Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

General Research Article

Diallyl Disulfide Attenuates Methotrexate-Induced Hepatic Oxidative Injury, Inflammation and Apoptosis and Enhances its Anti-Tumor Activity

Author(s): Marwa M. Khalaf*, Emad H.M. Hassanein, Abdel-Gawad S. Shalkami, Ramadan A.M. Hemeida and Wafaa R. Mohamed

Volume 15, Issue 1, 2022

Published on: 25 May, 2021

Article ID: e250521193579 Pages: 14

DOI: 10.2174/1874467214666210525153111

Price: $65

Abstract

Background: Methotrexate (MTX) is used potently for a wide range of diseases. However, hepatic intoxication by MTX hinders its clinical use.

Objectives: The present study was conducted to investigate the diallyl disulfide (DADS) ability to ameliorate MTX-induced hepatotoxicity.

Methods: Thirty-two rats were randomly divided into four groups: normal control, DADS (50 mg/kg/day, orally), MTX (single i.p. injection of 20 mg/kg) and DADS+MTX. Liver function biomarkers, histopathological examinations, oxidative stress, inflammation, and apoptosis biomarkers were investigated. Besides, an in vitro cytotoxic activity study was conducted to explore the modulatory effects of DADS on MTX cytotoxic activity using Caco-2, MCF-7, and HepG2 cells.

Results: DADS significantly reduced the increased serum activities of ALT, AST, ALP, and LDH. These results were confirmed by the alleviation of liver histopathological changes. It restored the decreased GSH content and SOD activity, while significantly decreased MTX-induced elevations in both MDA and NO2 - contents. The hepatoprotective effects were mechanistically mediated through the up-regulation of hepatic Nrf-2 and the down-regulation of Keap-1, P38MAPK, and NF- κB expression levels. In addition, an increase in Bcl-2 level with a decrease in the expression of both Bax and caspase-3 was observed. The in vitro study showed that DADS increased MTX antitumor efficacy.

Conclusion: DADS potently alleviated MTX-induced hepatotoxicity through the modulation of Keap-1/Nrf-2, P38MAPK/NF-κB and apoptosis signaling pathways and effectively enhanced the MTX cytotoxic effects, which could be promising for further clinical trials.

Keywords: Diallyl disulfide, methotrexate, hepatotoxicity, Nrf-2, NF-κB, apoptosis, cytotoxic

Graphical Abstract

[1]
Mager, D.R. Methotrexate. Home Healthc. Now, 2015, 33(3), 139-141.
[http://dx.doi.org/10.1097/NHH.0000000000000203] [PMID: 25738271]
[2]
Rajitha, P.; Biswas, R.; Sabitha, M.; Jayakumar, R. Methotrexate in the treatment of psoriasis and rheumatoid arthritis: mechanistic insights, current issues and novel delivery approaches. Curr. Pharm. Des., 2017, 23(24), 3550-3566.
[http://dx.doi.org/10.2174/1381612823666170601105439] [PMID: 28571554]
[3]
Abdel-Wahab, B.A.; Ali, F.E.M.; Alkahtani, S.A.; Alshabi, A.M.; Mahnashi, M.H.; Hassanein, E.H.M. Hepatoprotective effect of rebamipide against methotrexate-induced hepatic intoxication: role of Nrf2/GSK-3β, NF-κβ-p65/JAK1/STAT3, and PUMA/Bax/Bcl-2 signaling pathways. Immunopharmacol. Immunotoxicol., 2020, 42(5), 493-503.
[http://dx.doi.org/10.1080/08923973.2020.1811307] [PMID: 32865051]
[4]
Mahmoud, A.M.; Hussein, O.E.; Hozayen, W.G.; Abd El-Twab, S.M. Methotrexate hepatotoxicity is associated with oxidative stress, and down-regulation of PPARγ and Nrf2: Protective effect of 18β-Glycyrrhetinic acid. Chem. Biol. Interact., 2017, 270, 59-72.
[http://dx.doi.org/10.1016/j.cbi.2017.04.009] [PMID: 28414158]
[5]
Elmansy, RA; Seleem, HS; Mahmoud, AR; Hassanein, EHM; Ali, FEM Rebamipide potentially mitigates methotrexate-induced nephrotoxicity via inhibition of oxidative stress and inflammation: a molecular and histochemical study. Anat Rec, 2021, 304(3), 647-641.
[6]
Bryan, H.K.; Olayanju, A.; Goldring, C.E.; Park, B.K. The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation. Biochem. Pharmacol., 2013, 85(6), 705-717.
[http://dx.doi.org/10.1016/j.bcp.2012.11.016] [PMID: 23219527]
[7]
Hassanein, E.H.M.; Sayed, A.M.; Hussein, O.E.; Mahmoud, A.M. Coumarins as modulators of the Keap1/Nrf2/ARE signaling pathway. Oxid. Med. Cell. Longev., 2020, 2020, 1675957.
[http://dx.doi.org/10.1155/2020/1675957] [PMID: 32377290]
[8]
Lawrence, T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb. Perspect. Biol., 2009, 1(6), a001651.
[http://dx.doi.org/10.1101/cshperspect.a001651] [PMID: 20457564]
[9]
Yang, Y.; Kim, S.C.; Yu, T.; Yi, Y.S.; Rhee, M.H.; Sung, G.H.; Yoo, B.C.; Cho, J.Y. Functional roles of p38 mitogen-activated protein kinase in macrophage-mediated inflammatory responses. Mediators Inflamm., 2014, 2014, 352371.
[http://dx.doi.org/10.1155/2014/352371] [PMID: 24771982]
[10]
Pan, X.; Wu, X.; Yan, D.; Peng, C.; Rao, C.; Yan, H. Acrylamide-induced oxidative stress and inflammatory response are alleviated by N-acetylcysteine in PC12 cells: Involvement of the crosstalk between Nrf2 and NF-κB pathways regulated by MAPKs. Toxicol. Lett., 2018, 288, 55-64.
[http://dx.doi.org/10.1016/j.toxlet.2018.02.002] [PMID: 29426002]
[11]
Herman, S.; Zurgil, N.; Deutsch, M. Low dose methotrexate induces apoptosis with reactive oxygen species involvement in T lymphocytic cell lines to a greater extent than in monocytic lines. Inflamm. Res., 2005, 54(7), 273-280.
[http://dx.doi.org/10.1007/s00011-005-1355-8] [PMID: 16134056]
[12]
Mukherjee, S.; Ghosh, S.; Choudhury, S.; Adhikary, A.; Manna, K.; Dey, S.; Sa, G.; Das, T.; Chattopadhyay, S. Pomegranate reverses methotrexate-induced oxidative stress and apoptosis in hepatocytes by modulating Nrf2-NF-κB pathways. J. Nutr. Biochem., 2013, 24(12), 2040-2050.
[http://dx.doi.org/10.1016/j.jnutbio.2013.07.005] [PMID: 24231097]
[13]
Kim, S.H.; Lee, I.C.; Ko, J.W.; Moon, C.; Kim, S.H.; Shin, I.S.; Seo, Y.W.; Kim, H.C.; Kim, J.C. Diallyl disulfide prevents cyclophosphamide-induced hemorrhagic cystitis in rats through the inhibition of oxidative damage, MAPKs, and NF-κB pathways. Biomol. Ther. (Seoul), 2015, 23(2), 180-188.
[http://dx.doi.org/10.4062/biomolther.2014.126] [PMID: 25767687]
[14]
Lee, I.C.; Kim, S.H.; Baek, H.S.; Moon, C.; Kang, S.S.; Kim, S.H.; Kim, Y.B.; Shin, I.S.; Kim, J.C. The involvement of Nrf2 in the protective effects of diallyl disulfide on carbon tetrachloride-induced hepatic oxidative damage and inflammatory response in rats. Food Chem. Toxicol., 2014, 63, 174-185.
[http://dx.doi.org/10.1016/j.fct.2013.11.006] [PMID: 24246655]
[15]
Ko, J.W.; Park, S.H.; Shin, N.R.; Shin, J.Y.; Kim, J.W.; Shin, I.S.; Moon, C.; Heo, J.D.; Kim, J.C.; Lee, I.C. Protective effect and mechanism of action of diallyl disulfide against acetaminophen-induced acute hepatotoxicity. Food Chem. Toxicol., 2017, 109(Pt 1), 28-37.
[http://dx.doi.org/10.1016/j.fct.2017.08.029] [PMID: 28847761]
[16]
Shin, J.Y.; Han, J.H.; Ko, J.W.; Park, S.H.; Shin, N.R.; Jung, T.Y.; Kim, H.A.; Kim, S.H.; Shin, I.S.; Kim, J.C. Diallyl disulfide attenuates acetaminophen-induced renal injury in rats. Lab. Anim. Res., 2016, 32(4), 200-207.
[http://dx.doi.org/10.5625/lar.2016.32.4.200] [PMID: 28053613]
[17]
Ko, J.W.; Shin, J.Y.; Kim, J.W.; Park, S.H.; Shin, N.R.; Lee, I.C.; Shin, I.S.; Moon, C.; Kim, S.H.; Kim, S.H.; Kim, J.C. Protective effects of diallyl disulfide against acetaminophen-induced nephrotoxicity: A possible role of CYP2E1 and NF-κB. Food Chem. Toxicol., 2017, 102, 156-165.
[http://dx.doi.org/10.1016/j.fct.2017.02.021] [PMID: 28219698]
[18]
Uzun, L.; Kokten, N.; Cam, O.H.; Kalcioglu, M.T.; Ugur, M.B.; Tekin, M.; Acar, G.O. The effect of garlic derivatives (s-allylmercaptocysteine, diallyl disulfide, and s-allylcysteine) on gentamicin induced ototoxicity: an experimental study. Clin. Exp. Otorhinolaryngol., 2016, 9(4), 309-313.
[http://dx.doi.org/10.21053/ceo.2015.01032] [PMID: 27136366]
[19]
Khatua, T.N.; Dinda, A.K.; Putcha, U.K.; Banerjee, S.K. Diallyl disulfide ameliorates isoproterenol induced cardiac hypertrophy activating mitochondrial biogenesis via eNOS-Nrf2-Tfam pathway in rats. Biochem. Biophys. Rep., 2015, 5, 77-88.
[http://dx.doi.org/10.1016/j.bbrep.2015.11.008] [PMID: 28955809]
[20]
Saud, S.M.; Li, W.; Gray, Z.; Matter, M.S.; Colburn, N.H.; Young, M.R.; Kim, Y.S. Diallyl disulfide (DADS), a constituent of garlic, inactivates nf-κb and prevents colitis-induced colorectal cancer by inhibiting GSK-3β. Cancer Prev. Res. (Phila.), 2016, 9(7), 607-615.
[http://dx.doi.org/10.1158/1940-6207.CAPR-16-0044] [PMID: 27138790]
[21]
Suangtamai, T.; Tanyong, D.I. Diallyl disulfide induces apoptosis and autophagy via mTOR pathway in myeloid leukemic cell line. Tumour Biol., 2016, 37(8), 10993-10999.
[http://dx.doi.org/10.1007/s13277-016-4989-y] [PMID: 26891668]
[22]
Feng, C.; Luo, Y.; Nian, Y.; Liu, D.; Yin, X.; Wu, J.; Di, J.; Zhang, R.; Zhang, J. Diallyl disulfide suppresses the inflammation and apoptosis resistance induced by DCA through ROS and the NF-κB signaling pathway in human barrett’s epithelial cells. Inflammation, 2017, 40(3), 818-831.
[http://dx.doi.org/10.1007/s10753-017-0526-4] [PMID: 28197857]
[23]
Xie, X.; Huang, X.; Tang, H.; Ye, F.; Yang, L.; Guo, X.; Tian, Z.; Xie, X.; Peng, C.; Xie, X. Diallyl disulfide inhibits breast cancer stem cell progression and glucose metabolism by targeting CD44/PKM2/AMPK signaling. Curr. Cancer Drug Targets, 2018, 18(6), 592-599.
[http://dx.doi.org/10.2174/1568009617666171024165657] [PMID: 29110616]
[24]
Ali, N.; Rashid, S.; Nafees, S.; Hasan, S.K.; Shahid, A.; Majed, F.; Sultana, S. Protective effect of Chlorogenic acid against methotrexate induced oxidative stress, inflammation and apoptosis in rat liver: An experimental approach. Chem. Biol. Interact., 2017, 272, 80-91.
[http://dx.doi.org/10.1016/j.cbi.2017.05.002] [PMID: 28479099]
[25]
Bancroft, JD; Gamble, M. Theory and practice of histological techniques. Elsevier health sciences: Amsterdan, 2008.
[26]
Derelanko, M.J. The Toxicologist’s Pocket Handbook. CRC Press: Florida, 2008
[27]
Ramos-Vara, J.A.; Miller, M.A. When tissue antigens and antibodies get along: revisiting the technical aspects of immunohistochemistry- the red, brown, and blue technique. Vet. Pathol., 2014, 51(1), 42-87.
[http://dx.doi.org/10.1177/0300985813505879] [PMID: 24129895]
[28]
Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys., 1959, 82(1), 70-77.
[http://dx.doi.org/10.1016/0003-9861(59)90090-6] [PMID: 13650640]
[29]
Mihara, M.; Uchiyama, M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal. Biochem., 1978, 86(1), 271-278.
[http://dx.doi.org/10.1016/0003-2697(78)90342-1] [PMID: 655387]
[30]
Marklund, S.; Marklund, G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem., 1974, 47(3), 469-474.
[http://dx.doi.org/10.1111/j.1432-1033.1974.tb03714.x] [PMID: 4215654]
[31]
Montgomery, H.; Dymock, J.F.J.A. Determination of nitrite in water. Royal soc chemistry thomas graham house, science park, milton rd, Cambridge J. Med. Lab. Technol., 1961, 22, 111-118.
[32]
Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001, 25(4), 402-408.
[http://dx.doi.org/10.1006/meth.2001.1262] [PMID: 11846609]
[33]
Rubinstein, L.V.; Shoemaker, R.H.; Paull, K.D.; Simon, R.M.; Tosini, S.; Skehan, P.; Scudiero, D.A.; Monks, A.; Boyd, M.R. Comparison of in vitro anticancer-drug-screening data generated with a tetrazolium assay versus a protein assay against a diverse panel of human tumor cell lines. J. Natl. Cancer Inst., 1990, 82(13), 1113-1118.
[http://dx.doi.org/10.1093/jnci/82.13.1113] [PMID: 2359137]
[34]
Katarey, D.; Verma, S. Drug-induced liver injury. Clin. Med. (Lond.), 2016, 16(Suppl. 6), s104-s109.
[http://dx.doi.org/10.7861/clinmedicine.16-6-s104] [PMID: 27956449]
[35]
Shetty, A.; Cho, W.; Alazawi, W.; Syn, W.K. Methotrexate hepatotoxicity and the impact of nonalcoholic fatty liver disease. Am. J. Med. Sci., 2017, 354(2), 172-181.
[http://dx.doi.org/10.1016/j.amjms.2017.03.014] [PMID: 28864376]
[36]
Yang, J.; Tang, R.; Yi, J.; Chen, Y.; Li, X.; Yu, T.; Fei, J. Diallyl disulfide alleviates inflammatory osteolysis by suppressing osteoclastogenesis via NF-κB-NFATc1 signal pathway. FASEB J., 2019, 33(6), 7261-7273.
[http://dx.doi.org/10.1096/fj.201802172R] [PMID: 30857415]
[37]
Bae, J.; Kumazoe, M.; Fujimura, Y.; Tachibana, H. Diallyl disulfide potentiates anti-obesity effect of green tea in high-fat/high-sucrose diet-induced obesity. J. Nutr. Biochem., 2019, 64, 152-161.
[http://dx.doi.org/10.1016/j.jnutbio.2018.10.014] [PMID: 30504007]
[38]
El-Sheikh, A.A.; Morsy, M.A.; Abdalla, A.M.; Hamouda, A.H.; Alhaider, I.A. Mechanisms of thymoquinone hepatorenal protection in methotrexate-induced toxicity in rats. Mediators Inflamm., 2015, 2015, 859383.
[http://dx.doi.org/10.1155/2015/859383] [PMID: 26089605]
[39]
Cure, E.; Kirbas, A.; Tumkaya, L.; Cure, M.C.; Kalkan, Y.; Yilmaz, A.; Yuce, S. Protective effect of infliximab on methotrexate-induced liver injury in rats: unexpected drug interaction. J. Cancer Res. Ther., 2015, 11(1), 164-169.
[http://dx.doi.org/10.4103/0973-1482.140809] [PMID: 25879356]
[40]
Sakaguchi, S.; Takahashi, S.; Sasaki, T.; Kumagai, T.; Nagata, K. Progression of alcoholic and non-alcoholic steatohepatitis: common metabolic aspects of innate immune system and oxidative stress. Drug Metab. Pharmacokinet., 2011, 26(1), 30-46.
[http://dx.doi.org/10.2133/dmpk.DMPK-10-RV-087] [PMID: 21150132]
[41]
Cichoż-Lach, H.; Michalak, A. Oxidative stress as a crucial factor in liver diseases. World J. Gastroenterol., 2014, 20(25), 8082-8091.
[http://dx.doi.org/10.3748/wjg.v20.i25.8082] [PMID: 25009380]
[42]
Li, S.; Tan, H.Y.; Wang, N.; Zhang, Z.J.; Lao, L.; Wong, C.W.; Feng, Y. The role of oxidative stress and antioxidants in liver diseases. Int. J. Mol. Sci., 2015, 16(11), 26087-26124.
[http://dx.doi.org/10.3390/ijms161125942] [PMID: 26540040]
[43]
Kolli, V.K.; Natarajan, K.; Isaac, B.; Selvakumar, D.; Abraham, P. Mitochondrial dysfunction and respiratory chain defects in a rodent model of methotrexate-induced enteritis. Hum. Exp. Toxicol., 2014, 33(10), 1051-1065.
[http://dx.doi.org/10.1177/0960327113515503] [PMID: 24347301]
[44]
Babiak, R.M.; Campello, A.P.; Carnieri, E.G.; Oliveira, M.B. Methotrexate: pentose cycle and oxidative stress. Cell Biochem. Funct., 1998, 16(4), 283-293.
[http://dx.doi.org/10.1002/(SICI)1099-0844(1998120)16:4<283::AID-CBF801>3.0.CO;2-E] [PMID: 9857491]
[45]
Vardi, N.; Parlakpinar, H.; Ates, B. Beneficial effects of chlorogenic acid on methotrexate-induced cerebellar Purkinje cell damage in rats. J. Chem. Neuroanat., 2012, 43(1), 43-47.
[http://dx.doi.org/10.1016/j.jchemneu.2011.09.003] [PMID: 21946024]
[46]
Zeng, T.; Zhang, C.L.; Song, F.Y.; Zhao, X.L.; Yu, L.H.; Zhu, Z.P.; Xie, K.Q. The activation of HO-1/Nrf-2 contributes to the protective effects of diallyl disulfide (DADS) against ethanol-induced oxidative stress. Biochim. Biophys. Acta, 2013, 1830(10), 4848-4859.
[http://dx.doi.org/10.1016/j.bbagen.2013.06.028] [PMID: 23816986]
[47]
Ahmed, J.H.; Abdulmajeed, I.M. Effect of Nigella sativa (black seeds) against methotrexate-induced nephrotoxicity in mice. J. Intercult. Ethnopharmacol., 2016, 6(1), 9-13.
[http://dx.doi.org/10.5455/jice.20161208013809] [PMID: 28163954]
[48]
Arpag, H.; Gül, M.; Aydemir, Y.; Atilla, N.; Yiğitcan, B.; Cakir, T.; Polat, C.; Þehirli, Ö.; Sayan, M. Protective effects of alpha-lipoic acid on methotrexate-induced oxidative lung injury in rats. J. Invest. Surg., 2018, 31(2), 107-113.
[http://dx.doi.org/10.1080/08941939.2017.1296513] [PMID: 28340320]
[49]
Martínez-Ruiz, A.; Cadenas, S.; Lamas, S. Nitric oxide signaling: classical, less classical, and nonclassical mechanisms. Free Radic. Biol. Med., 2011, 51(1), 17-29.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.04.010] [PMID: 21549190]
[50]
Korhonen, R.; Lahti, A.; Kankaanranta, H.; Moilanen, E. Nitric oxide production and signaling in inflammation. Curr. Drug Targets Inflamm. Allergy, 2005, 4(4), 471-479.
[http://dx.doi.org/10.2174/1568010054526359] [PMID: 16101524]
[51]
Abo-Haded, H.M.; Elkablawy, M.A.; Al-Johani, Z.; Al-Ahmadi, O.; El-Agamy, D.S. Hepatoprotective effect of sitagliptin against methotrexate induced liver toxicity. PLoS One, 2017, 12(3), e0174295.
[http://dx.doi.org/10.1371/journal.pone.0174295] [PMID: 28334048]
[52]
García-Mediavilla, V.; Crespo, I.; Collado, P.S.; Esteller, A.; Sánchez-Campos, S.; Tuñón, M.J.; González-Gallego, J. The anti-inflammatory flavones quercetin and kaempferol cause inhibition of inducible nitric oxide synthase, cyclooxygenase-2 and reactive C-protein, and down-regulation of the nuclear factor kappaB pathway in Chang Liver cells. Eur. J. Pharmacol., 2007, 557(2-3), 221-229.
[http://dx.doi.org/10.1016/j.ejphar.2006.11.014] [PMID: 17184768]
[53]
Cuadrado, A.; Nebreda, A.R. Mechanisms and functions of p38 MAPK signalling. Biochem. J., 2010, 429(3), 403-417.
[http://dx.doi.org/10.1042/BJ20100323] [PMID: 20626350]
[54]
Park, H.Y.; Kim, N.D.; Kim, G.Y.; Hwang, H.J.; Kim, B.W.; Kim, W.J.; Choi, Y.H. Inhibitory effects of diallyl disulfide on the production of inflammatory mediators and cytokines in lipopolysaccharide-activated BV2 microglia. Toxicol. Appl. Pharmacol., 2012, 262(2), 177-184.
[http://dx.doi.org/10.1016/j.taap.2012.04.034] [PMID: 22564536]
[55]
You, S.; Nakanishi, E.; Kuwata, H.; Chen, J.; Nakasone, Y.; He, X.; He, J.; Liu, X.; Zhang, S.; Zhang, B.; Hou, D.X. Inhibitory effects and molecular mechanisms of garlic organosulfur compounds on the production of inflammatory mediators. Mol. Nutr. Food Res., 2013, 57(11), 2049-2060.
[http://dx.doi.org/10.1002/mnfr.201200843] [PMID: 23766070]
[56]
Bai, F.; Huang, Q.; Nie, J.; Lu, S.; Lu, C.; Zhu, X.; Wang, Y.; Zhuo, L.; Lu, Z.; Lin, X. Trolline ameliorates liver fibrosis by inhibiting the NF-κB pathway, promoting hsc apoptosis and suppressing autophagy. Cell. Physiol. Biochem., 2017, 44(2), 436-446.
[http://dx.doi.org/10.1159/000485009] [PMID: 29141243]
[57]
Mahmoud, A.R.; Ali, F.E.M.; Abd-Elhamid, T.H.; Hassanein, E.H.M. Coenzyme Q10 protects hepatocytes from ischemia reperfusion-induced apoptosis and oxidative stress via regulation of Bax/Bcl-2/PUMA and Nrf-2/FOXO-3/Sirt-1 signaling pathways. Tissue Cell, 2019, 60, 1-13.
[http://dx.doi.org/10.1016/j.tice.2019.07.007] [PMID: 31582012]
[58]
Kale, J.; Liu, Q.; Leber, B.; Andrews, D.W. Shedding light on apoptosis at subcellular membranes. Cell, 2012, 151(6), 1179-1184.
[http://dx.doi.org/10.1016/j.cell.2012.11.013] [PMID: 23217705]
[59]
Niture, S.K.; Jaiswal, A.K. Nrf2 protein up-regulates antiapoptotic protein Bcl-2 and prevents cellular apoptosis. J. Biol. Chem., 2012, 287(13), 9873-9886.
[http://dx.doi.org/10.1074/jbc.M111.312694] [PMID: 22275372]
[60]
Pieniążek, A.; Czepas, J.; Piasecka-Zelga, J.; Gwoździński, K.; Koceva-Chyła, A. Oxidative stress induced in rat liver by anticancer drugs doxorubicin, paclitaxel and docetaxel. Adv. Med. Sci., 2013, 58(1), 104-111.
[http://dx.doi.org/10.2478/v10039-012-0063-1] [PMID: 23612702]
[61]
Teiten, M.H.; Dicato, M.; Diederich, M. Hybrid curcumin compounds: a new strategy for cancer treatment. Molecules, 2014, 19(12), 20839-20863.
[http://dx.doi.org/10.3390/molecules191220839] [PMID: 25514225]
[62]
Bailon-Moscoso, N.; Cevallos-Solorzano, G.; Romero-Benavides, J.C.; Orellana, M.I. Natural compounds as modulators of cell cycle arrest: application for anticancer chemotherapies. Curr. Genomics, 2017, 18(2), 106-131.
[http://dx.doi.org/10.2174/1389202917666160808125645] [PMID: 28367072]
[63]
Milner, J.A. Preclinical perspectives on garlic and cancer. J. Nutr., 2006, 136(3)(Suppl.), 827S-831S.
[http://dx.doi.org/10.1093/jn/136.3.827S] [PMID: 16484574]
[64]
Shang, A.; Cao, S.Y.; Xu, X.Y.; Gan, R.Y.; Tang, G.Y.; Corke, H.; Mavumengwana, V.; Li, H.B. Bioactive compounds and biological functions of garlic (Allium sativum L.). Foods, 2019, 8(7), 8.
[http://dx.doi.org/10.3390/foods8070246] [PMID: 31284512]
[65]
Faghfoori, M.H.; Nosrati, H.; Rezaeejam, H.; Charmi, J.; Kaboli, S.; Johari, B.; Danafar, H. Anticancer effect of X-Ray triggered methotrexate conjugated albumin coated bismuth sulfide nanoparticles on SW480 colon cancer cell line. Int. J. Pharm., 2020, 582, 119320.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119320] [PMID: 32278720]
[66]
Nosrati, H.; Charmi, J.; Abhari, F.; Attari, E.; Bochani, S.; Johari, B.; Rezaeejam, H.; Kheiri Manjili, H.; Davaran, S.; Danafar, H. Improved synergic therapeutic effects of chemoradiation therapy with the aid of a co-drug-loaded nano-radiosensitizer under conventional-dose X-ray irradiation. Biomater. Sci., 2020, 8(15), 4275-4286.
[http://dx.doi.org/10.1039/D0BM00353K] [PMID: 32589170]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy