Generic placeholder image

Current Applied Materials

Editor-in-Chief

ISSN (Print): 2666-7312
ISSN (Online): 2666-7339

Review Article

2D and Layered Ti-based Materials for Supercapacitors and Rechargeable Batteries: Synthesis, Properties, and Applications

Author(s): Wei Ni* and Lingying Shi*

Volume 1, Issue 1, 2022

Published on: 28 May, 2021

Article ID: e200521193451 Pages: 17

DOI: 10.2174/2666731201666210520125051

Abstract

Titanium-based two-dimensional (2D) and layered compounds with open and stable crystal structures have attracted increasing attention for energy storage and conversion purposes, e.g., rechargeable alkali-ion batteries and hybrid capacitors, due to their superior rate capability derived from the intercalation-type or pseudocapacitive kinetics. Various strategies, including structure design, conductivity enhancement, surface modification, and electrode engineering, have been implemented to effectively overcome the intrinsic drawbacks while simultaneously maintaining their advantages as promising and competitive electrode materials for advanced energy storage and conversion. Here, we provide a comprehensive overview of the recent progress on Ti-based compound materials for high-rate and low-cost electrochemical energy storage applications (mainly on rechargeable batteries and supercapacitors). The energy storage mechanisms, structure-performance relations, and performance-optimizing strategies in these typical energy storage devices are discussed. Moreover, major challenges and perspectives for future research and industrial application are also illustrated.

Keywords: Two-dimensional (2D), Ti-based compounds, MXenes, layered oxides, energy storage and conversion, batteries, supercapacitors.

Graphical Abstract

[1]
Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future. Nature 2012; 488(7411): 294-303.
[http://dx.doi.org/10.1038/nature11475] [PMID: 22895334]
[2]
Chu S, Cui Y, Liu N. The path towards sustainable energy. Nat Mater 2016; 16(1): 16-22.
[http://dx.doi.org/10.1038/nmat4834] [PMID: 27994253]
[3]
Zhang X, Cheng X, Zhang Q. Nanostructured energy materials for electrochemical energy conversion and storage: A review. J Energy Chem 2016; 25(6): 967-84.
[http://dx.doi.org/10.1016/j.jechem.2016.11.003]
[4]
Bonaccorso F, Colombo L, Yu G, et al. 2D materials. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015; 347(6217): 1246501.
[http://dx.doi.org/10.1126/science.1246501] [PMID: 25554791]
[5]
Tan C, Cao X, Wu X-J, et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem Rev 2017; 117(9): 6225-331.
[http://dx.doi.org/10.1021/acs.chemrev.6b00558] [PMID: 28306244]
[6]
Zhang H, Chhowalla M, Liu Z. 2D nanomaterials: graphene and transition metal dichalcogenides. Chem Soc Rev 2018; 47(9): 3015-7.
[http://dx.doi.org/10.1039/C8CS90048E] [PMID: 29700540]
[7]
Pomerantseva E, Gogotsi Y. Two-dimensional heterostructures for energy storage. Nat Energy 2017; 2: 17089.
[http://dx.doi.org/10.1038/nenergy.2017.89]
[8]
Ni W, Shi L. Layer-structured carbonaceous materials for advanced Li-ion and Na-ion batteries: Beyond graphene. J Vac Sci Technol A 2019; 37(4): 040803.
[http://dx.doi.org/10.1116/1.5095413]
[9]
Wei Z, Wang L, Zhuo M, Ni W, Wang H, Ma J. Layered tin sulfide and selenide anode materials for Li- and Na-ion batteries. J Mater Chem A Mater Energy Sustain 2018; 6(26): 12185-214.
[http://dx.doi.org/10.1039/C8TA02695E]
[10]
Huang J, Wei Z, Liao J, Ni W, Wang C, Ma J. Molybdenum and tungsten chalcogenides for lithium/sodium-ion batteries: beyond MoS2. J Energy Chem 2019; 33: 100-24.
[http://dx.doi.org/10.1016/j.jechem.2018.09.001]
[11]
Choi W, Choudhary N, Han GH, Park J, Akinwande D, Lee YH. Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater Today 2017; 20(3): 116-30.
[http://dx.doi.org/10.1016/j.mattod.2016.10.002]
[12]
Liao J, Ni W, Wang C, Ma J. Layer-structured niobium oxides and their analogues for advanced hybrid capacitors. Chem Eng J 2020; 391: 123489.
[http://dx.doi.org/10.1016/j.cej.2019.123489]
[13]
Huang Y, Pan Y-H, Yang R, et al. Universal mechanical exfoliation of large-area 2D crystals. Nat Commun 2020; 11(1): 2453.
[http://dx.doi.org/10.1038/s41467-020-16266-w] [PMID: 32415180]
[14]
Khan K, Tareen AK, Aslam M, Wang R, Zhang Y, Mahmood A. Recent developments in emerging two-dimensional materials and their applications. J Mater Chem C Mater Opt Electron Devices 2020; 8(2): 387-440.
[http://dx.doi.org/10.1039/C9TC04187G]
[15]
Ni W, Wang B, Cheng J, et al. Hierarchical foam of exposed ultrathin nickel nanosheets supported on chainlike Ni-nanowires and the derivative chalcogenide for enhanced pseudocapacitance. Nanoscale 2014; 6(5): 2618-23.
[http://dx.doi.org/10.1039/C3NR06031D] [PMID: 24488375]
[16]
Wu M, Xu B, Zhang Y, Qi S, Ni W, Hu J. Perspectives in emerging bismuth electrochemistry. Chem Eng J 2020; 381: 122558.
[http://dx.doi.org/10.1016/j.cej.2019.122558]
[17]
Guo S, Yi J, Sun Y, Zhou H. Recent advances in titanium-based electrode materials for stationary sodium-ion batteries. Energy Environ Sci 2016; 9(10): 2978-3006.
[http://dx.doi.org/10.1039/C6EE01807F]
[18]
Wu M, Ni W, Hu J, Ma J. NASICON-structured NaTi2(PO4)3 for sustainable energy storage. Nano-Micro Lett 2019; 11(1): 44.
[http://dx.doi.org/10.1007/s40820-019-0273-1]
[19]
Mei Y, Huang Y, Hu X. Nanostructured Ti-based anode materials for Na-ion batteries. J Mater Chem A Mater Energy Sustain 2016; 4(31): 12001-13.
[http://dx.doi.org/10.1039/C6TA04611H]
[20]
Shen J, Zhu Y, Jiang H, Li C. 2D nanosheets-based novel architectures: synthesis, assembly and applications. Nano Today 2016; 11(4): 483-520.
[http://dx.doi.org/10.1016/j.nantod.2016.07.005]
[21]
Shi L, Zhao T. Recent advances in inorganic 2D materials and their applications in lithium and sodium batteries. J Mater Chem A Mater Energy Sustain 2017; 5(8): 3735-58.
[http://dx.doi.org/10.1039/C6TA09831B]
[22]
Oh SM, Patil SB, Jin X, Hwang SJ. Recent applications of 2D inorganic nanosheets for emerging energy storage system. Chemistry 2018; 24(19): 4757-73.
[http://dx.doi.org/10.1002/chem.201704284] [PMID: 29071739]
[23]
Han Y, Ge Y, Chao Y, Wang C, Wallace GG. Recent progress in 2D materials for flexible supercapacitors. J Energy Chem 2018; 27(1): 57-72.
[http://dx.doi.org/10.1016/j.jechem.2017.10.033]
[24]
Liu Y, Zhang S, He J, Wang ZM, Liu Z. Recent progress in the fabrication, properties, and devices of heterostructures based on 2D materials. Nano-Micro Lett 2019; 11(1): 13.
[http://dx.doi.org/10.1007/s40820-019-0245-5]
[25]
Mei J, Zhang Y, Liao T, Sun Z, Dou SX. Strategies for improving the lithium-storage performance of 2D nanomaterials. Natl Sci Rev 2017; 5(3): 389-416.
[http://dx.doi.org/10.1093/nsr/nwx077]
[26]
Zhu Y, Peng L, Fang Z, Yan C, Zhang X, Yu G. Structural engineering of 2D nanomaterials for energy storage and catalysis. Adv Mater 2018; 30(15): e1706347.
[http://dx.doi.org/10.1002/adma.201706347] [PMID: 29430788]
[27]
Yi F, Ren H, Shan J, Sun X, Wei D, Liu Z. Wearable energy sources based on 2D materials. Chem Soc Rev 2018; 47(9): 3152-88.
[http://dx.doi.org/10.1039/C7CS00849J] [PMID: 29412208]
[28]
Niemelä J-P, Marin G, Karppinen M. Titanium dioxide thin films by atomic layer deposition: A review. Semicond Sci Technol 2017; 32(9): 093005.
[http://dx.doi.org/10.1088/1361-6641/aa78ce]
[29]
Aaltonen T, Alnes M, Nilsen O, Costelle L, Fjellvåg H. Lanthanum titanate and lithium lanthanum titanate thin films grown by atomic layer deposition. J Mater Chem 2010; 20(14): 2877-81.
[http://dx.doi.org/10.1039/b923490j]
[30]
Biyikli N, Haider A. Atomic layer deposition: an enabling technology for the growth of functional nanoscale semiconductors. Semicond Sci Technol 2017; 32(9): 093002.
[http://dx.doi.org/10.1088/1361-6641/aa7ade]
[31]
Niu W, Li X, Karuturi SK, et al. Applications of atomic layer deposition in solar cells. Nanotechnology 2015; 26(6): 064001.
[http://dx.doi.org/10.1088/0957-4484/26/6/064001] [PMID: 25604730]
[32]
Pan L, Liu YT, Xie XM, Ye XY. Facile and green production of impurity‐free aqueous solutions of WS2 nanosheets by direct exfoliation in water. Small 2016; 12(48): 6703-13.
[http://dx.doi.org/10.1002/smll.201601804] [PMID: 27712031]
[33]
Cao X, Tan C, Zhang X, Zhao W, Zhang H. Solution‐processed two‐dimensional metal dichalcogenide‐based nanomaterials for energy storage and conversion. Adv Mater 2016; 28(29): 6167-96.
[http://dx.doi.org/10.1002/adma.201504833] [PMID: 27071683]
[34]
Zhang X, Lai Z, Tan C, Zhang H. Solution‐processed two‐dimensional MoS2 nanosheets: preparation, hybridization, and applications. Angew Chem Int Ed Engl 2016; 55(31): 8816-38.
[http://dx.doi.org/10.1002/anie.201509933] [PMID: 27329783]
[35]
Han JH, Kwak M, Kim Y, Cheon J. Recent advances in the solution-based preparation of two-dimensional layered transition metal chalcogenide nanostructures. Chem Rev 2018; 118(13): 6151-88.
[http://dx.doi.org/10.1021/acs.chemrev.8b00264] [PMID: 29926729]
[36]
Pejjai B, Reddy VRM, Gedi S, Park C. Status review on earth-abundant and environmentally green Sn-X (X= Se, S) nanoparticle synthesis by solution methods for photovoltaic applications. Int J Hydrogen Energy 2017; 42(5): 2790-831.
[http://dx.doi.org/10.1016/j.ijhydene.2016.11.084]
[38]
Chen JS, Tan YL, Li CM, et al. Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. J Am Chem Soc 2010; 132(17): 6124-30.
[http://dx.doi.org/10.1021/ja100102y] [PMID: 20392065]
[39]
Liu J, Wei X, Liu X-W. Two-dimensional wavelike spinel lithium titanate for fast lithium storage. Sci Rep 2015; 5(1): 9782.
[http://dx.doi.org/10.1038/srep09782] [PMID: 25985465]
[40]
Wu Y, Sun Y, Zheng J, Rong J, Li H, Niu L. MXenes: Advanced materials in potassium ion batteries. Chem Eng J 2021; 404: 126565.
[http://dx.doi.org/10.1016/j.cej.2020.126565]
[41]
Li W, Elzatahry A, Aldhayan D, Zhao D. Core-shell structured titanium dioxide nanomaterials for solar energy utilization. Chem Soc Rev 2018; 47(22): 8203-37.
[http://dx.doi.org/10.1039/C8CS00443A] [PMID: 30137079]
[42]
Bati ASR, Batmunkh M, Shapter JG. Emerging 2D layered materials for perovskite solar cells. Adv Energy Mater 2020; 10(13): 1902253.
[http://dx.doi.org/10.1002/aenm.201902253]
[43]
Liu W, Dai Z, Liu Y, et al. Intimate contacted two-dimensional/zero-dimensional composite of bismuth titanate nanosheets supported ultrafine bismuth oxychloride nanoparticles for enhanced antibiotic residue degradation. J Colloid Interface Sci 2018; 529: 23-33.
[http://dx.doi.org/10.1016/j.jcis.2018.05.112] [PMID: 29879679]
[44]
Haque F, Daeneke T, Kalantar-Zadeh K, Ou JZ. Two-dimensional transition metal oxide and chalcogenide-based photocatalysts. Nano-Micro Lett 2018; 10(2): 23.
[http://dx.doi.org/10.1007/s40820-017-0176-y] [PMID: 30393672]
[45]
Yuan H, Ma S, Wang X, Long H, Zhao X, Yang D. Ultra-high adsorption of cationic methylene blue on two dimensional titanate nanosheets. RSC Advances 2019; 9(11): 5891-4.
[http://dx.doi.org/10.1039/C8RA10172H]
[46]
Huang J, Cao Y, Deng Z, Tong H. Formation of titanate nanostructures under different NaOH concentration and their application in wastewater treatment. J Solid State Chem 2011; 184(3): 712-9.
[http://dx.doi.org/10.1016/j.jssc.2011.01.023]
[47]
Zhu X, Chen S, Zhang M, Chen L, Wu Q, Zhao J. TiS2-based saturable absorber for ultrafast fiber lasers. Photon Res 2018; 6(10): C44-8.
[http://dx.doi.org/10.1364/PRJ.6.000C44]
[48]
Zavabeti A, Jannat A, Zhong L, Haidry AA, Yao Z, Ou JZ. Two-dimensional materials in large-areas: synthesis, properties and applications. Nano-Micro Lett 2020; 12(1): 66.
[http://dx.doi.org/10.1007/s40820-020-0402-x]
[49]
Harito C, Bavykin DV, Light ME, Walsh FC. Titanate nanotubes and nanosheets as a mechanical reinforcement of water-soluble polyamic acid: Experimental and theoretical studies. Compos, Part B Eng 2017; 124: 54-63.
[http://dx.doi.org/10.1016/j.compositesb.2017.05.051]
[50]
Liu M, Ishida Y, Ebina Y, et al. An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets. Nature 2015; 517(7532): 68-72.
[http://dx.doi.org/10.1038/nature14060] [PMID: 25557713]
[51]
Guo P-F, Wang X-M, Wang M-M, Yang T, Chen M-L, Wang J-H. Two-dimensional titanate-based zwitterionic hydrophilic sorbent for the selective adsorption of glycoproteins. Anal Chim Acta 2019; 1088: 72-8.
[http://dx.doi.org/10.1016/j.aca.2019.08.041] [PMID: 31623718]
[52]
Guo P-F, Zhang D-D, Guo Z-Y, Chen M-L, Wang J-H. Copper-decorated titanate nanosheets: novel homogeneous monolayers with a superior capacity for selective isolation of hemoglobin. ACS Appl Mater Interfaces 2017; 9(34): 28273-80.
[http://dx.doi.org/10.1021/acsami.7b08942] [PMID: 28786285]
[53]
Zhang L, Zhang Q, Li J. Layered titanate nanosheets intercalated with myoglobin for direct electrochemistry. Adv Funct Mater 2007; 17(12): 1958-65.
[http://dx.doi.org/10.1002/adfm.200600991]
[54]
Zhang Y, Jiang Z, Huang J, Lim LY, Li W, Deng J. Titanate and titania nanostructured materials for environmental and energy applications: a review. RSC Advances 2015; 5(97): 79479-510.
[http://dx.doi.org/10.1039/C5RA11298B]
[55]
Ding S, Chen JS, Lou XW. One-dimensional hierarchical structures composed of novel metal oxide nanosheets on a carbon nanotube backbone and their lithium-storage properties. Adv Funct Mater 2011; 21(21): 4120-5.
[http://dx.doi.org/10.1002/adfm.201100781]
[56]
Ding S, Chen JS, Luan D, Boey FYC, Madhavi S, Lou XW. Graphene-supported anatase TiO2 nanosheets for fast lithium storage. Chem Commun (Camb) 2011; 47(20): 5780-2.
[http://dx.doi.org/10.1039/c1cc10687b] [PMID: 21494738]
[57]
Liu Y, Elzatahry AA, Luo W, Lan K, Zhang P, Fan J. Surfactant-templating strategy for ultrathin mesoporous TiO2 coating on flexible graphitized carbon supports for high-performance lithium-ion battery. Nano Energy 2016; 25: 80-90.
[http://dx.doi.org/10.1016/j.nanoen.2016.04.028]
[58]
Chen B, Liu E, He F, Shi C, He C, Li J. 2D sandwich-like carbon-coated ultrathin TiO2@defect-rich MoS2 hybrid nanosheets: synergistic-effect-promoted electrochemical performance for lithium ion batteries. Nano Energy 2016; 26: 541-9.
[http://dx.doi.org/10.1016/j.nanoen.2016.06.003]
[59]
Li G, Yu L, Hu H, Zhu Q, Wang Y, Yu Y. Carbon-infused MoS2 supported on TiO2 nanosheet arrays for intensified anodes in lithium ion batteries. Electrochim Acta 2016; 212: 59-67.
[http://dx.doi.org/10.1016/j.electacta.2016.06.155]
[60]
Eid KA, Soliman K, Abdulmalik D, Mitoraj D, Sleim MH, Liedke MO. Tailored fabrication of iridium nanoparticle-sensitized titanium oxynitride nanotubes for solar-driven water splitting: experimental insights on the photocatalytic–activity–defects relationship. Catal Sci Technol 2020; 10(3): 801-9.
[http://dx.doi.org/10.1039/C9CY02366F]
[61]
Fukuda K, Ebina Y, Shibata T, Aizawa T, Nakai I, Sasaki T. Unusual crystallization behaviors of anatase nanocrystallites from a molecularly thin titania nanosheet and its stacked forms: increase in nucleation temperature and oriented growth. J Am Chem Soc 2007; 129(1): 202-9.
[http://dx.doi.org/10.1021/ja0668116] [PMID: 17199300]
[62]
Whittingham MS. The role of ternary phases in cathode reactions. J Electrochem Soc 1976; 123(3): 315-20.
[http://dx.doi.org/10.1149/1.2132817]
[63]
Goodenough JB, Kim Y. Challenges for rechargeable Li batteries. Chem Mater 2010; 22(3): 587-603.
[http://dx.doi.org/10.1021/cm901452z]
[64]
Steele ECH. Electrochemical injection of ions into non-stoichiometric electrodes Trends in Electrochemistry. Boston, MA: Springer, US 1977; pp. 145-58.
[http://dx.doi.org/10.1007/978-1-4613-4136-9_8]
[65]
Geng L, Scheifers JP, Fu C, Zhang J, Fokwa BPT, Guo J. Titanium sulfides as intercalation-type cathode materials for rechargeable aluminum batteries. ACS Appl Mater Interfaces 2017; 9(25): 21251-7.
[http://dx.doi.org/10.1021/acsami.7b04161] [PMID: 28570049]
[66]
Ju S, Chen X, Yang Z, Xia G, Yu X. Atomic scale understanding of aluminum intercalation into layered TiS2 and its electrochemical properties. J Energy Chem 2020; 43: 116-20.
[http://dx.doi.org/10.1016/j.jechem.2019.09.003]
[67]
Hawkins CG, Verma A, Horbinski W, Weeks R, Mukherjee PP, Whittaker-Brooks L. Decreasing the ion diffusion pathways for the intercalation of multivalent cations into one-dimensional TiS2 nanobelt arrays. ACS Appl Mater Interfaces 2020; 12(19): 21788-98.
[http://dx.doi.org/10.1021/acsami.9b21702] [PMID: 32243748]
[68]
Liu Y, Wang H, Cheng L, Han N, Zhao F, Li P. TiS2 nanoplates: a high-rate and stable electrode material for sodium ion batteries. Nano Energy 2016; 20: 168-75.
[http://dx.doi.org/10.1016/j.nanoen.2015.12.028]
[69]
Yang Q, Cui S, Ge Y, Tang Z, Liu Z, Li H. Porous single-crystal NaTi2(PO4)3via liquid transformation of TiO2 nanosheets for flexible aqueous Na-ion capacitor. Nano Energy 2018; 50: 623-31.
[http://dx.doi.org/10.1016/j.nanoen.2018.06.017]
[70]
Jian Z, Hu YS, Ji X, Chen W. NASICON‐structured materials for energy storage. Adv Mater 2017; 29(20): 1601925.
[http://dx.doi.org/10.1002/adma.201601925] [PMID: 28220967]
[71]
Chen S, Wu C, Shen L, et al. Challenges and perspectives for NASICON‐type electrode materials for advanced sodium‐ion batteries. Adv Mater 2017; 29(48): 1700431.
[http://dx.doi.org/10.1002/adma.201700431] [PMID: 28626908]
[72]
Lu X, Wang S, Xiao R, Shi S, Li H, Chen L. First-principles insight into the structural fundamental of super ionic conducting in NASICON MTi2(PO4)3 (M= Li, Na) materials for rechargeable batteries. Nano Energy 2017; 41: 626-33.
[http://dx.doi.org/10.1016/j.nanoen.2017.09.044]
[73]
Chen M, Zhang Y, Xing G, Tang Y. Building high power density of sodium-ion batteries: importance of multidimensional diffusion pathways in cathode materials. Front Chem 2020; 8: 152.
[http://dx.doi.org/10.3389/fchem.2020.00152] [PMID: 32185165]
[74]
Gao H, Goodenough JB. An aqueous symmetric sodium-ion battery with NASICON-structured Na3MnTi(PO4)3. Angew Chem Int Ed Engl 2016; 55(41): 12768-72.
[http://dx.doi.org/10.1002/anie.201606508] [PMID: 27619012]
[75]
Thangavel R, Moorthy B, Kim DK, Lee YS. Pushing the energy output and cyclability of sodium hybrid capacitors at high power to new limits. Adv Energy Mater 2017; 7(14): 1602654.
[http://dx.doi.org/10.1002/aenm.201602654]
[76]
Xu C, Xu Y, Tang C, Wei Q, Meng J, Huang L. Carbon-coated hierarchical NaTi2(PO4)3 mesoporous microflowers with superior sodium storage performance. Nano Energy 2016; 28: 224-31.
[http://dx.doi.org/10.1016/j.nanoen.2016.08.026]
[77]
Guo S, Yu H, Liu P, Ren Y, Zhang T, Chen M. High-performance symmetric sodium-ion batteries using a new, bipolar O3-type material, Na0.8Ni0.4Ti0.6O2. Energy Environ Sci 2015; 8(4): 1237-44.
[http://dx.doi.org/10.1039/C4EE03361B]
[78]
Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3 AlC2. Adv Mater 2011; 23(37): 4248-53.
[http://dx.doi.org/10.1002/adma.201102306] [PMID: 21861270]
[79]
Sun S, Liao C, Hafez AM, Zhu H, Wu S. Two-dimensional MXenes for energy storage. Chem Eng J 2018; 338: 27-45.
[http://dx.doi.org/10.1016/j.cej.2017.12.155]
[80]
Anasori B, Lukatskaya MR, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater 2017; 2(2): 16098.
[http://dx.doi.org/10.1038/natrevmats.2016.98]
[81]
Ibrahim Y, Mohamed A, Abdelgawad AM, Eid K, Abdullah AM, Elzatahry A. The recent advances in the mechanical properties of self-standing two-dimensional MXene-based nanostructures: deep insights into the supercapacitor. Nanomaterials (Basel) 2020; 10(10): 1916.
[http://dx.doi.org/10.3390/nano10101916] [PMID: 32992907]
[82]
Ibrahim Y, Kassab A, Eid KM, Abdullah A, Ozoemena KI, Elzatahry A. Unveiling fabrication and environmental remediation of MXene-based nanoarchitectures in toxic metals removal from wastewater: strategy and mechanism. Nanomaterials (Basel) 2020; 10(5): 885.
[http://dx.doi.org/10.3390/nano10050885] [PMID: 32375362]
[83]
Zhang C, Kremer MP, Seral-Ascaso A, Park S-H, McEvoy N, Anasori B. Stamping of flexible, coplanar micro-supercapacitors using MXene inks. Adv Funct Mater 2018; 28(9): 1705506.
[http://dx.doi.org/10.1002/adfm.201705506]
[84]
Zhang CJ, Anasori B, Seral-Ascaso A, et al. Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Adv Mater 2017; 29(36): 1702678.
[http://dx.doi.org/10.1002/adma.201702678] [PMID: 28741695]
[85]
Lukatskaya MR, Kota S, Lin Z, Zhao M-Q, Shpigel N, Levi MD. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat Energy 2017; 2(8): 17105.
[http://dx.doi.org/10.1038/nenergy.2017.105]
[86]
Zhou T, Wu C, Wang Y, et al. Super-tough MXene-functionalized graphene sheets. Nat Commun 2020; 11(1): 2077.
[http://dx.doi.org/10.1038/s41467-020-15991-6] [PMID: 32350273]
[87]
Dubal DP, Chodankar NR, Kim D-H, Gomez-Romero P. Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem Soc Rev 2018; 47(6): 2065-129.
[http://dx.doi.org/10.1039/C7CS00505A] [PMID: 29399689]
[88]
Li L, Lou Z, Chen D, Jiang K, Han W, Shen G. Recent advances in flexible/stretchable supercapacitors for wearable electronics. Small 2018; 14(43): 1702829.
[http://dx.doi.org/10.1002/smll.201702829] [PMID: 29164773]
[89]
Liu Z, Mo F, Li H, Zhu M, Wang Z, Liang G. Advances in flexible and wearable energy‐storage textiles. Small Methods 2018; 2(11): 1800124.
[http://dx.doi.org/10.1002/smtd.201800124]
[90]
Seyedin S, Yanza ERS, Razal Joselito M. Knittable energy storing fiber with high volumetric performance made from predominantly MXene nanosheets. J Mater Chem A Mater Energy Sustain 2017; 5(46): 24076-82.
[http://dx.doi.org/10.1039/C7TA08355F]
[91]
Zhang J, Seyedin S, Gu Z, Yang W, Wang X, Razal JM. MXene: a potential candidate for yarn supercapacitors. Nanoscale 2017; 9(47): 18604-8.
[http://dx.doi.org/10.1039/C7NR06619H] [PMID: 29168525]
[92]
Levitt AS, Alhabeb M, Hatter CB, Sarycheva A, Dion G, Gogotsi Y. Electrospun MXene/carbon nanofibers as supercapacitor electrodes. J Mater Chem A Mater Energy Sustain 2019; 7(1): 269-77.
[http://dx.doi.org/10.1039/C8TA09810G]
[93]
Zhou Z, Panatdasirisuk W, Mathis TS, et al. Layer-by-layer assembly of MXene and carbon nanotubes on electrospun polymer films for flexible energy storage. Nanoscale 2018; 10(13): 6005-13.
[http://dx.doi.org/10.1039/C8NR00313K] [PMID: 29542799]
[94]
Eom W, Shin H, Ambade RB, et al. Large-scale wet-spinning of highly electroconductive MXene fibers. Nat Commun 2020; 11(1): 2825.
[http://dx.doi.org/10.1038/s41467-020-16671-1] [PMID: 32499504]
[95]
Zhang CJ, McKeon L, Kremer MP, et al. Additive-free MXene inks and direct printing of micro-supercapacitors. Nat Commun 2019; 10(1): 1795.
[http://dx.doi.org/10.1038/s41467-019-09398-1] [PMID: 30996224]
[96]
Zheng S, Zhang C, Zhou F, Dong Y, Shi X, Nicolosi V. Ionic liquid pre-intercalated MXene films for ionogel-based flexible micro-supercapacitors with high volumetric energy density. J Mater Chem A Mater Energy Sustain 2019; 7(16): 9478-85.
[http://dx.doi.org/10.1039/C9TA02190F]
[97]
Zhong Y, Xia X, Shi F, Zhan J, Tu J, Fan HJ. Transition metal carbides and nitrides in energy storage and conversion. Adv Sci (Weinh) 2016; 3(5): 1500286.
[http://dx.doi.org/10.1002/advs.201500286] [PMID: 27812464]
[98]
Yang Q, Jiao T, Li M, Li Y, Ma L, Mo F. In situ formation of NaTi2(PO4)3 cubes on Ti3C2 MXene for dual-mode sodium storage. J Mater Chem A Mater Energy Sustain 2018; 6(38): 18525-32.
[http://dx.doi.org/10.1039/C8TA06995F]
[99]
Yang C, Sun X, Zhang YR, Liu Y, Zhang QA, Yuan CZ. Facile synthesis of hierarchical NaTi2(PO4)3/Ti3C2 nanocomposites with superior sodium storage performance. Mater Lett 2019; 236: 408-11.
[http://dx.doi.org/10.1016/j.matlet.2018.10.147]
[100]
Li Q, Zhou J, Li F, Sun Z. Novel MXene-based hierarchically porous composite as superior electrodes for Li-ion storage. Appl Surf Sci 2020; 530: 147214.
[http://dx.doi.org/10.1016/j.apsusc.2020.147214]
[101]
Natu V, Pai R, Sokol M, Carey M, Kalra V, Barsoum MW. 2D Ti3C2Tz MXene synthesized by water-free etching of Ti3AlC2 in polar organic solvents. Chem 2020; 6(3): 616-30.
[http://dx.doi.org/10.1016/j.chempr.2020.01.019]
[102]
Pang S-Y, Wong Y-T, Yuan S, et al. Universal strategy for HF-free facile and rapid synthesis of two-dimensional Mxenes as multifunctional energy materials. J Am Chem Soc 2019; 141(24): 9610-6.
[http://dx.doi.org/10.1021/jacs.9b02578] [PMID: 31117483]
[103]
Li X, Li M, Yang Q, Wang D, Ma L, Liang G. Vertically aligned Sn4+ preintercalated Ti2CTx MXene sphere with enhanced zn ion transportation and superior cycle lifespan. Adv Energy Mater 2020; 10(35): 2001394.
[http://dx.doi.org/10.1002/aenm.202001394]
[104]
Li Z, Wang X, Zhang W, Yang S. Two-dimensional Ti3C2@CTAB-Se (MXene) composite cathode material for high-performance rechargeable aluminum batteries. Chem Eng J 2020; 398: 125679.
[http://dx.doi.org/10.1016/j.cej.2020.125679]
[105]
Huo X, Wang X, Li Z, Liu J, Li J. Two-dimensional composite of D-Ti3C2Tx@S@TiO2 (MXene) as the cathode material for aluminum-ion batteries. Nanoscale 2020; 12(5): 3387-99.
[http://dx.doi.org/10.1039/C9NR09944A] [PMID: 31984994]
[106]
Zhang C, Kim SJ, Ghidiu M, Zhao M-Q, Barsoum MW, Nicolosi V. Layered orthorhombic Nb2O5@Nb4C3Tx and TiO2@Ti3C2Tx hierarchical composites for high performance Li-ion batteries. Adv Funct Mater 2016; 26(23): 4143-51.
[http://dx.doi.org/10.1002/adfm.201600682]
[107]
Dong Y, Wu Z-S, Zheng S, et al. Ti3C2 MXene-derived sodium/potassium titanate nanoribbons for high-performance sodium/potassium ion batteries with enhanced capacities. ACS Nano 2017; 11(5): 4792-800.
[http://dx.doi.org/10.1021/acsnano.7b01165] [PMID: 28460161]
[108]
Kishore BGV, Munichandraiah N. K2Ti4O9: a promising anode material for potassium ion batteries. J Electrochem Soc 2016; 163(13): A2551-4.
[http://dx.doi.org/10.1149/2.0421613jes]
[109]
Barai HR, Rahman MM, Joo SW. Template-free synthesis of two-dimensional titania/titanate nanosheets as electrodes for high-performance supercapacitor applications. J Power Sources 2017; 372: 227-34.
[http://dx.doi.org/10.1016/j.jpowsour.2017.10.076]
[110]
Wang S, Quan W, Zhu Z, et al. Lithium titanate hydrates with superfast and stable cycling in lithium ion batteries. Nat Commun 2017; 8(1): 627.
[http://dx.doi.org/10.1038/s41467-017-00574-9] [PMID: 28931813]
[111]
Yu S-H, Park M, Kim HS, Jin A, Shokouhimehr M, Ahn T-Y. Two-dimensional assemblies of ultrathin titanate nanosheets for lithium ion battery anodes. RSC Advances 2014; 4(24): 12087-93.
[http://dx.doi.org/10.1039/c4ra00624k]
[112]
Bavykin DV, Walsh FC. Elongated titanate nanostructures and their applications. Eur J Inorg Chem 2009; 2009(8): 977-97.
[http://dx.doi.org/10.1002/ejic.200801122]
[113]
Zeng C, Xie F, Yang X, Jaroniec M, Zhang L, Qiao S-Z. Ultrathin titanate nanosheets/graphene films derived from confined transformation for excellent Na/K ion storage. Angew Chem Int Ed Engl 2018; 57(28): 8540-4.
[http://dx.doi.org/10.1002/anie.201803511] [PMID: 29722102]
[114]
Tian Q. Impressive lithium storage properties of layered sodium titanate with hierarchical nanostructures as anode materials for lithium-ion batteries. J Alloys Compd 2017; 699: 540-7.
[http://dx.doi.org/10.1016/j.jallcom.2017.01.011]
[115]
Han MH, Gonzalo E, Singh G, Rojo T. A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries. Energy Environ Sci 2015; 8(1): 81-102.
[http://dx.doi.org/10.1039/C4EE03192J]
[116]
Yu H, Guo S, Zhu Y, Ishida M, Zhou H. Novel titanium-based O3-type NaTi(0.5)Ni(0.5)O2 as a cathode material for sodium ion batteries. Chem Commun (Camb) 2014; 50(4): 457-9.
[http://dx.doi.org/10.1039/C3CC47351A] [PMID: 24253537]
[117]
Kannan K, Kouthaman M, Arjunan P, Subadevi R, Sivakumar M. Titanium based layered O3-NaTi7/10Ni3/20Mg3/20O2 anode material for sodium ion batteries. Mater Lett 2020; 273: 127950.
[http://dx.doi.org/10.1016/j.matlet.2020.127950]
[118]
Zhao C, Avdeev M, Chen L, Hu Y-S. An O3-type oxide with low sodium content as the phase-transition-free anode for sodium-ion batteries. Angew Chem Int Ed Engl 2018; 57(24): 7056-60.
[http://dx.doi.org/10.1002/anie.201801923] [PMID: 29664221]
[119]
Cao Y, Zhang Q, Wei Y, Guo Y, Zhang Z, Huang W. A Water stable, near-zero-strain O3-layered titanium-based anode for long cycle sodium-ion battery. Adv Funct Mater 2020; 30(7): 1907023.
[http://dx.doi.org/10.1002/adfm.201907023]
[120]
Hou J, Song J, Niu Y, Cheng C, He H, Li Y. Carbon-coated P2-type Na0.67Ni0.33Ti0.67O2 as an anode material for sodium ion batteries. J Solid State Electrochem 2015; 19(6): 1827-31.
[http://dx.doi.org/10.1007/s10008-015-2826-7]
[121]
Yu H, Ren Y, Xiao D, et al. An ultrastable anode for long-life room-temperature sodium-ion batteries. Angew Chem Int Ed Engl 2014; 53(34): 8963-9.
[http://dx.doi.org/10.1002/anie.201404549] [PMID: 24962822]
[122]
Guo S, Liu P, Sun Y, et al. A high-voltage and ultralong-life sodium full cell for stationary energy storage. Angew Chem Int Ed Engl 2015; 54(40): 11701-5.
[http://dx.doi.org/10.1002/anie.201505215] [PMID: 26286923]
[123]
Guo S, Sun Y, Yi J, Zhu K, Liu P, Zhu Y. Understanding sodiumion diffusion in layered P2 and P3 oxides via experiments and first-principles calculations: a bridge between crystal structure and electrochemical performance NPG Asia Materials 2016; 8(4): e266-.
[http://dx.doi.org/10.1038/am.2016.53]
[124]
Wang P-F, Yao H-R, Zuo T-T, Yin Y-X, Guo Y-G. Novel P2-type Na2/3Ni1/6Mg1/6Ti2/3O2 as an anode material for sodium-ion batteries. Chem Commun (Camb) 2017; 53(12): 1957-60.
[http://dx.doi.org/10.1039/C6CC09378G] [PMID: 28119964]
[125]
Kalathil AK, Arunkumar P, Kim DH, Lee J-W, Im WB. Influence of Ti(4+) on the electrochemical performance of Li-rich layered oxides - high power and long cycle life of Li2Ru1-xTixO3 cathodes. ACS Appl Mater Interfaces 2015; 7(13): 7118-28.
[http://dx.doi.org/10.1021/am507951x] [PMID: 25762101]
[126]
Hy S, Liu H, Zhang M, Qian D, Hwang B-J, Meng YS. Performance and design considerations for lithium excess layered oxide positive electrode materials for lithium ion batteries. Energy Environ Sci 2016; 9(6): 1931-54.
[http://dx.doi.org/10.1039/C5EE03573B]
[127]
Hong J, Gwon H, Jung S-K, Ku K, Kang K. Review—lithium-excess layered cathodes for lithium rechargeable batteries. J Electrochem Soc 2015; 162(14): A2447-67.
[http://dx.doi.org/10.1149/2.0071514jes]
[128]
Huang J, Yang K, Zhang Z, Yang L, Hirano SI. Layered perovskite LiEuTiO4 as a 0.8 V lithium intercalation electrode. Chem Commun (Camb) 2017; 53(55): 7800-3.
[http://dx.doi.org/10.1039/C7CC03933F] [PMID: 28653063]
[129]
Shanmugam R, Lai W. Na2/3Ni1/3Ti2/3O2: “Bi-functional” electrode materials for Na-ion batteries. ECS Electrochem Lett 2014; 3(4): A23-5.
[http://dx.doi.org/10.1149/2.007404eel]
[130]
Li H, Peng L, Zhu Y, Chen D, Zhang X, Yu G. An advanced high-energy sodium ion full battery based on nanostructured Na2Ti3O7/VOPO4 layered materials. Energy Environ Sci 2016; 9(11): 3399-405.
[http://dx.doi.org/10.1039/C6EE00794E]

© 2025 Bentham Science Publishers | Privacy Policy