Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

Interrupted Crosstalk between Natural Killer Cells and Anti-epidermal Growth Factor Receptor: A Possible Role in Hepatocellular Carcinoma Treatment Failure

Author(s): Hadeer Abosalem, Shahenda Mahgoub *, Mohamed Emara , Nahla Kotb and Sameh Soror

Volume 21, Issue 7, 2021

Published on: 19 May, 2021

Page: [601 - 607] Pages: 7

DOI: 10.2174/1568009621666210519105203

Price: $65

Abstract

Hepatocellular carcinoma (HCC) is a major health problem worldwide. Most patients are diagnosed for the first time at late stages, which leads to very poor prognosis. It is challenging to discover strategies for treatment at these advanced stages. Recently, monoclonal antibodies (mAbs) targeting specific cellular signaling pathways in HCC have been developed. Unfortunately, they still have a low survival rate, and some of them failed clinically to produce effective responses even if they showed very good results against HCC in preclinical studies. This review focuses on and discusses the possible causes for the failure of mAbs, precisely anti-Epidermal Growth Factor Receptor (EGFR) mAb and the crosstalk between this mAb and patients' NK cells.

Keywords: HCC immunotherapy, molecular target therapy, tumor microenvironment, NK, anti-EGFR mAb, ADCC.

Graphical Abstract

[1]
El-Serag, H.B. Hepatocellular carcinoma. N. Engl. J. Med., 2011, 365(12), 1118-1127.
[http://dx.doi.org/10.1056/NEJMra1001683] [PMID: 21992124]
[2]
Rashed, W.M.; Kandeil, M.A.M.; Mahmoud, M.O.; Ezzat, S. Hepatocellular carcinoma (HCC) in Egypt: A comprehensive overview. J. Egypt. Natl. Canc. Inst., 2020, 32(1), 5.
[http://dx.doi.org/10.1186/s43046-020-0016-x] [PMID: 32372179]
[3]
Fries, A.B.W.; Pollak, S.D. Emotion understanding in postinstitutionalized Eastern European children. Dev. Psychopathol., 2004, 16(2), 355-369.
[http://dx.doi.org/10.1017/S0954579404044554] [PMID: 15487600]
[4]
Feitelson, M.A.; Pan, J.; Lian, Z. Early molecular and genetic determinants of primary liver malignancy. Surg. Clin. North Am., 2004, 84(2), 339-354.
[http://dx.doi.org/10.1016/S0039-6109(03)00226-3] [PMID: 15062649]
[5]
Berasain, C.; Avila, M.A. The EGFR signalling system in the liver: from hepatoprotection to hepatocarcinogenesis. J. Gastroenterol., 2014, 49(1), 9-23.
[http://dx.doi.org/10.1007/s00535-013-0907-x] [PMID: 24318021]
[6]
Berg, M.; Soreide, K. EGFR and downstream genetic alterations in KRAS/BRAF and PI3K/AKT pathways in colorectal cancer: implications for targeted therapy. Discov. Med., 2012, 14(76), 207-214.
[PMID: 23021375]
[7]
Roviello, G.; Zanotti, L.; Cappelletti, M.R.; Gobbi, A.; Dester, M.; Paganini, G.; Pacifico, C.; Generali, D.; Roudi, R. Are EGFR tyrosine kinase inhibitors effective in elderly patients with EGFR- mutated non-small cell lung cancer? Clin. Exp. Med., 2018, 18(1), 15-20.
[http://dx.doi.org/10.1007/s10238-017-0460-7] [PMID: 28391544]
[8]
Crinò, L.; Cappuzzo, F.; Zatloukal, P.; Reck, M.; Pesek, M.; Thompson, J.C.; Ford, H.E.; Hirsch, F.R.; Varella-Garcia, M.; Ghiorghiu, S.; Duffield, E.L.; Armour, A.A.; Speake, G.; Cullen, M. Gefitinib versus vinorelbine in chemotherapy-naive elderly patients with advanced non-small-cell lung cancer (INVITE): A randomized, phase II study. J. Clin. Oncol., 2008, 26(26), 4253-4260.
[http://dx.doi.org/10.1200/JCO.2007.15.0672] [PMID: 18779612]
[9]
Xu, W.; Liu, K.; Chen, M.; Sun, J-Y.; McCaughan, G.W.; Lu, X-J.; Ji, J. Immunotherapy for hepatocellular carcinoma: Recent advances and future perspectives. Ther. Adv. Med. Oncol., 2019, 11, 1758835919862692.
[http://dx.doi.org/10.1177/1758835919862692] [PMID: 31384311]
[10]
FDA. Hematology/Oncology (Cancer) Approvals & Safety Notifications 2020.
[11]
Komposch, K.; Sibilia, M. EGFR signaling in liver diseases. Int. J. Mol. Sci., 2015, 17(1), 17.
[http://dx.doi.org/10.3390/ijms17010030] [PMID: 26729094]
[12]
de Castro-Carpeno, J.; Belda-Iniesta, C.; Casado Saenz, E.; Hernandez Agudo, E.; Feliu Batlle, J.; Gonzalez Baron, M. EGFR and colon cancer: a clinical view Clin. Transl. Oncol., 2008, 10, 6-13.
[13]
Huether, A.; Höpfner, M.; Baradari, V.; Schuppan, D.; Scherübl, H. EGFR blockade by cetuximab alone or as combination therapy for growth control of hepatocellular cancer. Biochem. Pharmacol., 2005, 70(11), 1568-1578.
[http://dx.doi.org/10.1016/j.bcp.2005.09.007] [PMID: 16226226]
[14]
Troiani, T.; Zappavigna, S.; Martinelli, E.; Addeo, S.R.; Stiuso, P.; Ciardiello, F.; Caraglia, M. Optimizing treatment of metastatic colorectal cancer patients with anti-EGFR antibodies: Overcoming the mechanisms of cancer cell resistance. Expert Opin. Biol. Ther., 2013, 13(2), 241-255.
[http://dx.doi.org/10.1517/14712598.2012.756469] [PMID: 23281932]
[15]
Llovet, J.M.; Bruix, J. Molecular targeted therapies in hepatocellular carcinoma. Hepatology, 2008, 48(4), 1312-1327.
[http://dx.doi.org/10.1002/hep.22506] [PMID: 18821591]
[16]
Zhu, A.X.; Stuart, K.; Blaszkowsky, L.S.; Muzikansky, A.; Reitberg, D.P.; Clark, J.W.; Enzinger, P.C.; Bhargava, P.; Meyerhardt, J.A.; Horgan, K.; Fuchs, C.S.; Ryan, D.P. Phase 2 study of cetuximab in patients with advanced hepatocellular carcinoma. Cancer, 2007, 110(3), 581-589.
[http://dx.doi.org/10.1002/cncr.22829] [PMID: 17583545]
[17]
Gruenwald, V.; Wilkens, L.; Gebel, M.; Greten, T.F.; Kubicka, S.; Ganser, A.; Manns, M.P.; Malek, N.P. A phase II open-label study of cetuximab in unresectable hepatocellular carcinoma: Final results. J. Clin. Oncol., 2007, 25, 4598-4598.
[http://dx.doi.org/10.1200/jco.2007.25.18_suppl.4598]
[18]
Therkildsen, C.; Bergmann, T.K.; Henrichsen-Schnack, T.; Ladelund, S.; Nilbert, M. The predictive value of KRAS, NRAS, BRAF, PIK3CA and PTEN for anti-EGFR treatment in metastatic colorectal cancer: A systematic review and meta-analysis. Acta Oncol., 2014, 53(7), 852-864.
[http://dx.doi.org/10.3109/0284186X.2014.895036] [PMID: 24666267]
[19]
Turhal, N.S.; Savaş, B.; Çoşkun, Ö.; Baş, E.; Karabulut, B.; Nart, D.; Korkmaz, T.; Yavuzer, D.; Demir, G.; Doğusoy, G.; Artaç, M. Prevalence of K-Ras mutations in hepatocellular carcinoma: A Turkish Oncology Group pilot study. Mol. Clin. Oncol., 2015, 3(6), 1275-1279.
[http://dx.doi.org/10.3892/mco.2015.633] [PMID: 26807232]
[20]
Fathi, Z.; Mousavi, S.A.J.; Roudi, R.; Ghazi, F. Distribution of KRAS, DDR2, and TP53 gene mutations in lung cancer: An analysis of Iranian patients. PLoS One, 2018, 13(7), e0200633.
[http://dx.doi.org/10.1371/journal.pone.0200633] [PMID: 30048458]
[21]
Jiang, N.; Dai, Q.; Su, X.; Fu, J.; Feng, X.; Peng, J. Role of PI3K/AKT pathway in cancer: the framework of malignant behavior. Mol. Biol. Rep., 2020, 47(6), 4587-4629.
[http://dx.doi.org/10.1007/s11033-020-05435-1] [PMID: 32333246]
[22]
Levy, E.M.; Sycz, G.; Arriaga, J.M.; Barrio, M.M.; von Euw, E.M.; Morales, S.B.; González, M.; Mordoh, J.; Bianchini, M. Cetuximab-mediated cellular cytotoxicity is inhibited by HLA-E membrane expression in colon cancer cells. Innate Immun., 2009, 15(2), 91-100.
[http://dx.doi.org/10.1177/1753425908101404] [PMID: 19318419]
[23]
Correale, P.; Marra, M.; Remondo, C.; Migali, C.; Misso, G.; Arcuri, F.P.; Del Vecchio, M.T.; Carducci, A.; Loiacono, L.; Tassone, P.; Abbruzzese, A.; Tagliaferri, P.; Caraglia, M. Cytotoxic drugs up-regulate epidermal growth factor receptor (EGFR) expression in colon cancer cells and enhance their susceptibility to EGFR-targeted antibody-dependent cell-mediated-cytotoxicity (ADCC). Eur. J. Cancer, 2010, 46, 1703-1711.
[24]
Vivier, E.; Tomasello, E.; Baratin, M.; Walzer, T.; Ugolini, S. Functions of natural killer cells. Nat. Immunol., 2008, 9(5), 503-510.
[http://dx.doi.org/10.1038/ni1582] [PMID: 18425107]
[25]
Pagès, F.; Kirilovsky, A.; Mlecnik, B.; Asslaber, M.; Tosolini, M.; Bindea, G.; Lagorce, C.; Wind, P.; Marliot, F.; Bruneval, P.; Zatloukal, K.; Trajanoski, Z.; Berger, A.; Fridman, W-H.; Galon, J. In situ cytotoxic and memory T cells predict outcome in patients with early-stage colorectal cancer. J. Clin. Oncol., 2009, 27(35), 5944-5951.
[http://dx.doi.org/10.1200/JCO.2008.19.6147] [PMID: 19858404]
[26]
Levy, E.M.; Roberti, M.P.; Mordoh, J. Natural killer cells in human cancer: From biological functions to clinical applications. J. Biomed. Biotechnol., 2011, 2011, 676198.
[http://dx.doi.org/10.1155/2011/676198] [PMID: 21541191]
[27]
Gao, B.; Jeong, W.I.; Tian, Z. Liver: An organ with predominant innate immunity. Hepatology, 2008, 47(2), 729-736.
[http://dx.doi.org/10.1002/hep.22034] [PMID: 18167066]
[28]
Costello, R.T.; Sivori, S.; Marcenaro, E.; Lafage-Pochitaloff, M.; Mozziconacci, M-J.; Reviron, D.; Gastaut, J-A.; Pende, D.; Olive, D.; Moretta, A. Defective expression and function of natural killer cell-triggering receptors in patients with acute myeloid leukemia. Blood, 2002, 99(10), 3661-3667.
[http://dx.doi.org/10.1182/blood.V99.10.3661] [PMID: 11986221]
[29]
Mamessier, E.; Sylvain, A.; Thibult, M-L.; Houvenaeghel, G.; Jacquemier, J.; Castellano, R.; Gonçalves, A.; André, P.; Romagné, F.; Thibault, G.; Viens, P.; Birnbaum, D.; Bertucci, F.; Moretta, A.; Olive, D. Human breast cancer cells enhance self tolerance by promoting evasion from NK cell antitumor immunity. J. Clin. Invest., 2011, 121(9), 3609-3622.
[http://dx.doi.org/10.1172/JCI45816] [PMID: 21841316]
[30]
Bruno, A.; Focaccetti, C.; Pagani, A.; Imperatori, A.S.; Spagnoletti, M.; Rotolo, N.; Cantelmo, A.R.; Franzi, F.; Capella, C.; Ferlazzo, G.; Mortara, L.; Albini, A.; Noonan, D.M. The Proangiogenic phenotype of natural killer cells in patients with non-small cell lung cancer. Neoplasia, 2013, 15, 133-137.
[31]
Bruno, A.; Bassani, B.; D’Urso, D.G.; Pitaku, I.; Cassinotti, E.; Pelosi, G.; Boni, L.; Dominioni, L.; Noonan, D.M.; Mortara, L.; Albini, A. Angiogenin and the MMP9-TIMP2 axis are up-regulated in proangiogenic, decidual NK-like cells from patients with colorectal cancer. FASEB J., 2018, 32(10), 5365-5377.
[http://dx.doi.org/10.1096/fj.201701103R] [PMID: 29763380]
[32]
Schleypen, J.S.; Baur, N.; Kammerer, R.; Nelson, P.J.; Rohrmann, K.; Gröne, E.F.; Hohenfellner, M.; Haferkamp, A.; Pohla, H.; Schendel, D.J.; Falk, C.S.; Noessner, E. Cytotoxic markers and frequency predict functional capacity of natural killer cells infiltrating renal cell carcinoma. Clin. Cancer Res., 2006, 12, 718.
[33]
Vitale, M.; Cantoni, C.; Pietra, G.; Mingari, M.C.; Moretta, L. Effect of tumor cells and tumor microenvironment on NK-cell function. Eur. J. Immunol., 2014, 44(6), 1582-1592.
[http://dx.doi.org/10.1002/eji.201344272] [PMID: 24777896]
[34]
Abou-Alfa, G.K.; Puig, O.; Daniele, B.; Kudo, M.; Merle, P.; Park, J.W.; Ross, P.; Peron, J.M.; Ebert, O.; Chan, S.; Poon, T.P.; Colombo, M.; Okusaka, T.; Ryoo, B.Y.; Minguez, B.; Tanaka, T.; Ohtomo, T.; Ukrainskyj, S.; Boisserie, F.; Rutman, O.; Chen, Y.C.; Xu, C.; Shochat, E.; Jukofsky, L.; Reis, B.; Chen, G.; Di Laurenzio, L.; Lee, R.; Yen, C.J. Randomized phase II placebo controlled study of codrituzumab in previously treated patients with advanced hepatocellular carcinoma. J. Hepatol., 2016, 65(2), 289-295.
[http://dx.doi.org/10.1016/j.jhep.2016.04.004] [PMID: 27085251]
[35]
Cai, L.; Zhang, Z.; Zhou, L.; Wang, H.; Fu, J.; Zhang, S.; Shi, M.; Zhang, H.; Yang, Y.; Wu, H.; Tien, P.; Wang, F-S. Functional impairment in circulating and intrahepatic NK cells and relative mechanism in hepatocellular carcinoma patients. Clin. Immunol., 2008, 129(3), 428-437.
[http://dx.doi.org/10.1016/j.clim.2008.08.012] [PMID: 18824414]
[36]
Wu, Y.; Kuang, D-M.; Pan, W-D.; Wan, Y-L.; Lao, X-M.; Wang, D.; Li, X-F.; Zheng, L. Monocyte/macrophage-elicited natural killer cell dysfunction in hepatocellular carcinoma is mediated by CD48/2B4 interactions. Hepatology, 2013, 57(3), 1107-1116.
[http://dx.doi.org/10.1002/hep.26192] [PMID: 23225218]
[37]
Jinushi, M.; Takehara, T.; Tatsumi, T.; Hiramatsu, N.; Sakamori, R.; Yamaguchi, S.; Hayashi, N. Impairment of natural killer cell and dendritic cell functions by the soluble form of MHC class I-related chain A in advanced human hepatocellular carcinomas. J. Hepatol., 2005, 43(6), 1013-1020.
[http://dx.doi.org/10.1016/j.jhep.2005.05.026] [PMID: 16168521]
[38]
Castriconi, R.; Cantoni, C.; Della Chiesa, M.; Vitale, M.; Marcenaro, E.; Conte, R.; Biassoni, R.; Bottino, C.; Moretta, L.; Moretta, A. Transforming growth factor β1 inhibits expression of NKp30 and NKG2D receptors: consequences for the NK-mediated killing of dendritic cells. Proc. Natl. Acad. Sci. USA, 2003, 100(7), 4120-4125.
[http://dx.doi.org/10.1073/pnas.0730640100] [PMID: 12646700]
[39]
Viel, S.; Marçais, A.; Guimaraes, F.S-F.; Loftus, R.; Rabilloud, J.; Grau, M.; Degouve, S.; Djebali, S.; Sanlaville, A.; Charrier, E.; Bienvenu, J.; Marie, J.C.; Caux, C.; Marvel, J.; Town, L.; Huntington, N.D.; Bartholin, L.; Finlay, D.; Smyth, M.J.; Walzer, T. TGF-β inhibits the activation and functions of NK cells by repressing the mTOR pathway. Sci. Signal., 2016, 9(415), ra19-ra19.
[http://dx.doi.org/10.1126/scisignal.aad1884] [PMID: 26884601]
[40]
Budhu, A.; Forgues, M.; Ye, Q.H.; Jia, H.L.; He, P.; Zanetti, K.A.; Kammula, U.S.; Chen, Y.; Qin, L.X.; Tang, Z.Y.; Wang, X.W. Prediction of venous metastases, recurrence, and prognosis in hepatocellular carcinoma based on a unique immune response signature of the liver microenvironment. Cancer Cell, 2006, 10(2), 99-111.
[http://dx.doi.org/10.1016/j.ccr.2006.06.016] [PMID: 16904609]
[41]
Mohsenzadegan, M.; Peng, R.; Roudi, R. Dendritic cell/cytokine-induced killer cell-based immunotherapy in lung cancer: What we know and future landscape. J. Cell. Physiol., 2019, 235(1), 74-86.
[PMID: 31222740]
[42]
Kalinski, P. Regulation of immune responses by prostaglandin E2. J. Immunol., 2012, 188(1), 21-28.
[http://dx.doi.org/10.4049/jimmunol.1101029] [PMID: 22187483]
[43]
Holt, D.; Ma, X.; Kundu, N.; Fulton, A. Prostaglandin E(2) (PGE (2)) suppresses natural killer cell function primarily through the PGE(2) receptor EP4. Cancer Immunol. Immunother., 2011, 60(11), 1577-1586.
[http://dx.doi.org/10.1007/s00262-011-1064-9] [PMID: 21681369]
[44]
Langhans, B.; Alwan, A.W.; Krämer, B.; Glässner, A.; Lutz, P.; Strassburg, C.P.; Nattermann, J.; Spengler, U. Regulatory CD4+ T cells modulate the interaction between NK cells and hepatic stellate cells by acting on either cell type. J. Hepatol., 2015, 62(2), 398-404.
[http://dx.doi.org/10.1016/j.jhep.2014.08.038] [PMID: 25195554]
[45]
Wan, S.; Kuo, N.; Kryczek, I.; Zou, W.; Welling, T.H. Myeloid cells in hepatocellular carcinoma. Hepatology 2015, 62(4), 1304-1312.
[http://dx.doi.org/10.1002/hep.27867] [PMID: 25914264]
[46]
Hasmim, M.; Messai, Y.; Ziani, L.; Thiery, J.; Bouhris, J-H.; Noman, M.Z.; Chouaib, S. Critical role of tumor microenvironment in shaping NK cell functions: Implication of hypoxic stress. Front. Immunol., 2015, 6, 482.
[http://dx.doi.org/10.3389/fimmu.2015.00482] [PMID: 26441986]
[47]
Sprinzl, M.F.; Reisinger, F.; Puschnik, A.; Ringelhan, M.; Ackermann, K.; Hartmann, D.; Schiemann, M.; Weinmann, A.; Galle, P.R.; Schuchmann, M.; Friess, H.; Otto, G.; Heikenwalder, M.; Protzer, U. Sorafenib perpetuates cellular anticancer effector functions by modulating the crosstalk between macrophages and natural killer cells. Hepatology, 2013, 57(6), 2358-2368.
[http://dx.doi.org/10.1002/hep.26328] [PMID: 23424039]
[48]
Zhou, J.; Ding, T.; Pan, W.; Zhu, L.Y.; Li, L.; Zheng, L. Increased intratumoral regulatory T cells are related to intratumoral macrophages and poor prognosis in hepatocellular carcinoma patients. Int. J. Cancer, 2009, 125(7), 1640-1648.
[http://dx.doi.org/10.1002/ijc.24556] [PMID: 19569243]
[49]
Sica, A.; Bronte, V. Altered macrophage differentiation and immune dysfunction in tumor development. J. Clin. Invest., 2007, 117(5), 1155-1166.
[http://dx.doi.org/10.1172/JCI31422] [PMID: 17476345]
[50]
Karagiannis, G.S.; Poutahidis, T.; Erdman, S.E.; Kirsch, R.; Riddell, R.H.; Diamandis, E.P. Cancer-associated fibroblasts drive the progression of metastasis through both paracrine and mechanical pressure on cancer tissue. Mol. Cancer Res., 2012, 10(11), 1403-1418.
[http://dx.doi.org/10.1158/1541-7786.MCR-12-0307] [PMID: 23024188]
[51]
Tao, L.; Huang, G.; Song, H.; Chen, Y.; Chen, L. Cancer associated fibroblasts: An essential role in the tumor microenvironment. Oncol. Lett., 2017, 14(3), 2611-2620.
[http://dx.doi.org/10.3892/ol.2017.6497] [PMID: 28927027]
[52]
Bagordakis, E.; Sawazaki-Calone, I.; Macedo, C.C.S.; Carnielli, C.M.; de Oliveira, C.E.; Rodrigues, P.C.; Rangel, A.L.C.A.; Dos Santos, J.N.; Risteli, J.; Graner, E.; Salo, T.; Paes Leme, A.F.; Coletta, R.D. Secretome profiling of oral squamous cell carcinoma-associated fibroblasts reveals organization and disassembly of extracellular matrix and collagen metabolic process signatures. Tumour Biol., 2016, 37(7), 9045-9057.
[http://dx.doi.org/10.1007/s13277-015-4629-y] [PMID: 26762409]
[53]
De Boeck, A.; Hendrix, A.; Maynard, D.; Van Bockstal, M.; Daniëls, A.; Pauwels, P.; Gespach, C.; Bracke, M.; De Wever, O. Differential secretome analysis of cancer-associated fibroblasts and bone marrow-derived precursors to identify microenvironmental regulators of colon cancer progression. Proteomics, 2013, 13(2), 379-388.
[http://dx.doi.org/10.1002/pmic.201200179] [PMID: 23175172]
[54]
Easom, N.J.W.; Stegmann, K.A.; Swadling, L.; Pallett, L.J.; Burton, A.R.; Odera, D.; Schmidt, N.; Huang, W-C.; Fusai, G.; Davidson, B.; Maini, M.K. IL-15 overcomes hepatocellular carcinoma-induced NK cell dysfunction. Front. Immunol., 2018, 9, 1009.
[http://dx.doi.org/10.3389/fimmu.2018.01009] [PMID: 29867983]
[55]
Sun, C.; Xu, J.; Huang, Q.; Huang, M.; Wen, H.; Zhang, C.; Wang, J.; Song, J.; Zheng, M.; Sun, H.; Wei, H.; Xiao, W.; Sun, R.; Tian, Z. High NKG2A expression contributes to NK cell exhaustion and predicts a poor prognosis of patients with liver cancer. OncoImmunology, 2016, 6(1), e1264562.
[http://dx.doi.org/10.1080/2162402X.2016.1264562] [PMID: 28197391]
[56]
Sutlu, T.; Alici, E. Natural killer cell-based immunotherapy in cancer: current insights and future prospects. J. Intern. Med., 2009, 266(2), 154-181.
[http://dx.doi.org/10.1111/j.1365-2796.2009.02121.x] [PMID: 19614820]
[57]
Chu, P.S.; Nakamoto, N.; Taniki, N.; Ojiro, K.; Amiya, T.; Makita, Y.; Murata, H.; Yamaguchi, A.; Shiba, S.; Miyake, R.; Katayama, T.; Ugamura, A.; Ikura, A.; Takeda, K.; Ebinuma, H.; Saito, H.; Kanai, T. On-treatment decrease of NKG2D correlates to early emergence of clinically evident hepatocellular carcinoma after interferon-free therapy for chronic hepatitis C. PLoS One, 2017, 12(6), e0179096.
[http://dx.doi.org/10.1371/journal.pone.0179096] [PMID: 28617830]
[58]
Konjević, G.; Mirjacić Martinović, K.; Jurisić, V.; Babović, N.; Spuzić, I. Biomarkers of suppressed natural killer (NK) cell function in metastatic melanoma: decreased NKG2D and increased CD158a receptors on CD3-CD16+ NK cells. Biomarkers, 2009, 14, 258-270.
[59]
Guillerey, C.; Huntington, N.D.; Smyth, M.J. Targeting natural killer cells in cancer immunotherapy. Nat. Immunol., 2016, 17(9), 1025-1036.
[http://dx.doi.org/10.1038/ni.3518] [PMID: 27540992]
[60]
Markel, G.; Seidman, R.; Besser, M.J.; Zabari, N.; Ortenberg, R.; Shapira, R.; Treves, A.J.; Loewenthal, R.; Orenstein, A.; Nagler, A.; Schachter, J. Natural killer lysis receptor (NKLR)/NKLR-ligand matching as a novel approach for enhancing anti-tumor activity of allogeneic NK cells. PLoS One, 2009, 4(5), e5597.
[http://dx.doi.org/10.1371/journal.pone.0005597] [PMID: 19440333]
[61]
Hoechst, B.; Voigtlaender, T.; Ormandy, L.; Gamrekelashvili, J.; Zhao, F.; Wedemeyer, H.; Lehner, F.; Manns, M.P.; Greten, T.F.; Korangy, F. Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology, 2009, 50(3), 799-807.
[http://dx.doi.org/10.1002/hep.23054] [PMID: 19551844]
[62]
Fathy, A.; Eldin, M.M.; Metwally, L.; Eida, M.; Abdel-Rehim, M. Diminished absolute counts of CD56dim and CD56bright natural killer cells in peripheral blood from Egyptian patients with hepatocellular carcinoma. Egypt. J. Immunol., 2009, 16(2), 17-25.
[PMID: 22059350]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy