摘要
肝细胞癌(HCC)是世界范围内的主要健康问题。 大多数患者首次被诊断为晚期,导致预后非常差。 在这些晚期阶段发现治疗策略具有挑战性。 最近,已经开发出针对 HCC 中特定细胞信号通路的单克隆抗体 (mAb)。 不幸的是,它们的存活率仍然很低,其中一些在临床上未能产生有效的反应,即使它们在临床前研究中对 HCC 显示出非常好的结果。 本综述重点关注并讨论了 mAb 失败的可能原因,精确抗表皮生长因子受体 (EGFR) mAb 以及该 mAb 与患者 NK 细胞之间的串扰。
关键词: HCC免疫治疗、分子靶向治疗、肿瘤微环境、NK、抗EGFR mAb、ADCC。
图形摘要
[1]
El-Serag, H.B. Hepatocellular carcinoma. N. Engl. J. Med., 2011, 365(12), 1118-1127.
[http://dx.doi.org/10.1056/NEJMra1001683] [PMID: 21992124]
[http://dx.doi.org/10.1056/NEJMra1001683] [PMID: 21992124]
[2]
Rashed, W.M.; Kandeil, M.A.M.; Mahmoud, M.O.; Ezzat, S. Hepatocellular carcinoma (HCC) in Egypt: A comprehensive overview. J. Egypt. Natl. Canc. Inst., 2020, 32(1), 5.
[http://dx.doi.org/10.1186/s43046-020-0016-x] [PMID: 32372179]
[http://dx.doi.org/10.1186/s43046-020-0016-x] [PMID: 32372179]
[3]
Fries, A.B.W.; Pollak, S.D. Emotion understanding in postinstitutionalized Eastern European children. Dev. Psychopathol., 2004, 16(2), 355-369.
[http://dx.doi.org/10.1017/S0954579404044554] [PMID: 15487600]
[http://dx.doi.org/10.1017/S0954579404044554] [PMID: 15487600]
[4]
Feitelson, M.A.; Pan, J.; Lian, Z. Early molecular and genetic determinants of primary liver malignancy. Surg. Clin. North Am., 2004, 84(2), 339-354.
[http://dx.doi.org/10.1016/S0039-6109(03)00226-3] [PMID: 15062649]
[http://dx.doi.org/10.1016/S0039-6109(03)00226-3] [PMID: 15062649]
[5]
Berasain, C.; Avila, M.A. The EGFR signalling system in the liver: from hepatoprotection to hepatocarcinogenesis. J. Gastroenterol., 2014, 49(1), 9-23.
[http://dx.doi.org/10.1007/s00535-013-0907-x] [PMID: 24318021]
[http://dx.doi.org/10.1007/s00535-013-0907-x] [PMID: 24318021]
[6]
Berg, M.; Soreide, K. EGFR and downstream genetic alterations in KRAS/BRAF and PI3K/AKT pathways in colorectal cancer: implications for targeted therapy. Discov. Med., 2012, 14(76), 207-214.
[PMID: 23021375]
[PMID: 23021375]
[7]
Roviello, G.; Zanotti, L.; Cappelletti, M.R.; Gobbi, A.; Dester, M.; Paganini, G.; Pacifico, C.; Generali, D.; Roudi, R. Are EGFR tyrosine kinase inhibitors effective in elderly patients with EGFR- mutated non-small cell lung cancer? Clin. Exp. Med., 2018, 18(1), 15-20.
[http://dx.doi.org/10.1007/s10238-017-0460-7] [PMID: 28391544]
[http://dx.doi.org/10.1007/s10238-017-0460-7] [PMID: 28391544]
[8]
Crinò, L.; Cappuzzo, F.; Zatloukal, P.; Reck, M.; Pesek, M.; Thompson, J.C.; Ford, H.E.; Hirsch, F.R.; Varella-Garcia, M.; Ghiorghiu, S.; Duffield, E.L.; Armour, A.A.; Speake, G.; Cullen, M. Gefitinib versus vinorelbine in chemotherapy-naive elderly patients with advanced non-small-cell lung cancer (INVITE): A randomized, phase II study. J. Clin. Oncol., 2008, 26(26), 4253-4260.
[http://dx.doi.org/10.1200/JCO.2007.15.0672] [PMID: 18779612]
[http://dx.doi.org/10.1200/JCO.2007.15.0672] [PMID: 18779612]
[9]
Xu, W.; Liu, K.; Chen, M.; Sun, J-Y.; McCaughan, G.W.; Lu, X-J.; Ji, J. Immunotherapy for hepatocellular carcinoma: Recent advances and future perspectives. Ther. Adv. Med. Oncol., 2019, 11, 1758835919862692.
[http://dx.doi.org/10.1177/1758835919862692] [PMID: 31384311]
[http://dx.doi.org/10.1177/1758835919862692] [PMID: 31384311]
[11]
Komposch, K.; Sibilia, M. EGFR signaling in liver diseases. Int. J. Mol. Sci., 2015, 17(1), 17.
[http://dx.doi.org/10.3390/ijms17010030] [PMID: 26729094]
[http://dx.doi.org/10.3390/ijms17010030] [PMID: 26729094]
[12]
de Castro-Carpeno, J.; Belda-Iniesta, C.; Casado Saenz, E.; Hernandez Agudo, E.; Feliu Batlle, J.; Gonzalez Baron, M. EGFR and colon cancer: a clinical view Clin. Transl. Oncol., 2008, 10, 6-13.
[13]
Huether, A.; Höpfner, M.; Baradari, V.; Schuppan, D.; Scherübl, H. EGFR blockade by cetuximab alone or as combination therapy for growth control of hepatocellular cancer. Biochem. Pharmacol., 2005, 70(11), 1568-1578.
[http://dx.doi.org/10.1016/j.bcp.2005.09.007] [PMID: 16226226]
[http://dx.doi.org/10.1016/j.bcp.2005.09.007] [PMID: 16226226]
[14]
Troiani, T.; Zappavigna, S.; Martinelli, E.; Addeo, S.R.; Stiuso, P.; Ciardiello, F.; Caraglia, M. Optimizing treatment of metastatic colorectal cancer patients with anti-EGFR antibodies: Overcoming the mechanisms of cancer cell resistance. Expert Opin. Biol. Ther., 2013, 13(2), 241-255.
[http://dx.doi.org/10.1517/14712598.2012.756469] [PMID: 23281932]
[http://dx.doi.org/10.1517/14712598.2012.756469] [PMID: 23281932]
[15]
Llovet, J.M.; Bruix, J. Molecular targeted therapies in hepatocellular carcinoma. Hepatology, 2008, 48(4), 1312-1327.
[http://dx.doi.org/10.1002/hep.22506] [PMID: 18821591]
[http://dx.doi.org/10.1002/hep.22506] [PMID: 18821591]
[16]
Zhu, A.X.; Stuart, K.; Blaszkowsky, L.S.; Muzikansky, A.; Reitberg, D.P.; Clark, J.W.; Enzinger, P.C.; Bhargava, P.; Meyerhardt, J.A.; Horgan, K.; Fuchs, C.S.; Ryan, D.P. Phase 2 study of cetuximab in patients with advanced hepatocellular carcinoma. Cancer, 2007, 110(3), 581-589.
[http://dx.doi.org/10.1002/cncr.22829] [PMID: 17583545]
[http://dx.doi.org/10.1002/cncr.22829] [PMID: 17583545]
[17]
Gruenwald, V.; Wilkens, L.; Gebel, M.; Greten, T.F.; Kubicka, S.; Ganser, A.; Manns, M.P.; Malek, N.P. A phase II open-label study of cetuximab in unresectable hepatocellular carcinoma: Final results. J. Clin. Oncol., 2007, 25, 4598-4598.
[http://dx.doi.org/10.1200/jco.2007.25.18_suppl.4598]
[http://dx.doi.org/10.1200/jco.2007.25.18_suppl.4598]
[18]
Therkildsen, C.; Bergmann, T.K.; Henrichsen-Schnack, T.; Ladelund, S.; Nilbert, M. The predictive value of KRAS, NRAS, BRAF, PIK3CA and PTEN for anti-EGFR treatment in metastatic colorectal cancer: A systematic review and meta-analysis. Acta Oncol., 2014, 53(7), 852-864.
[http://dx.doi.org/10.3109/0284186X.2014.895036] [PMID: 24666267]
[http://dx.doi.org/10.3109/0284186X.2014.895036] [PMID: 24666267]
[19]
Turhal, N.S.; Savaş, B.; Çoşkun, Ö.; Baş, E.; Karabulut, B.; Nart, D.; Korkmaz, T.; Yavuzer, D.; Demir, G.; Doğusoy, G.; Artaç, M. Prevalence of K-Ras mutations in hepatocellular carcinoma: A Turkish Oncology Group pilot study. Mol. Clin. Oncol., 2015, 3(6), 1275-1279.
[http://dx.doi.org/10.3892/mco.2015.633] [PMID: 26807232]
[http://dx.doi.org/10.3892/mco.2015.633] [PMID: 26807232]
[20]
Fathi, Z.; Mousavi, S.A.J.; Roudi, R.; Ghazi, F. Distribution of KRAS, DDR2, and TP53 gene mutations in lung cancer: An analysis of Iranian patients. PLoS One, 2018, 13(7), e0200633.
[http://dx.doi.org/10.1371/journal.pone.0200633] [PMID: 30048458]
[http://dx.doi.org/10.1371/journal.pone.0200633] [PMID: 30048458]
[21]
Jiang, N.; Dai, Q.; Su, X.; Fu, J.; Feng, X.; Peng, J. Role of PI3K/AKT pathway in cancer: the framework of malignant behavior. Mol. Biol. Rep., 2020, 47(6), 4587-4629.
[http://dx.doi.org/10.1007/s11033-020-05435-1] [PMID: 32333246]
[http://dx.doi.org/10.1007/s11033-020-05435-1] [PMID: 32333246]
[22]
Levy, E.M.; Sycz, G.; Arriaga, J.M.; Barrio, M.M.; von Euw, E.M.; Morales, S.B.; González, M.; Mordoh, J.; Bianchini, M. Cetuximab-mediated cellular cytotoxicity is inhibited by HLA-E membrane expression in colon cancer cells. Innate Immun., 2009, 15(2), 91-100.
[http://dx.doi.org/10.1177/1753425908101404] [PMID: 19318419]
[http://dx.doi.org/10.1177/1753425908101404] [PMID: 19318419]
[23]
Correale, P.; Marra, M.; Remondo, C.; Migali, C.; Misso, G.; Arcuri, F.P.; Del Vecchio, M.T.; Carducci, A.; Loiacono, L.; Tassone, P.; Abbruzzese, A.; Tagliaferri, P.; Caraglia, M. Cytotoxic drugs up-regulate epidermal growth factor receptor (EGFR) expression in colon cancer cells and enhance their susceptibility to EGFR-targeted antibody-dependent cell-mediated-cytotoxicity (ADCC). Eur. J. Cancer, 2010, 46, 1703-1711.
[24]
Vivier, E.; Tomasello, E.; Baratin, M.; Walzer, T.; Ugolini, S. Functions of natural killer cells. Nat. Immunol., 2008, 9(5), 503-510.
[http://dx.doi.org/10.1038/ni1582] [PMID: 18425107]
[http://dx.doi.org/10.1038/ni1582] [PMID: 18425107]
[25]
Pagès, F.; Kirilovsky, A.; Mlecnik, B.; Asslaber, M.; Tosolini, M.; Bindea, G.; Lagorce, C.; Wind, P.; Marliot, F.; Bruneval, P.; Zatloukal, K.; Trajanoski, Z.; Berger, A.; Fridman, W-H.; Galon, J. In situ cytotoxic and memory T cells predict outcome in patients with early-stage colorectal cancer. J. Clin. Oncol., 2009, 27(35), 5944-5951.
[http://dx.doi.org/10.1200/JCO.2008.19.6147] [PMID: 19858404]
[http://dx.doi.org/10.1200/JCO.2008.19.6147] [PMID: 19858404]
[26]
Levy, E.M.; Roberti, M.P.; Mordoh, J. Natural killer cells in human cancer: From biological functions to clinical applications. J. Biomed. Biotechnol., 2011, 2011, 676198.
[http://dx.doi.org/10.1155/2011/676198] [PMID: 21541191]
[http://dx.doi.org/10.1155/2011/676198] [PMID: 21541191]
[27]
Gao, B.; Jeong, W.I.; Tian, Z. Liver: An organ with predominant innate immunity. Hepatology, 2008, 47(2), 729-736.
[http://dx.doi.org/10.1002/hep.22034] [PMID: 18167066]
[http://dx.doi.org/10.1002/hep.22034] [PMID: 18167066]
[28]
Costello, R.T.; Sivori, S.; Marcenaro, E.; Lafage-Pochitaloff, M.; Mozziconacci, M-J.; Reviron, D.; Gastaut, J-A.; Pende, D.; Olive, D.; Moretta, A. Defective expression and function of natural killer cell-triggering receptors in patients with acute myeloid leukemia. Blood, 2002, 99(10), 3661-3667.
[http://dx.doi.org/10.1182/blood.V99.10.3661] [PMID: 11986221]
[http://dx.doi.org/10.1182/blood.V99.10.3661] [PMID: 11986221]
[29]
Mamessier, E.; Sylvain, A.; Thibult, M-L.; Houvenaeghel, G.; Jacquemier, J.; Castellano, R.; Gonçalves, A.; André, P.; Romagné, F.; Thibault, G.; Viens, P.; Birnbaum, D.; Bertucci, F.; Moretta, A.; Olive, D. Human breast cancer cells enhance self tolerance by promoting evasion from NK cell antitumor immunity. J. Clin. Invest., 2011, 121(9), 3609-3622.
[http://dx.doi.org/10.1172/JCI45816] [PMID: 21841316]
[http://dx.doi.org/10.1172/JCI45816] [PMID: 21841316]
[30]
Bruno, A.; Focaccetti, C.; Pagani, A.; Imperatori, A.S.; Spagnoletti, M.; Rotolo, N.; Cantelmo, A.R.; Franzi, F.; Capella, C.; Ferlazzo, G.; Mortara, L.; Albini, A.; Noonan, D.M. The Proangiogenic phenotype of natural killer cells in patients with non-small cell lung cancer. Neoplasia, 2013, 15, 133-137.
[31]
Bruno, A.; Bassani, B.; D’Urso, D.G.; Pitaku, I.; Cassinotti, E.; Pelosi, G.; Boni, L.; Dominioni, L.; Noonan, D.M.; Mortara, L.; Albini, A. Angiogenin and the MMP9-TIMP2 axis are up-regulated in proangiogenic, decidual NK-like cells from patients with colorectal cancer. FASEB J., 2018, 32(10), 5365-5377.
[http://dx.doi.org/10.1096/fj.201701103R] [PMID: 29763380]
[http://dx.doi.org/10.1096/fj.201701103R] [PMID: 29763380]
[32]
Schleypen, J.S.; Baur, N.; Kammerer, R.; Nelson, P.J.; Rohrmann, K.; Gröne, E.F.; Hohenfellner, M.; Haferkamp, A.; Pohla, H.; Schendel, D.J.; Falk, C.S.; Noessner, E. Cytotoxic markers and frequency predict functional capacity of natural killer cells infiltrating renal cell carcinoma. Clin. Cancer Res., 2006, 12, 718.
[33]
Vitale, M.; Cantoni, C.; Pietra, G.; Mingari, M.C.; Moretta, L. Effect of tumor cells and tumor microenvironment on NK-cell function. Eur. J. Immunol., 2014, 44(6), 1582-1592.
[http://dx.doi.org/10.1002/eji.201344272] [PMID: 24777896]
[http://dx.doi.org/10.1002/eji.201344272] [PMID: 24777896]
[34]
Abou-Alfa, G.K.; Puig, O.; Daniele, B.; Kudo, M.; Merle, P.; Park, J.W.; Ross, P.; Peron, J.M.; Ebert, O.; Chan, S.; Poon, T.P.; Colombo, M.; Okusaka, T.; Ryoo, B.Y.; Minguez, B.; Tanaka, T.; Ohtomo, T.; Ukrainskyj, S.; Boisserie, F.; Rutman, O.; Chen, Y.C.; Xu, C.; Shochat, E.; Jukofsky, L.; Reis, B.; Chen, G.; Di Laurenzio, L.; Lee, R.; Yen, C.J. Randomized phase II placebo controlled study of codrituzumab in previously treated patients with advanced hepatocellular carcinoma. J. Hepatol., 2016, 65(2), 289-295.
[http://dx.doi.org/10.1016/j.jhep.2016.04.004] [PMID: 27085251]
[http://dx.doi.org/10.1016/j.jhep.2016.04.004] [PMID: 27085251]
[35]
Cai, L.; Zhang, Z.; Zhou, L.; Wang, H.; Fu, J.; Zhang, S.; Shi, M.; Zhang, H.; Yang, Y.; Wu, H.; Tien, P.; Wang, F-S. Functional impairment in circulating and intrahepatic NK cells and relative mechanism in hepatocellular carcinoma patients. Clin. Immunol., 2008, 129(3), 428-437.
[http://dx.doi.org/10.1016/j.clim.2008.08.012] [PMID: 18824414]
[http://dx.doi.org/10.1016/j.clim.2008.08.012] [PMID: 18824414]
[36]
Wu, Y.; Kuang, D-M.; Pan, W-D.; Wan, Y-L.; Lao, X-M.; Wang, D.; Li, X-F.; Zheng, L. Monocyte/macrophage-elicited natural killer cell dysfunction in hepatocellular carcinoma is mediated by CD48/2B4 interactions. Hepatology, 2013, 57(3), 1107-1116.
[http://dx.doi.org/10.1002/hep.26192] [PMID: 23225218]
[http://dx.doi.org/10.1002/hep.26192] [PMID: 23225218]
[37]
Jinushi, M.; Takehara, T.; Tatsumi, T.; Hiramatsu, N.; Sakamori, R.; Yamaguchi, S.; Hayashi, N. Impairment of natural killer cell and dendritic cell functions by the soluble form of MHC class I-related chain A in advanced human hepatocellular carcinomas. J. Hepatol., 2005, 43(6), 1013-1020.
[http://dx.doi.org/10.1016/j.jhep.2005.05.026] [PMID: 16168521]
[http://dx.doi.org/10.1016/j.jhep.2005.05.026] [PMID: 16168521]
[38]
Castriconi, R.; Cantoni, C.; Della Chiesa, M.; Vitale, M.; Marcenaro, E.; Conte, R.; Biassoni, R.; Bottino, C.; Moretta, L.; Moretta, A. Transforming growth factor β1 inhibits expression of NKp30 and NKG2D receptors: consequences for the NK-mediated killing of dendritic cells. Proc. Natl. Acad. Sci. USA, 2003, 100(7), 4120-4125.
[http://dx.doi.org/10.1073/pnas.0730640100] [PMID: 12646700]
[http://dx.doi.org/10.1073/pnas.0730640100] [PMID: 12646700]
[39]
Viel, S.; Marçais, A.; Guimaraes, F.S-F.; Loftus, R.; Rabilloud, J.; Grau, M.; Degouve, S.; Djebali, S.; Sanlaville, A.; Charrier, E.; Bienvenu, J.; Marie, J.C.; Caux, C.; Marvel, J.; Town, L.; Huntington, N.D.; Bartholin, L.; Finlay, D.; Smyth, M.J.; Walzer, T. TGF-β inhibits the activation and functions of NK cells by repressing the mTOR pathway. Sci. Signal., 2016, 9(415), ra19-ra19.
[http://dx.doi.org/10.1126/scisignal.aad1884] [PMID: 26884601]
[http://dx.doi.org/10.1126/scisignal.aad1884] [PMID: 26884601]
[40]
Budhu, A.; Forgues, M.; Ye, Q.H.; Jia, H.L.; He, P.; Zanetti, K.A.; Kammula, U.S.; Chen, Y.; Qin, L.X.; Tang, Z.Y.; Wang, X.W. Prediction of venous metastases, recurrence, and prognosis in hepatocellular carcinoma based on a unique immune response signature of the liver microenvironment. Cancer Cell, 2006, 10(2), 99-111.
[http://dx.doi.org/10.1016/j.ccr.2006.06.016] [PMID: 16904609]
[http://dx.doi.org/10.1016/j.ccr.2006.06.016] [PMID: 16904609]
[41]
Mohsenzadegan, M.; Peng, R.; Roudi, R. Dendritic cell/cytokine-induced killer cell-based immunotherapy in lung cancer: What we know and future landscape. J. Cell. Physiol., 2019, 235(1), 74-86.
[PMID: 31222740]
[PMID: 31222740]
[42]
Kalinski, P. Regulation of immune responses by prostaglandin E2. J. Immunol., 2012, 188(1), 21-28.
[http://dx.doi.org/10.4049/jimmunol.1101029] [PMID: 22187483]
[http://dx.doi.org/10.4049/jimmunol.1101029] [PMID: 22187483]
[43]
Holt, D.; Ma, X.; Kundu, N.; Fulton, A. Prostaglandin E(2) (PGE (2)) suppresses natural killer cell function primarily through the PGE(2) receptor EP4. Cancer Immunol. Immunother., 2011, 60(11), 1577-1586.
[http://dx.doi.org/10.1007/s00262-011-1064-9] [PMID: 21681369]
[http://dx.doi.org/10.1007/s00262-011-1064-9] [PMID: 21681369]
[44]
Langhans, B.; Alwan, A.W.; Krämer, B.; Glässner, A.; Lutz, P.; Strassburg, C.P.; Nattermann, J.; Spengler, U. Regulatory CD4+ T cells modulate the interaction between NK cells and hepatic stellate cells by acting on either cell type. J. Hepatol., 2015, 62(2), 398-404.
[http://dx.doi.org/10.1016/j.jhep.2014.08.038] [PMID: 25195554]
[http://dx.doi.org/10.1016/j.jhep.2014.08.038] [PMID: 25195554]
[45]
Wan, S.; Kuo, N.; Kryczek, I.; Zou, W.; Welling, T.H. Myeloid cells in hepatocellular carcinoma. Hepatology 2015, 62(4), 1304-1312.
[http://dx.doi.org/10.1002/hep.27867] [PMID: 25914264]
[http://dx.doi.org/10.1002/hep.27867] [PMID: 25914264]
[46]
Hasmim, M.; Messai, Y.; Ziani, L.; Thiery, J.; Bouhris, J-H.; Noman, M.Z.; Chouaib, S. Critical role of tumor microenvironment in shaping NK cell functions: Implication of hypoxic stress. Front. Immunol., 2015, 6, 482.
[http://dx.doi.org/10.3389/fimmu.2015.00482] [PMID: 26441986]
[http://dx.doi.org/10.3389/fimmu.2015.00482] [PMID: 26441986]
[47]
Sprinzl, M.F.; Reisinger, F.; Puschnik, A.; Ringelhan, M.; Ackermann, K.; Hartmann, D.; Schiemann, M.; Weinmann, A.; Galle, P.R.; Schuchmann, M.; Friess, H.; Otto, G.; Heikenwalder, M.; Protzer, U. Sorafenib perpetuates cellular anticancer effector functions by modulating the crosstalk between macrophages and natural killer cells. Hepatology, 2013, 57(6), 2358-2368.
[http://dx.doi.org/10.1002/hep.26328] [PMID: 23424039]
[http://dx.doi.org/10.1002/hep.26328] [PMID: 23424039]
[48]
Zhou, J.; Ding, T.; Pan, W.; Zhu, L.Y.; Li, L.; Zheng, L. Increased intratumoral regulatory T cells are related to intratumoral macrophages and poor prognosis in hepatocellular carcinoma patients. Int. J. Cancer, 2009, 125(7), 1640-1648.
[http://dx.doi.org/10.1002/ijc.24556] [PMID: 19569243]
[http://dx.doi.org/10.1002/ijc.24556] [PMID: 19569243]
[49]
Sica, A.; Bronte, V. Altered macrophage differentiation and immune dysfunction in tumor development. J. Clin. Invest., 2007, 117(5), 1155-1166.
[http://dx.doi.org/10.1172/JCI31422] [PMID: 17476345]
[http://dx.doi.org/10.1172/JCI31422] [PMID: 17476345]
[50]
Karagiannis, G.S.; Poutahidis, T.; Erdman, S.E.; Kirsch, R.; Riddell, R.H.; Diamandis, E.P. Cancer-associated fibroblasts drive the progression of metastasis through both paracrine and mechanical pressure on cancer tissue. Mol. Cancer Res., 2012, 10(11), 1403-1418.
[http://dx.doi.org/10.1158/1541-7786.MCR-12-0307] [PMID: 23024188]
[http://dx.doi.org/10.1158/1541-7786.MCR-12-0307] [PMID: 23024188]
[51]
Tao, L.; Huang, G.; Song, H.; Chen, Y.; Chen, L. Cancer associated fibroblasts: An essential role in the tumor microenvironment. Oncol. Lett., 2017, 14(3), 2611-2620.
[http://dx.doi.org/10.3892/ol.2017.6497] [PMID: 28927027]
[http://dx.doi.org/10.3892/ol.2017.6497] [PMID: 28927027]
[52]
Bagordakis, E.; Sawazaki-Calone, I.; Macedo, C.C.S.; Carnielli, C.M.; de Oliveira, C.E.; Rodrigues, P.C.; Rangel, A.L.C.A.; Dos Santos, J.N.; Risteli, J.; Graner, E.; Salo, T.; Paes Leme, A.F.; Coletta, R.D. Secretome profiling of oral squamous cell carcinoma-associated fibroblasts reveals organization and disassembly of extracellular matrix and collagen metabolic process signatures. Tumour Biol., 2016, 37(7), 9045-9057.
[http://dx.doi.org/10.1007/s13277-015-4629-y] [PMID: 26762409]
[http://dx.doi.org/10.1007/s13277-015-4629-y] [PMID: 26762409]
[53]
De Boeck, A.; Hendrix, A.; Maynard, D.; Van Bockstal, M.; Daniëls, A.; Pauwels, P.; Gespach, C.; Bracke, M.; De Wever, O. Differential secretome analysis of cancer-associated fibroblasts and bone marrow-derived precursors to identify microenvironmental regulators of colon cancer progression. Proteomics, 2013, 13(2), 379-388.
[http://dx.doi.org/10.1002/pmic.201200179] [PMID: 23175172]
[http://dx.doi.org/10.1002/pmic.201200179] [PMID: 23175172]
[54]
Easom, N.J.W.; Stegmann, K.A.; Swadling, L.; Pallett, L.J.; Burton, A.R.; Odera, D.; Schmidt, N.; Huang, W-C.; Fusai, G.; Davidson, B.; Maini, M.K. IL-15 overcomes hepatocellular carcinoma-induced NK cell dysfunction. Front. Immunol., 2018, 9, 1009.
[http://dx.doi.org/10.3389/fimmu.2018.01009] [PMID: 29867983]
[http://dx.doi.org/10.3389/fimmu.2018.01009] [PMID: 29867983]
[55]
Sun, C.; Xu, J.; Huang, Q.; Huang, M.; Wen, H.; Zhang, C.; Wang, J.; Song, J.; Zheng, M.; Sun, H.; Wei, H.; Xiao, W.; Sun, R.; Tian, Z. High NKG2A expression contributes to NK cell exhaustion and predicts a poor prognosis of patients with liver cancer. OncoImmunology, 2016, 6(1), e1264562.
[http://dx.doi.org/10.1080/2162402X.2016.1264562] [PMID: 28197391]
[http://dx.doi.org/10.1080/2162402X.2016.1264562] [PMID: 28197391]
[56]
Sutlu, T.; Alici, E. Natural killer cell-based immunotherapy in cancer: current insights and future prospects. J. Intern. Med., 2009, 266(2), 154-181.
[http://dx.doi.org/10.1111/j.1365-2796.2009.02121.x] [PMID: 19614820]
[http://dx.doi.org/10.1111/j.1365-2796.2009.02121.x] [PMID: 19614820]
[57]
Chu, P.S.; Nakamoto, N.; Taniki, N.; Ojiro, K.; Amiya, T.; Makita, Y.; Murata, H.; Yamaguchi, A.; Shiba, S.; Miyake, R.; Katayama, T.; Ugamura, A.; Ikura, A.; Takeda, K.; Ebinuma, H.; Saito, H.; Kanai, T. On-treatment decrease of NKG2D correlates to early emergence of clinically evident hepatocellular carcinoma after interferon-free therapy for chronic hepatitis C. PLoS One, 2017, 12(6), e0179096.
[http://dx.doi.org/10.1371/journal.pone.0179096] [PMID: 28617830]
[http://dx.doi.org/10.1371/journal.pone.0179096] [PMID: 28617830]
[58]
Konjević, G.; Mirjacić Martinović, K.; Jurisić, V.; Babović, N.; Spuzić, I. Biomarkers of suppressed natural killer (NK) cell function in metastatic melanoma: decreased NKG2D and increased CD158a receptors on CD3-CD16+ NK cells. Biomarkers, 2009, 14, 258-270.
[59]
Guillerey, C.; Huntington, N.D.; Smyth, M.J. Targeting natural killer cells in cancer immunotherapy. Nat. Immunol., 2016, 17(9), 1025-1036.
[http://dx.doi.org/10.1038/ni.3518] [PMID: 27540992]
[http://dx.doi.org/10.1038/ni.3518] [PMID: 27540992]
[60]
Markel, G.; Seidman, R.; Besser, M.J.; Zabari, N.; Ortenberg, R.; Shapira, R.; Treves, A.J.; Loewenthal, R.; Orenstein, A.; Nagler, A.; Schachter, J. Natural killer lysis receptor (NKLR)/NKLR-ligand matching as a novel approach for enhancing anti-tumor activity of allogeneic NK cells. PLoS One, 2009, 4(5), e5597.
[http://dx.doi.org/10.1371/journal.pone.0005597] [PMID: 19440333]
[http://dx.doi.org/10.1371/journal.pone.0005597] [PMID: 19440333]
[61]
Hoechst, B.; Voigtlaender, T.; Ormandy, L.; Gamrekelashvili, J.; Zhao, F.; Wedemeyer, H.; Lehner, F.; Manns, M.P.; Greten, T.F.; Korangy, F. Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology, 2009, 50(3), 799-807.
[http://dx.doi.org/10.1002/hep.23054] [PMID: 19551844]
[http://dx.doi.org/10.1002/hep.23054] [PMID: 19551844]
[62]
Fathy, A.; Eldin, M.M.; Metwally, L.; Eida, M.; Abdel-Rehim, M. Diminished absolute counts of CD56dim and CD56bright natural killer cells in peripheral blood from Egyptian patients with hepatocellular carcinoma. Egypt. J. Immunol., 2009, 16(2), 17-25.
[PMID: 22059350]
[PMID: 22059350]