Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

The Photodynamic Anti-Tumor Effects of New PPa-CDs Conjugate with pH Sensitivity and Improved Biocompatibility

Author(s): Faiza Sajjad, Xu-Ying Liu, Yi-Jia Yan*, Xing-Ping Zhou* and Zhi-Long Chen*

Volume 22, Issue 7, 2022

Published on: 13 May, 2021

Page: [1286 - 1295] Pages: 10

DOI: 10.2174/1871520621666210513162457

Price: $65

Abstract

Background: Photodynamic therapy has been increasingly used to cope with the alarming problem of cancer. Porphyrins and their derivatives are widely used as Potent Photosensitizers (PS) for PDT. However, the hydrophobicity of porphyrins poses a challenge for their use in clinics, while most of the carbon dots (CDs) are known for good biocompatibility, solubility, and pH sensitivity.

Objective: This study aimed to improve the properties/biocompatibility of the pyropheophorbide-α for PDT.

Methods: The PPa-CD conjugate was synthesized through covalent interaction using amide condensation. The structure of synthesized conjugate was confirmed by TEM, 1HNMR, and FTIR. The absorption and emission spectra were studied. In vitro, cytotoxicity of the conjugate was examined in human esophageal cancer cell line (Eca-109).

Results: The results showed that the fluorescence of the drug was increased compared to its precursor. CDbased conjugate could generate ROS as well as enhanced biocompatibility by decreasing cytotoxicity. The conjugated drug also showed pH sensitivity in different solutions.

Conclusion: The dark toxicity, as well as hemocompatibility, was improved.

Keywords: Photodynamic therapy, photosensitizer, tumor, carbon dots, hemocompatibility, pH sensitivity.

Graphical Abstract

[1]
Abbas, G.; Krasna, M. Overview of esophageal cancer. Ann. Cardiothorac. Surg., 2017, 6(2), 131-136.
[http://dx.doi.org/10.21037/acs.2017.03.03] [PMID: 28447001]
[2]
Stefflova, K.; Chen, J.; Zheng, G. Killer beacons for combined cancer imaging and therapy. Curr. Med. Chem., 2007, 14(20), 2110-2125.
[http://dx.doi.org/10.2174/092986707781389655] [PMID: 17691951]
[3]
Lovell, J.F.; Liu, T.W.B.; Chen, J.; Zheng, G. Activatable photosensitizers for imaging and therapy. Chem. Rev., 2010, 110(5), 2839-2857.
[http://dx.doi.org/10.1021/cr900236h] [PMID: 20104890]
[4]
Tomé, J.P.C.; Neves, M.G.P.M.S.; Tomé, A.C.; Cavaleiro, J.A.; Soncin, M.; Magaraggia, M.; Ferro, S.; Jori, G. Synthesis and antibacterial activity of new poly-S-lysine-porphyrin conjugates. J. Med. Chem., 2004, 47(26), 6649-6652.
[http://dx.doi.org/10.1021/jm040802v] [PMID: 15588101]
[5]
Zou, Q.; Zhao, H.; Zhao, Y.; Fang, Y.; Chen, D.; Ren, J.; Wang, X.; Wang, Y.; Gu, Y.; Wu, F. Effective two-photon excited photodynamic therapy of xenograft tumors sensitized by water-soluble bis(arylidene)cycloalkanone photosensitizers. J. Med. Chem., 2015, 58(20), 7949-7958.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00731] [PMID: 26397825]
[6]
Meng, Z.; Yu, B.; Han, G.; Liu, M.; Shan, B.; Dong, G.; Miao, Z.; Jia, N.; Tan, Z.; Li, B.; Zhang, W.; Zhu, H.; Sheng, C.; Yao, J. Chlorin p6-based water-soluble amino acid derivatives as potent photosensitizers for photodynamic therapy. J. Med. Chem., 2016, 59(10), 4999-5010.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00352] [PMID: 27136389]
[7]
Agostinis, P.; Berg, K.; Cengel, K.A.; Foster, T.H.; Girotti, A.W.; Gollnick, S.O.; Hahn, S.M.; Hamblin, M.R.; Juzeniene, A.; Kessel, D.; Korbelik, M.; Moan, J.; Mroz, P.; Nowis, D.; Piette, J.; Wilson, B.C.; Golab, J. Photodynamic therapy of cancer: An update. CA Cancer J. Clin., 2011, 61(4), 250-281.
[http://dx.doi.org/10.3322/caac.20114] [PMID: 21617154]
[8]
Singh, S.; Aggarwal, A.; Bhupathiraju, N.V.S.D.K.; Arianna, G.; Tiwari, K.; Drain, C.M. Glycosylated porphyrins, phthalocyanines, and other porphyrinoids for diagnostics and therapeutics. Chem. Rev., 2015, 115(18), 10261-10306.
[http://dx.doi.org/10.1021/acs.chemrev.5b00244] [PMID: 26317756]
[9]
O’Connor, A.E.; Gallagher, W.M.; Byrne, A.T. Porphyrin and nonporphyrin photosensitizers in oncology: Preclinical and clinical advances in photodynamic therapy. Photochem. Photobiol., 2009, 85(5), 1053-1074.
[http://dx.doi.org/10.1111/j.1751-1097.2009.00585.x] [PMID: 19682322]
[10]
Lovell, J.F.; Jin, C.S.; Huynh, E.; Jin, H.; Kim, C.; Rubinstein, J.L.; Chan, W.C.; Cao, W.; Wang, L.V.; Zheng, G. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nat. Mater., 2011, 10(4), 324-332.
[http://dx.doi.org/10.1038/nmat2986] [PMID: 21423187]
[11]
Zou, Q.; Abbas, M.; Zhao, L.; Li, S.; Shen, G.; Yan, X. Biological photothermal nanodots based on self-assembly of peptide–porphyrin conjugates for antitumor therapy. J. Am. Chem. Soc., 2017, 139(5), 1921-1927.
[http://dx.doi.org/10.1021/jacs.6b11382] [PMID: 28103663]
[12]
Ge, J.; Lan, M.; Zhou, B.; Liu, W.; Guo, L.; Wang, H.; Jia, Q.; Niu, G.; Huang, X.; Zhou, H.; Meng, X.; Wang, P.; Lee, C.S.; Zhang, W.; Han, X. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat. Commun., 2014, 5, 4596-4604.
[http://dx.doi.org/10.1038/ncomms5596] [PMID: 25105845]
[13]
Lim, C.K.; Heo, J.; Shin, S.; Jeong, K.; Seo, Y.H.; Jang, W.D.; Park, C.R.; Park, S.Y.; Kim, S.; Kwon, I.C. Nanophotosensitizers toward advanced photodynamic therapy of Cancer. Cancer Lett., 2013, 334(2), 176-187.
[http://dx.doi.org/10.1016/j.canlet.2012.09.012] [PMID: 23017942]
[14]
Couleaud, P.; Morosini, V.; Frochot, C.; Richeter, S.; Raehm, L.; Durand, J.O. Silica-based nanoparticles for photodynamic therapy applications. Nanoscale, 2010, 2(7), 1083-1095.
[http://dx.doi.org/10.1039/c0nr00096e] [PMID: 20648332]
[15]
Li, Y.; Lin, T.Y.; Luo, Y.; Liu, Q.; Xiao, W.; Guo, W.; Lac, D.; Zhang, H.; Feng, C.; Wachsmann-Hogiu, S.; Walton, J.H.; Cherry, S.R.; Rowland, D.J.; Kukis, D.; Pan, C.; Lam, K.S. A smart and versatile theranostic nanomedicine platform based on nanoporphyrin. Nat. Commun., 2014, 5, 4712-4727.
[http://dx.doi.org/10.1038/ncomms5712] [PMID: 25158161]
[16]
(a) Zheng, M.; Liu, S.; Li, J. Sun, Integrating oxaliplatin with highly luminescent carbon dots: An unprecedented theranostic agent for personalized medicine. Adv. Mater., 2014, 26, 3554.
(b) Qu, D.; Zheng, M.; Zhang, L. Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots. Sci. Rep., 2014, 4, 5294.
(c) S. N.. Baker; G. A., M. Luminescent carbon nanodots: Emergent nanolights. Angew. Chem. Int. Ed., 2010, 49, 6726.
(d) Pan, L.; Sun, S.; Zhang, A. Truly fluorescent excitation-dependent carbon dots and their applications in multicolor cellular imaging and multidimensional sensing. Adv. Mater., 2015, 27, 7782.
(e) M., Zheng Y., Li; Zhang, Z. Solvatochromic fluorescent carbon dots as optic noses for sensing volatile organic compounds. RSC Advances, 2016, 6, 83501.
[17]
(a) Zhu, H.; Wang, X.; Li, Y. Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chem. Commun., 2009, 5118.
(b) Zhu, H.; Wang, X.; Li, Y. An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers Angew. In: Chem. Int. Ed;; , 2009; 48, pp. (25)4598-601.
(c) H., Tao K., Yang; Z., Ma In vivo NIR fluorescence imaging, biodistribution, and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite. Small, 2012, 8, 281.
[18]
Anilkumar, P.; Wang, X.; Cao, L.; Sahu, S.; Liu, J.H.; Wang, P.; Korch, K.; Tackett, K.N., II; Parenzan, A.; Sun, Y.P. Toward quantitatively fluorescent carbon-based “quantum” dots. Nanoscale, 2011, 3(5), 2023-2027.
[http://dx.doi.org/10.1039/c0nr00962h] [PMID: 21350751]
[19]
Zheng, M.; Ruan, S.; Liu, S. Self-targeting fluorescent carbon dots for diagnosis of brain cancer cells. ACS Nano.,2015, 9, 11455; b) M. Zheng, Y. Li, S. Liu, W. Wang, Z. Xie, X. Jing. One-Pot to synthesize multifunctional carbon dots for near infrared fluorescence imaging and photothermal cancer therapy. ACS Appl. Mater. Interfaces, 2016, 8, 23533.
[http://dx.doi.org/10.1021/acsami.6b07453] [PMID: 27558196]
[20]
Ge, J.; Jia, Q.; Liu, W.; Guo, L. Adv. Healthc. Mater., 2016, 5, 2283-2294.
[http://dx.doi.org/10.1002/adhm.201600402] [PMID: 27385651]
[21]
Markovic, Z.M.; Ristic, B.Z.; Arsikin, K.M.; Klisic, D.G.; Harhaji-Trajkovic, L.M.; Todorovic-Markovic, B.M.; Kepic, D.P.; Kravic-Stevovic, T.K.; Jovanovic, S.P.; Milenkovic, M.M.; Milivojevic, D.D.; Bumbasirevic, V.Z.; Dramicanin, M.D.; Trajkovic, V.S. Graphene quantum dots as autophagy-inducing photodynamic agents. Biomaterials, 2012, 33(29), 7084-7092.
[http://dx.doi.org/10.1016/j.biomaterials.2012.06.060] [PMID: 22795854]
[22]
Bing, W.; Sun, H.; Yan, Z.; Ren, J.; Qu, X. Programmed bacteria death induced by carbon dots with different surface charge. Small, 2016, 12(34), 4713-4718.
[http://dx.doi.org/10.1002/smll.201600294] [PMID: 27027246]
[23]
Chen’ao. Ma; Xing ping, Zhou Synthesis and mechanism of fluorescence carbon dots by a solid phase pyrolysis method (Thesis).. 2019.
[24]
Gao, Y.H.; Zhu, X.X.; Zhu, W.; Wu, D.; Chen, D.Y.; Yan, Y.J.; Wu, X.F.; O’Shea, D.F.; Chen, Z.L. Synthesis and evaluation of novel chlorophyll a derivatives as potent photosensitizers for photodynamic therapy. Eur. J. Med. Chem., 2020, 187111959
[http://dx.doi.org/10.1016/j.ejmech.2019.111959] [PMID: 31846830]
[25]
Tang, W.; Xu, H.; Kopelman, R.; Philbert, M.A. Photodynamic characterization and in vitro application of methylene blue-containing nanoparticle platforms. Photochem. Photobiol., 2005, 81(2), 242-249.
[http://dx.doi.org/10.1562/2004-05-24-RA-176.1] [PMID: 15595888]
[26]
Xia, J.; Chen, S.; Zou, G-Y.; Yu, Y.L.; Wang, J.H. Synthesis of highly stable red-emissive carbon polymer dots by modulated polymerization: From the mechanism to application in intracellular pH imaging. Nanoscale, 2018, 10(47), 22484-22492.
[http://dx.doi.org/10.1039/C8NR08208A] [PMID: 30480294]
[27]
Huo, Z.; Chen, G.; Geng, Y.; Cong, L.; Pan, L.; Xu, W.; Xu, S. A two-photon fluorescence, carbonized polymer dot (CPD)-based, wide range pH nanosensor: A view from the surface state. Nanoscale, 2020, 12(16), 9094-9103.
[http://dx.doi.org/10.1039/D0NR01543A] [PMID: 32286603]
[28]
Zhang, L.J.; Zhang, X.H.; Liao, P.Y.; Sun, J.J.; Wang, L.; Yan, Y.J.; Chen, Z.L. Antitumor activity evaluation of meso-tetra (pyrrolidine substituted) pentylporphin-mediated photodynamic therapy in vitro and in vivo. J. Photochem. Photobiol. B, 2016, 163, 224-231.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.08.044] [PMID: 27591565]
[29]
Zhang, Y.; Zhan, X.; Xiong, J.; Peng, S.; Huang, W.; Joshi, R.; Cai, Y.; Liu, Y.; Li, R.; Yuan, K.; Zhou, N.; Min, W. Temperature-dependent cell death patterns induced by functionalized gold nanoparticle photothermal therapy in melanoma cells. Sci. Rep., 2018, 8(1), 8720.
[http://dx.doi.org/10.1038/s41598-018-26978-1] [PMID: 29880902]
[30]
Borik, R.M.; Fawzy, N.M.; Abu-Bakr, S.M.; Aly, M.S. Design, synthesis, anticancer evaluation and docking studies of novel heterocyclic derivatives obtained via reactions involving curcumin. Molecules, 2018, 23(6), 1398.
[http://dx.doi.org/10.3390/molecules23061398] [PMID: 29890691]
[31]
Zhao, X.; Guo, B.; Wu, H.; Liang, Y.; Ma, P.X. Injectable antibacterial conductive nanocomposite cryogels with rapid shape recovery for noncompressible hemorrhage and wound healing. Nat. Commun., 2018, 9(1), 2784.
[http://dx.doi.org/10.1038/s41467-018-04998-9] [PMID: 30018305]
[32]
Fedi, B. Photodynamic effect and fluorescence in the diagnosis and therapy of the cancer of the bladder. (second part) Boll. Soc. Ital. Biol. Sper., 1977, 53(14), 1145-1149.
[PMID: 75015]
[33]
Herzog, M. [Photodynamic laser therapy and fluorescence diagnosis in squamous epithelial cancer of the oral cavity]. Fortschr. Kiefer Gesichtschir., 1993, 38, 139-143.
[PMID: 8349237]
[34]
Sasidharan, A.; Panchakarla, L.S.; Sadanandan, A.R.; Ashokan, A.; Chandran, P.; Girish, C.M.; Menon, D.; Nair, S.V.; Rao, C.N.; Koyakutty, M. Hemocompatibility and macrophage response of pristine and functionalized graphene. Small, 2012, 8(8), 1251-1263.
[http://dx.doi.org/10.1002/smll.201102393] [PMID: 22334378]
[35]
Liu, H-Y.; Du, L.; Zhao, Y-T.; Tian, W-Q. In vitro hemocompatibility and cytotoxicity evaluation of halloysite nanotubes for biomedical application. J. Nanomater. Article ID, 2015, 685323, 9.
[36]
Ong, S-Y.; Wu, J.; Moochhala, S.M.; Tan, M.H.; Lu, J. Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties. Biomaterials, 2008, 29(32), 4323-4332.
[http://dx.doi.org/10.1016/j.biomaterials.2008.07.034] [PMID: 18708251]
[37]
Cheng, F. Preparation and characterization of 2, 2, 6, 6- tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanocrystal/ alginate biodegradable composite dressing for hemostasis applications. ACS Sustain. Chem.& Eng., 2017, 5, 3819-3828.
[http://dx.doi.org/10.1021/acssuschemeng.6b02849]
[38]
Li, G.; Quan, K.; Liang, Y.; Li, T.; Yuan, Q.; Tao, L.; Xie, Q.; Wang, X. Graphene-montmorillonite composite sponge for safe and effective hemostasis. ACS Appl. Mater. Interfaces, 2016, 8(51), 35071-35080.
[http://dx.doi.org/10.1021/acsami.6b13302] [PMID: 27935296]
[39]
Quan, K.; Li, G.; Tao, L.; Xie, Q.; Yuan, Q.; Wang, X. Diaminopropionic acid reinforced graphene sponge and its use for hemostasis. ACS Appl. Mater. Interfaces, 2016, 8(12), 7666-7673.
[http://dx.doi.org/10.1021/acsami.5b12715] [PMID: 26978481]
[40]
Adarsh, N.; Shanmugasundaram, M.; Avirah, R.R.; Ramaiah, D. Aza-BODIPY derivatives: Enhanced quantum yields of triplet excited states and the generation of singlet oxygen and their role as facile sustainable photooxygenation catalysts. Chemistry, 2012, 18(40), 12655-12662.
[http://dx.doi.org/10.1002/chem.201202438] [PMID: 22945021]
[41]
Silva, A.M.G.; Tome, A.C.; Neves, M.G.P.M.S.; Cavaleiro, J.A.S. Porphyrins in 1,3-dipolar cycloaddition reactions: Synthesis of a novel pyrazoline-fused chlorin and a pyrazole-fused porphyrin. Synlett, 2002, 7, 1155-1157.
[http://dx.doi.org/10.1055/s-2002-32581]
[42]
Nardi, G.; Manet, I.; Monti, S.; Miranda, M.A.; Lhiaubet-Vallet, V. Scope and limitations of the TEMPO/EPR method for singlet oxygen detection: The misleading role of electron transfer. Free Radic. Biol. Med., 2014, 77, 64-70.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.08.020] [PMID: 25236741]
[43]
Xia, Q.; Yin, J.J.; Fu, P.P.; Boudreau, M.D. Photo-irradiation of Aloe vera by UVA--formation of free radicals, singlet oxygen, superoxide, and induction of lipid peroxidation. Toxicol. Lett., 2007, 168(2), 165-175.
[http://dx.doi.org/10.1016/j.toxlet.2006.11.015] [PMID: 17197137]
[44]
Conte, M.; Ma, Y.; Loyns, C.; Price, P.; Rippon, D.; Chechik, V. Mechanistic insight into TEMPO-inhibited polymerisation: Simultaneous determination of oxygen and inhibitor concentrations by EPR. Org. Biomol. Chem., 2009, 7(13), 2685-2687.
[http://dx.doi.org/10.1039/b905893a] [PMID: 19532983]
[45]
Shi, L.; Li, Y.; Li, X.; Zhao, B.; Wen, X.; Zhang, G.; Dong, C.; Shuang, S. Controllable synthesis of green and blue fluorescent carbon nanodots for pH and Cu(2+) sensing in living cells. Biosens. Bioelectron., 2016, 77, 598-602.
[http://dx.doi.org/10.1016/j.bios.2015.10.031] [PMID: 26485174]
[46]
Wang, N.; Zheng, A.Q.; Liu, X.; Chen, J.J.; Yang, T.; Chen, M.L.; Wang, J.H. Deep eutectic solvent-assisted preparation of nitrogen/chloride-doped carbon dots for intracellular biological sensing and live cell imaging. ACS Appl. Mater. Interfaces, 2018, 10(9), 7901-7909.
[http://dx.doi.org/10.1021/acsami.8b00947] [PMID: 29424521]
[47]
Wang, W.J.; Xia, J.M.; Feng, J.; He, M.Q.; Chen, M.L.; Wang, J.H. Green preparation of carbon dots for intracellular pH sensing and multicolor live cell imaging. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(44), 7130-7137.
[http://dx.doi.org/10.1039/C6TB02071B] [PMID: 32263650]
[48]
Li, Y.; Zheng, X.; Zhang, X.; Liu, S.; Pei, Q.; Zheng, M.; Xie, Z. Porphyrin-Based Carbon Dots for Photodynamic Therapy of Hepatoma. Adv. Healthc. Mater., 2017, 6(1), 1600924.
[http://dx.doi.org/10.1002/adhm.201600924] [PMID: 27860468]
[49]
Aguilar Cosme, J.R.; Bryant, H.E.; Claeyssens, F. Carbon dot-protoporphyrin IX conjugates for improved drug delivery and bioimaging. PLoS One, 2019, 14(7), e0220210.
[http://dx.doi.org/10.1371/journal.pone.0220210] [PMID: 31344086]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy