore-Ludlow, B.; Rees, M.G.; Cheah, J.H.; Cokol, M.; Price, E.V.; Coletti, M.E.; Jones, V.; Bodycombe, N.E.; Soule, C.K.; Gould, J.; Alexander, B.; Li, A.; Montgomery, P.; Wawer, M.J.; Kuru, N.; Kotz, J.D.; Hon, C.S.; Munoz, B.; Liefeld, T.; Dančík, V.; Bittker, J.A.; Palmer, M.; Bradner, J.E.; Shamji, A.F.; Clemons, P.A.; Schreiber, S.L. Harnessing connectivity in a large-scale small-molecule sensitivity dataset. Cancer Discov., 2015, 5(11), 1210-1223.
[http://dx.doi.org/10.1158/2159-8290.CD-15-0235] [PMID: 26482930]
[35]
Rees, M.G.; Seashore-Ludlow, B.; Cheah, J.H.; Adams, D.J.; Price, E.V.; Gill, S.; Javaid, S.; Coletti, M.E.; Jones, V.L.; Bodycombe, N.E.; Soule, C.K.; Alexander, B.; Li, A.; Montgomery, P.; Kotz, J.D.; Hon, C.S.; Munoz, B.; Liefeld, T.; Dančík, V.; Haber, D.A.; Clish, C.B.; Bittker, J.A.; Palmer, M.; Wagner, B.K.; Clemons, P.A.; Shamji, A.F.; Schreiber, S.L. Correlating chemical sensitivity and basal gene ex-pression reveals mechanism of action. Nat. Chem. Biol., 2016, 12(2), 109-116.
[http://dx.doi.org/10.1038/nchembio.1986] [PMID: 26656090]
[36]
Yang, S.; Kim, C.Y.; Hwang, S.; Kim, E.; Kim, H.; Shim, H.; Lee, I. COEXPEDIA: Exploring biomedical hypotheses via co-expressions associated with medical subject headings (MeSH). Nucleic Acids Res., 2017, 45(D1), D389-D396.
[http://dx.doi.org/10.1093/nar/gkw868] [PMID: 27679477]
[37]
Dong, X.; Hong, Y.; Sun, H.; Chen, C.; Zhao, X.; Sun, B. NDRG1 suppresses vasculogenic mimicry and tumor aggressiveness in gastric carcinoma. Oncol. Lett., 2019, 18(3), 3003-3016.
[http://dx.doi.org/10.3892/ol.2019.10642] [PMID: 31452779]
[38]
Aharinejad, S.; Salama, M.; Paulus, P.; Zins, K.; Berger, A.; Singer, C.F. Elevated CSF1 serum concentration predicts poor overall survival in women with early breast cancer. Endocr. Relat. Cancer, 2013, 20(6), 777-783.
[http://dx.doi.org/10.1530/ERC-13-0198] [PMID: 24016870]
[39]
Eckmann-Scholz, C.; Wilke, C.; Acil, Y.; Alkatout, I.; Salmassi, A. Macrophage colony-stimulating factor (M-CSF) in first trimester mater-nal serum: Correlation with pathologic pregnancy outcome. Arch. Gynecol. Obstet., 2016, 293(6), 1213-1217.
[http://dx.doi.org/10.1007/s00404-015-3931-7] [PMID: 26538356]
[40]
Ławicki, S.; Głażewska, E.K.; Sobolewska, M.; Będkowska, G.E.; Szmitkowski, M. Plasma levels and diagnostic utility of macrophage colony-stimulating factor, matrix metalloproteinase-9, and tissue inhibitor of metalloproteinases-1 as new biomarkers of breast cancer. Ann. Lab. Med., 2016, 36(3), 223-229.
[http://dx.doi.org/10.3343/alm.2016.36.3.223] [PMID: 26915610]
[41]
Lira-Junior, R.; Teixeira, M.K.S.; Lourenço, E.J.V.; Telles, D.M.; Figueredo, C.M.; Boström, E.A. CSF-1 and IL-34 levels in peri-implant crevicular fluid and saliva from patients having peri-implant diseases. Clin. Oral Investig., 2020, 24(1), 309-315.
[http://dx.doi.org/10.1007/s00784-019-02935-8] [PMID: 31102043]
[42]
West, R.B.; Rubin, B.P.; Miller, M.A.; Subramanian, S.; Kaygusuz, G.; Montgomery, K.; Zhu, S.; Marinelli, R.J.; De Luca, A.; Downs-Kelly, E.; Goldblum, J.R.; Corless, C.L.; Brown, P.O.; Gilks, C.B.; Nielsen, T.O.; Huntsman, D.; van de Rijn, M. A landscape effect in te-nosynovial giant-cell tumor from activation of CSF1 expression by a translocation in a minority of tumor cells. Proc. Natl. Acad. Sci. USA, 2006, 103(3), 690-695.
[http://dx.doi.org/10.1073/pnas.0507321103] [PMID: 16407111]
[43]
Vougiouklakis, T.; Shen, G.; Feng, X.; Hoda, S.T.; Jour, G. Molecular profiling of atypical tenosynovial giant cell tumors reveals novel non-CSF1 fusions. Cancers (Basel), 2019, 12(1), E100.
[http://dx.doi.org/10.3390/cancers12010100] [PMID: 31906059]
[44]
Wang, J.; Han, X.; Sun, Y. DNA methylation signatures in circulating cell-free DNA as biomarkers for the early detection of cancer. Sci. China Life Sci., 2017, 60(4), 356-362.
[http://dx.doi.org/10.1007/s11427-016-0253-7] [PMID: 28063009]
[45]
Lin, R.K.; Wang, Y.C. Dysregulated transcriptional and post-translational control of DNA methyltransferases in cancer. Cell Biosci., 2014, 4, 46.
[http://dx.doi.org/10.1186/2045-3701-4-46] [PMID: 25949795]
[46]
Cannarile, M.A.; Weisser, M.; Jacob, W.; Jegg, A.M.; Ries, C.H.; Rüttinger, D. Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy. J. Immunother. Cancer, 2017, 5(1), 53.
[http://dx.doi.org/10.1186/s40425-017-0257-y] [PMID: 28716061]
[47]
Valero, J.G.; Matas-Céspedes, A.; Arenas, F.; Rodriguez, V.; Carreras, J.; Serrat, N.; Guerrero-Hernández, M.; Yahiaoui, A.; Balagué, O.; Martin, S.; Capdevila, C.; Hernández, L.; Magnano, L.; Rivas-Delgado, A.; Tannheimer, S.; Cid, M.C.; Campo, E.; López-Guillermo, A.; Colomer, D.; Pérez-Galán, P. The receptor of the colony-stimulating factor-1 (CSF-1R) is a novel prognostic factor and therapeutic target in follicular lymphoma. Leukemia, 2021.
[http://dx.doi.org/10.1038/s41375-021-01201-9] [PMID: 33731849]
[48]
Pojani, E.; Barlocco, D. Romidepsin (FK228), an histone deacetylase inhibitor, and its analogues in cancer chemotherapy. Curr. Med. Chem., 2020.
[http://dx.doi.org/10.2174/0929867327666200203113926] [PMID: 32013816]
[49]
Ma, H.; Cheng, B.; Falchi, L.; Marchi, E.; Sawas, A.; Bhagat, G.; O’Connor, O.A. Survival benefit in patients with peripheral T-cell lym-phomas after treatments with novel therapies and clinical trials. Hematol. Oncol., 2020, 38(1), 51-58.
[http://dx.doi.org/10.1002/hon.2705] [PMID: 31872891]
[50]
Darden, J.; Payne, L.B.; Zhao, H.; Chappell, J.C. Excess vascular endothelial growth factor-A disrupts pericyte recruitment during blood vessel formation. Angiogenesis, 2019, 22(1), 167-183.
[http://dx.doi.org/10.1007/s10456-018-9648-z] [PMID: 30238211]
[51]
Okugawa, Y.; Toiyama, Y.; Ichikawa, T.; Kawamura, M.; Yasuda, H.; Fujikawa, H.; Saigusa, S.; Ohi, M.; Araki, T.; Tanaka, K.; Inoue, Y.; Tanaka, M.; Miki, C.; Kusunoki, M. Colony-stimulating factor-1 and colony-stimulating factor-1 receptor co-expression is associated with disease progression in gastric cancer. Int. J. Oncol., 2018, 53(2), 737-749.
[http://dx.doi.org/10.3892/ijo.2018.4406] [PMID: 29767252]
[52]
McKeegan, E.M.; Ansell, P.J.; Davis, G.; Chan, S.; Chandran, R.K.; Gawel, S.H.; Dowell, B.L.; Bhathena, A.; Chakravartty, A.; McKee, M.D.; Ricker, J.L.; Carlson, D.M.; Ramalingam, S.S.; Devanarayan, V. Plasma biomarker signature associated with improved survival in advanced non-small cell lung cancer patients on linifanib. Lung Cancer, 2015, 90(2), 296-301.
[http://dx.doi.org/10.1016/j.lungcan.2015.09.011] [PMID: 26424209]
[53]
Falcon, B.L.; Barr, S.; Gokhale, P.C.; Chou, J.; Fogarty, J.; Depeille, P.; Miglarese, M.; Epstein, D.M.; McDonald, D.M. Reduced VEGF production, angiogenesis, and vascular regrowth contribute to the antitumor properties of dual mTORC1/mTORC2 inhibitors. Cancer Res., 2011, 71(5), 1573-1583.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-3126] [PMID: 21363918]
[54]
Murga-Zamalloa, C.; Rolland, D.C.M.; Polk, A.; Wolfe, A.; Dewar, H.; Chowdhury, P.; Onder, O.; Dewar, R.; Brown, N.A.; Bailey, N.G.; Inamdar, K.; Lim, M.S.; Elenitoba-Johnson, K.S.J.; Wilcox, R.A. Colony-stimulating factor 1 receptor (CSF1R) activates AKT/mTOR sig-naling and promotes T-Cell lymphoma viability. Clin. Cancer Res., 2020, 26(3), 690-703.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-1486] [PMID: 31636099]
[55]
Yu, X.; Li, W.; Deng, Q.; You, S.; Liu, H.; Peng, S.; Liu, X.; Lu, J.; Luo, X.; Yang, L.; Tang, M.; Weng, X.; Yi, W.; Liu, W.; Wu, S.; Ding, Z.; Feng, T.; Zhou, J.; Fan, J.; Bode, A.M.; Dong, Z.; Liu, J.; Cao, Y. Neoalbaconol inhibits angiogenesis and tumor growth by suppressing EGFR-mediated VEGF production. Mol. Carcinog., 2017, 56(5), 1414-1426.
[http://dx.doi.org/10.1002/mc.22602] [PMID: 27996164]
[56]
Benkheil, M.; Paeshuyse, J.; Neyts, J.; Van Haele, M.; Roskams, T.; Liekens, S. HCV-induced EGFR-ERK signaling promotes a pro-inflammatory and pro-angiogenic signature contributing to liver cancer pathogenesis. Biochem. Pharmacol., 2018, 155, 305-315.
[http://dx.doi.org/10.1016/j.bcp.2018.07.011] [PMID: 30012461]
[57]
Tsuda, Y.; Hirata, M.; Katayama, K.; Motoi, T.; Matsubara, D.; Oda, Y.; Fujita, M.; Kobayashi, H.; Kawano, H.; Nishida, Y.; Sakai, T.; Okuma, T.; Goto, T.; Ogura, K.; Kawai, A.; Ae, K.; Anazawa, U.; Suehara, Y.; Iwata, S.; Miyano, S.; Imoto, S.; Shibata, T.; Nakagawa, H.; Yamaguchi, R.; Tanaka, S.; Matsuda, K. Massively parallel sequencing of tenosynovial giant cell tumors reveals novel CSF1 fusion tran-scripts and novel somatic CBL mutations. Int. J. Cancer, 2019, 145(12), 3276-3284.
[http://dx.doi.org/10.1002/ijc.32421] [PMID: 31107544]
[58]
Kaur, S.; Sehgal, A.; Wu, A.C.; Millard, S.M.; Batoon, L.; Sandrock, C.J.; Ferrari-Cestari, M.; Levesque, J.P.; Hume, D.A.; Raggatt, L.J.; Pettit, A.R. Stable colony-stimulating factor 1 fusion protein treatment increases hematopoietic stem cell pool and enhances their mobilisa-tion in mice. J. Hematol. Oncol., 2021, 14(1), 3.
[http://dx.doi.org/10.1186/s13045-020-00997-w] [PMID: 33402221]
[59]
Sajjanar, B.; Trakooljul, N.; Wimmers, K.; Ponsuksili, S. DNA methylation analysis of porcine mammary epithelial cells reveals differen-tially methylated loci associated with immune response against Escherichia coli challenge. BMC Genomics, 2019, 20(1), 623.
[http://dx.doi.org/10.1186/s12864-019-5976-7] [PMID: 31366318]
[60]
Paziewska, A.; Dabrowska, M.; Goryca, K.; Antoniewicz, A.; Dobruch, J.; Mikula, M.; Jarosz, D.; Zapala, L.; Borowka, A.; Ostrowski, J. DNA methylation status is more reliable than gene expression at detecting cancer in prostate biopsy. Br. J. Cancer, 2014, 111(4), 781-789.
[http://dx.doi.org/10.1038/bjc.2014.337] [PMID: 24937670]
[61]
Gurbani, S.S.; Yoon, Y.; Weinberg, B.D.; Salgado, E.; Press, R.H.; Cordova, J.S.; Ramesh, K.K.; Liang, Z.; Velazquez Vega, J.; Voloschin, A.; Olson, J.J.; Schreibmann, E.; Shim, H.; Shu, H.G. Assessing treatment response of glioblastoma to an HDAC inhibitor using whole-brain spectroscopic MRI. Tomography, 2019, 5(1), 53-60.
[http://dx.doi.org/10.18383/j.tom.2018.00031] [PMID: 30854442]
[62]
Lu, P.; Gu, Y.; Li, L.; Wang, F.; Yang, X.; Yang, Y. Belinostat suppresses cell proliferation by inactivating Wnt/β-catenin pathway and promotes apoptosis through regulating PKC pathway in breast cancer. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 3955-3960.
[http://dx.doi.org/10.1080/21691401.2019.1671855] [PMID: 31571495]
[63]
To, K.K.; Tong, W.S.; Fu, L.W. Reversal of platinum drug resistance by the histone deacetylase inhibitor belinostat. Lung Cancer, 2017, 103, 58-65.
[http://dx.doi.org/10.1016/j.lungcan.2016.11.019] [PMID: 28024697]
[64]
Kim, M.J.; Lee, J.S.; Park, S.E.; Yi, H.J.; Jeong, I.G.; Kang, J.S.; Yun, J.; Lee, J.Y.; Ro, S.; Lee, J.S.; Choi, E.K.; Hwang, J.J.; Kim, C.S. Combination treatment of renal cell carcinoma with belinostat and 5-fluorouracil: A role for oxidative stress induced DNA damage and HSP90 regulated thymidine synthase. J. Urol., 2015, 193(5), 1660-1668.
[http://dx.doi.org/10.1016/j.juro.2014.11.091] [PMID: 25433307]
[65]
Benner, B.; Good, L.; Quiroga, D.; Schultz, T.E.; Kassem, M.; Carson, W.E.; Cherian, M.A.; Sardesai, S.; Wesolowski, R. Pexidartinib, a novel small molecule csf-1r inhibitor in use for tenosynovial giant cell tumor: A systematic review of pre-clinical and clinical develop-ment. Drug Des. Devel. Ther., 2020, 14, 1693-1704.
[http://dx.doi.org/10.2147/DDDT.S253232] [PMID: 32440095]
[66]
Shibuya, M. Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: A crucial target for anti- and pro-angiogenic therapies. Genes Cancer, 2011, 2(12), 1097-1105.
[http://dx.doi.org/10.1177/1947601911423031] [PMID: 22866201]
[67]
Park, S.; Kim, M.; Zhu, J.; Lee, W.K.; Altan-Bonnet, G.; Meltzer, P.; Cheng, S.Y. Inflammation suppression prevents tumor cell prolifera-tion in a mouse model of thyroid cancer. Am. J. Cancer Res., 2020, 10(6), 1857-1870.
[PMID: 32642296]
[68]
Blondy, T.; d’Almeida, S.M.; Briolay, T.; Tabiasco, J.; Meiller, C.; Chéné, A.L.; Cellerin, L.; Deshayes, S.; Delneste, Y.; Fonteneau, J.F.; Boisgerault, N.; Bennouna, J.; Grégoire, M.; Jean, D.; Blanquart, C. Involvement of the M-CSF/IL-34/CSF-1R pathway in malignant pleural mesothelioma. J. Immunother. Cancer, 2020, 8(1), e000182.
[http://dx.doi.org/10.1136/jitc-2019-000182] [PMID: 32581053]
[69]
Javeshghani, D.; Barhoumi, T.; Idris-Khodja, N.; Paradis, P.; Schiffrin, E.L. Reduced macrophage-dependent inflammation improves en-dothelin-1-induced vascular injury. Hypertension, 2013, 62(1), 112-117.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.113.01298] [PMID: 23670300]
[70]
Espinosa, I.; Edris, B.; Lee, C.H.; Cheng, H.W.; Gilks, C.B.; Wang, Y.; Montgomery, K.D.; Varma, S.; Li, R.; Marinelli, R.J.; West, R.B.; Nielsen, T.; Beck, A.H.; van de Rijn, M. CSF1 expression in nongynecological leiomyosarcoma is associated with increased tumor angio-genesis. Am. J. Pathol., 2011, 179(4), 2100-2107.
[http://dx.doi.org/10.1016/j.ajpath.2011.06.021] [PMID: 21854753]
[71]
Dang, W.; Qin, Z.; Fan, S.; Wen, Q.; Lu, Y.; Wang, J.; Zhang, X.; Wei, L.; He, W.; Ye, Q.; Yan, Q.; Li, G.; Ma, J. miR-1207-5p suppresses lung cancer growth and metastasis by targeting CSF1. Oncotarget, 2016, 7(22), 32421-32432.
[http://dx.doi.org/10.18632/oncotarget.8718] [PMID: 27107415]
[72]
Wang, H.; Shao, Q.; Sun, J.; Ma, C.; Gao, W.; Wang, Q.; Zhao, L.; Qu, X. Interactions between colon cancer cells and tumor-infiltrated macrophages depending on cancer cell-derived colony stimulating factor 1. OncoImmunology, 2016, 5(4), e1122157.
[http://dx.doi.org/10.1080/2162402X.2015.1122157] [PMID: 27141406]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy