Generic placeholder image

Recent Patents on Nanotechnology

Editor-in-Chief

ISSN (Print): 1872-2105
ISSN (Online): 2212-4020

Review Article

Nanotechnology and Acoustics in Medicine and Biology

Author(s): Roozbeh Abedini-Nassab*, Seyed Mohammadhossein Emami and Arshia Naeimi Nowghabi

Volume 16, Issue 3, 2022

Published on: 28 April, 2021

Page: [198 - 206] Pages: 9

DOI: 10.2174/1872210515666210428134424

Price: $65

Abstract

Background: Nanotechnology plays an important role in various engineering fields, one of which is acoustics.

Method: Here, we review the use of nanotechnology in multiple acoustic-based bioapplications, with a focus on recent patents and advances. Nanoparticles, nanorods, nanotubes, and nanofilms used in acoustic devices are discussed. We cover ultrasonic transducers, biosensors, imaging tools, nanomotors, and particle sorters.

Results and Conclusion: The way these ideas help in fundamental disciplines such as medicine is shown. We believe the current work is a good collection of advances in the field.

Keywords: Nanotechnology, acoustics, transducer, sensor, imaging tool, nanomotor, particle sorter.

Graphical Abstract

[1]
Song W, Anselmo AC, Huang L. Nanotechnology intervention of the microbiome for cancer therapy. Nat Nanotechnol 2019; 14(12): 1093-103.
[http://dx.doi.org/10.1038/s41565-019-0589-5] [PMID: 31802032]
[2]
Ferrari M. Cancer nanotechnology: Opportunities and challenges. Nat Rev Cancer 2005; 5(3): 161-71.
[http://dx.doi.org/10.1038/nrc1566] [PMID: 15738981]
[3]
Shi J, Votruba AR, Farokhzad OC, Langer R. Nanotechnology in drug delivery and tissue engineering: From discovery to applications. Nano Lett 2010; 10(9): 3223-30.
[http://dx.doi.org/10.1021/nl102184c] [PMID: 20726522]
[4]
Abedini-Nassab R. Nanotechnology and nanopore sequencing. Recent Pat Nanotechnol 2017; 11(1): 34-41.
[http://dx.doi.org/10.2174/1872210510666160602152913] [PMID: 27262629]
[5]
Ozcelik A, Rufo J, Guo F, et al. Acoustic tweezers for the life sciences. Nat Methods 2018; 15(12): 1021-8.
[http://dx.doi.org/10.1038/s41592-018-0222-9] [PMID: 30478321]
[6]
Shnaiderman R, Wissmeyer G, Ülgen O, Mustafa Q, Chmyrov A, Ntziachristos V. A submicrometre silicon-on-insulator resonator for ultrasound detection. Nature 2020; 585(7825): 372-8.
[http://dx.doi.org/10.1038/s41586-020-2685-y] [PMID: 32939068]
[7]
Audoly C. Acoustic metamaterials and underwater acoustics applications. In: Fundamentals and applications of acoustic metamaterials. ISTE Ltd and John Wiley & Sons, Inc 2019; Vol. 1: pp. 263-85.
[http://dx.doi.org/10.1002/9781119649182.ch9]
[8]
Ding H, Shu X, Jin Y, Fan T, Zhang H. Recent advances in nanomaterial-enabled acoustic devices for audible sound generation and detection. Nanoscale 2019; 11(13): 5839-60.
[http://dx.doi.org/10.1039/C8NR09736D] [PMID: 30892308]
[9]
Galanzha EI, Kim JW, Zharov VP. Nanotechnology-based molecular photoacoustic and photothermal flow cytometry platform for in vivo detection and killing of circulating cancer stem cells. J Biophotonics 2009; 2(12): 725-35.
[http://dx.doi.org/10.1002/jbio.200910078] [PMID: 19957272]
[10]
Drafts B. Acoustic wave technology sensors. IEEE Trans Microw Theory Tech 2001; 49(4): 795-802.
[http://dx.doi.org/10.1109/22.915466]
[11]
Liu Y, Cai Y, Zhang Y, Tovstopyat A, Liu S, Sun C. Materials, design, and characteristics of bulk acoustic wave resonator: A review. Micromachines (Basel) 2020; 11(7): 630.
[http://dx.doi.org/10.3390/mi11070630] [PMID: 32605313]
[12]
Zhang P, Bachman H, Ozcelik A, Huang TJ. Acoustic microfluidics. Annu Rev Anal Chem (Palo Alto, Calif) 2020; 13(1): 17-43.
[http://dx.doi.org/10.1146/annurev-anchem-090919-102205] [PMID: 32531185]
[13]
Slim MS, Abd Malek MF, Heng RBW, Juni KM, Sabri N. Capacitive micromachined ultrasonic transducers: Technology and application. J Med Ultrasound 2012; 20(1): 8-31.
[http://dx.doi.org/10.1016/j.jmu.2012.02.001]
[14]
Lebental B, Ghis A. CMUT cell formed from a membrane of nanotubes or nanowires or nanorods and device for ultra-high frequency acoustic imaging including multiple cells of this kind. U.S. Patent 8873341, 2014.
[15]
Miraftab M, Luo J, Ahmad M. Continuous ZnO films. G.B. Patent, 2,469,869, 2010.
[16]
Cheon W, Oseung J, Kim N, Park Y, Kim Y, Chen K. Use of pulsed thermal radiation and nano-structures for the effective generation of sound waves in kHz range. K.R. Patent 101584613, 2016.
[17]
Liu J, Luo R. Micronl nano thermoacoustic vibration excitor based on thermoacoustic conversion. C.N. Patent 1821048, 2014.
[18]
Chang WS, Wen F, Chakraborty D, et al. Tuning the acoustic frequency of a gold nanodisk through its adhesion layer. Nat Commun 2015; 6: 7022.
[http://dx.doi.org/10.1038/ncomms8022] [PMID: 25940095]
[19]
Chan J, Zheng Z, Bell K, Le M, Reza PH, Yeow JTW. Photoacoustic imaging with capacitive micromachined ultrasound transducers: Principles and developments. Sensors (Basel) 2019; 19(16): 3617.
[http://dx.doi.org/10.3390/s19163617] [PMID: 31434241]
[20]
Smeltzer M, Zharov V, Galanzha E, Chen J, Meeker D, Beenken K. In vivo photoacoustic and photothermal nano-theranostics of biofilms. W.O. Patent 2016; 196: 791.
[21]
Baac HW, Ok JG, Maxwell A, et al. Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy. Sci Rep 2012; 2: 989.
[http://dx.doi.org/10.1038/srep00989] [PMID: 23251775]
[22]
Ruby RC, Bradley P, Oshmyansky Y, Chien A, Larson JD. Thin film bulk wave acoustic resonators (FBAR) for wireless applications, 2001 IEEE ultrasonics symposium. Proceedings An International Symposium (Cat No01CH37263). vol.1: 813-21.
[23]
Ruby R, Bradley P, Larson JD, Oshmyansky Y. PCS 1900 MHz duplexer using thin film bulk acoustic resonators (FBARs). Electron Lett 1999; 35(10): 794-5.
[http://dx.doi.org/10.1049/el:19990559]
[24]
Yang J, Chen J, Liu Y, Yang W, Su Y, Wang ZL. Triboelectrification-based organic film nanogenerator for acoustic energy harvesting and self-powered active acoustic sensing. ACS Nano 2014; 8(3): 2649-57.
[http://dx.doi.org/10.1021/nn4063616] [PMID: 24524252]
[25]
Rao J, Chen Z, Zhao D, Yin Y, Wang X, Yi F. Recent progress in self-powered skin sensors. Sensors (Basel) 2019; 19(12): 2763.
[http://dx.doi.org/10.3390/s19122763] [PMID: 31248225]
[26]
Gao N, Qiang L. A kind of micro-nano column flexible array film bulk acoustic resonator subfilter and its preparation. C.N. Patent 108092639, 2018.
[27]
Ulrich T, Arenas JP. Sound absorption of sustainable polymer nanofibrous thin membranes bonded to a bulk porous material. Sustainability 2020; 12(6): 2361.
[http://dx.doi.org/10.3390/su12062361]
[28]
Tang X, Yan X. Acoustic energy absorption properties of fibrous materials: A review. Compos, Part A Appl Sci Manuf 2017; 101: 360-80.
[http://dx.doi.org/10.1016/j.compositesa.2017.07.002]
[29]
Machado LPS, Sen S. Decorated granular crystal as filter of low-frequency ultrasonic signals. Granul Matter 2019; 22(1): 7.
[http://dx.doi.org/10.1007/s10035-019-0977-4]
[30]
Lu H, Xiang N, Leventis N, Sotiriou-Leventis C. Acoustic attenuators based on porous nanostructured materials U.S. Patent, 9,068,346, 2015.
[31]
Du J, Harding GL, Ogilvy JA, Dencher PR, Lake M. A study of love-wave acoustic sensors. Sens Actuators A Phys 1996; 56(3): 211-9.
[http://dx.doi.org/10.1016/S0924-4247(96)01311-8]
[32]
Rasmusson A, Gizeli E. Comparison of Poly(methylmethacrylate) and Novolak waveguide coatings for an acoustic biosensor. J Appl Phys 2001; 90(12): 5911-4.
[http://dx.doi.org/10.1063/1.1405142]
[33]
Wu H, Zu H, Wang JHC, Wang QM. A study of Love wave acoustic biosensors monitoring the adhesion process of Tendon Stem Cells (TSCs). Eur Biophys J 2019; 48(3): 249-60.
[http://dx.doi.org/10.1007/s00249-019-01349-4] [PMID: 30783690]
[34]
Jeong G. Surface acoustic wave humidity sensors including zno nanorods and method for manufacturing the same. K.R. Patent 101333830, 2013.
[35]
Shachar Y, Kornberg R, Eugene Davis R. Method for isothermal DNA detection using a modified crispr/cas system and the apparatus for detection by surface acoustic waves for gene editing. U.S. Patent 0334697, 2018.
[36]
Papadakis G, Murasova P, Hamiot A, et al. Micro-nano-bio acoustic system for the detection of foodborne pathogens in real samples. Biosens Bioelectron 2018; 111: 52-8.
[http://dx.doi.org/10.1016/j.bios.2018.03.056] [PMID: 29635118]
[37]
Warthoe P. Bio surface acoustic wave (saw) resonator amplification with nanoparticles for detection of a target analyte. U.S. Patent 0282902, 2009.
[38]
Augustine R, Sarry F, Kalarikkal N, Thomas S, Badie L, Rouxel D. Surface acoustic wave device with reduced insertion loss by electrospinning P(VDF-TrFE)/ZnO nanocomposites. Nano-Micro Lett 2016; 8(3): 282-90.
[http://dx.doi.org/10.1007/s40820-016-0088-2] [PMID: 30460288]
[39]
Viespe C, Dinca V, Popescu-Pelin G, Miu D. Love wave surface acoustic wave sensor with laser-deposited nanoporous gold sensitive layer. Sensors (Basel) 2019; 19(20): 4492.
[http://dx.doi.org/10.3390/s19204492] [PMID: 31623258]
[40]
Lang C, Fang J, Shao H, Ding X, Lin T. High-sensitivity acoustic sensors from nanofibre webs. Nat Commun 2016; 7: 11108.
[http://dx.doi.org/10.1038/ncomms11108] [PMID: 27005010]
[41]
Ding B, Wang M, Wang X, Yu J, Sun G. Electrospun nanomaterials for ultrasensitive sensors. Mater Today (Kidlington) 2010; 13(11): 16-27.
[http://dx.doi.org/10.1016/S1369-7021(10)70200-5] [PMID: 32362770]
[42]
Hwang GT, Byun M, Jeong CK, Lee KJ. Flexible piezoelectric thin-film energy harvesters and nanosensors for biomedical applications. Adv Healthc Mater 2015; 4(5): 646-58.
[http://dx.doi.org/10.1002/adhm.201400642] [PMID: 25476410]
[43]
Oraevsky A, Henrichs P. High contrast optoacoustic imaging using nanoparticles. U.S. Patent 7500953, 2009.
[44]
Fuentes-Domínguez R, Pérez-Cota F, Naznin S, et al. Nano ultrasonic measurements of nanoparticles. AIP Conf Proc 2019; 2102(1): 020027.
[http://dx.doi.org/10.1063/1.5099731]
[45]
Okahata Y, Matsunobu Y, Ijiro K, Mukae M, Murakami MK. Hybridization of nucleic acids immobilized on a quartz crystal microbalance. J Am Chem Soc 1992; 114: 8299-300.
[http://dx.doi.org/10.1021/ja00047a056]
[46]
Davis KA, Leary TR. Continuous liquid-phase piezoelectric biosensor for kinetic immunoassays. Anal Chem 1989; 61(11): 1227-30.
[http://dx.doi.org/10.1021/ac00186a010] [PMID: 2757206]
[47]
Liren W, Xue W, Sixin W, Xuesong Y, Yuquan C. A two-acoustic-waveguide-channel SH-APM urease biosensor. Eng Med Biol Soc 1996; 1: 85-6.
[48]
Lin Z, Yip CM, Joseph IS, Ward MD. Operation of an ultrasensitive 30-MHz quartz crystal microbalance in liquids. Anal Chem 1993; 65: 1546-51.
[http://dx.doi.org/10.1021/ac00059a011]
[49]
Demirci U, Ergun AS, Oralkan O, Karaman M, Khuri-Yakub BT. Forward-viewing CMUT arrays for medical imaging. IEEE Trans Ultrason Ferroelectr Freq Control 2004; 51(7): 887-95.
[http://dx.doi.org/10.1109/TUFFC.2004.1320749] [PMID: 15301009]
[50]
Wang J, Zheng Z, Chan J, Yeow JTW. Capacitive micromachined ultrasound transducers for intravascular ultrasound imaging. Microsyst Nanoeng 2020; 6(1): 1-3.
[http://dx.doi.org/10.1038/s41378-020-0181-z]
[51]
Tomatsu F, Fukui T, Kanazaki K, Yuasa S, Kishi M, Sasaguri D. Dye-containing nanoparticle for photoacoustic contrast agent. U.S. Patent 0315837, 2013.
[52]
Dai Y, Yu X, Wei J, et al. Metastatic status of sentinel lymph nodes in breast cancer determined with photoacoustic microscopy via dual-targeting nanoparticles. Light Sci Appl 2020; 9(1): 164.
[http://dx.doi.org/10.1038/s41377-020-00399-0] [PMID: 33014359]
[53]
Prud’homme R, Pansare V, Hejazi S, Lu H. Nanoparticle Photoacoustic Imaging Agents U.S. Patent 0082134, 2016.
[54]
De la Zerda A, Zavaleta C, Keren S, et al. Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat Nanotechnol 2008; 3(9): 557-62.
[http://dx.doi.org/10.1038/nnano.2008.231] [PMID: 18772918]
[55]
Galanzha EI, Shashkov EV, Spring PM, Suen JY, Zharov VP. In vivo, noninvasive, label-free detection and eradication of circulating metastatic melanoma cells using two-color photoacoustic flow cytometry with a diode laser. Cancer Res 2009; 69(20): 7926-34.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-4900] [PMID: 19826056]
[56]
Maeng W, Han S. Acousto-optic device having multi-layer nanostructure, optical scanner, optical modulator, and display apparatus using the acousto-optic device. U.S. Patent 9188953, 2013.
[57]
Murray T. Characterization of micro- and nano scale materials by acoustic wave generation with a CW modulated laser. U.S. Patent 7649632, 2010.
[58]
Su M, Thundat T, Hedden D. Method and apparatus for remote sensing of molecular species at nanoscale utilizing a reverse photoacoustic effect. U.S. Patent 7665364, 2010.
[59]
Lin KH, Chern GW, Yu CT, et al. Optical piezoelectric transducer for nano-ultrasonics. IEEE Trans Ultrason Ferroelectr Freq Control 2005; 52(8): 1404-14.
[http://dx.doi.org/10.1109/TUFFC.2005.1509800] [PMID: 16245610]
[60]
Lu X, Zhao K, Chen H, Wang Zh. A kind of linear type nanomotor of micro- acoustic streaming driving. C.N. Patent 109831117, 2019.
[61]
Lu X, Zhao K. The rotary-type nano-motor and its working method of micro- acoustic streaming driving. C.N. Patent 108467006, 2018.
[62]
Wang J, Esener S, Kagan D, Benchimol M, Claussen J. Acoustically triggered nano/micro-scale propulsion devices. U.S. Patent 9726114, 2017.
[63]
Hansen-Bruhn M, de Ávila BE-F, Beltrán-Gastélum M, et al. Active intracellular delivery of a Cas9/sgRNA complex using ultrasound-propelled nanomotors. Angew Chem Int Ed 2018; 57(10): 2657-61.
[http://dx.doi.org/10.1002/anie.201713082] [PMID: 29325201]
[64]
Qualliotine JR, Bolat G, Beltrán-Gastélum M, de Ávila BE, Wang J, Califano JA. Acoustic nanomotors for detection of human papillomavirus-associated head and neck cancer. Otolaryngol Head Neck Surg 2019; 161(5): 814-22.
[http://dx.doi.org/10.1177/0194599819866407] [PMID: 31547769]
[65]
Abedini-Nassab R, Mahdaviyan N. A microfluidic platform equipped with magnetic nano films for organizing bio-particle arrays and long-term studies. IEEE Sens J 2020; 20(17): 9668-76.
[http://dx.doi.org/10.1109/JSEN.2020.2992551]
[66]
Lim B, Reddy V, Hu X, et al. Magnetophoretic circuits for digital control of single particles and cells. Nat Commun 2014; 5: 3846.
[http://dx.doi.org/10.1038/ncomms4846] [PMID: 24828763]
[67]
Abedini-Nassab R, Joh DY, Albarghouthi F, Chilkoti A, Murdoch DM, Yellen BB. Magnetophoretic transistors in a tri-axial magnetic field. Lab Chip 2016; 16(21): 4181-8.
[http://dx.doi.org/10.1039/C6LC00878J] [PMID: 27714014]
[68]
Abedini-Nassab R, Eslamian M. Recent patents and advances on applications of magnetic nanoparticles and thin films in cell manipulation. Recent Pat Nanotechnol 2014; 8(3): 157-64.
[69]
Pesch GR, Lorenz M, Sachdev S, et al. Bridging the scales in high-throughput dielectrophoretic (bio-)particle separation in porous media. Sci Rep 2018; 8(1): 10480.
[http://dx.doi.org/10.1038/s41598-018-28735-w] [PMID: 29993026]
[70]
Samlali K, Ahmadi F, Quach ABV, Soffer G, Shih SCC. One cell, one drop, one click: Hybrid microfluidics for mammalian single cell isolation. Small 2020; 16(34): e2002400.
[http://dx.doi.org/10.1002/smll.202002400] [PMID: 32705796]
[71]
Tanyeri M, Ranka M, Sittipolkul N, Schroeder CM. A microfluidic-based hydrodynamic trap: Design and implementation. Lab Chip 2011; 11(10): 1786-94.
[http://dx.doi.org/10.1039/c0lc00709a] [PMID: 21479293]
[72]
Sohrabi Kashani A, Packirisamy M. Efficient low shear flow-based trapping of biological entities. Sci Rep 2019; 9(1): 5511.
[http://dx.doi.org/10.1038/s41598-019-41938-z] [PMID: 30940862]
[73]
Zhao S, Wu M, Yang S, et al. A disposable acoustofluidic chip for nano/microparticle separation using unidirectional acoustic transducers. Lab Chip 2020; 20(7): 1298-308.
[http://dx.doi.org/10.1039/D0LC00106F] [PMID: 32195522]
[74]
Connacher W, Zhang N, Huang A, et al. Micro/nano acoustofluidics: Materials, phenomena, design, devices, and applications. Lab Chip 2018; 18(14): 1952-96.
[http://dx.doi.org/10.1039/C8LC00112J] [PMID: 29922774]
[75]
Wu M, Ozcelik A, Rufo J, Wang Z, Fang R, Jun Huang T. Acoustofluidic separation of cells and particles. Microsyst Nanoeng 2019; 5: 32.
[http://dx.doi.org/10.1038/s41378-019-0064-3] [PMID: 31231539]
[76]
Shi J, Huang H, Stratton Z, Huang Y, Huang TJ. Continuous particle separation in a microfluidic channel via Standing Surface Acoustic Waves (SSAW). Lab Chip 2009; 9(23): 3354-9.
[http://dx.doi.org/10.1039/b915113c] [PMID: 19904400]
[77]
Barmatz M, Stoneburner J, Jacobi N, Wang T. Acoustic particle separation. U.S. Patent 4523682, 1985.
[78]
Ota N, Yalikun Y, Suzuki T, et al. Enhancement in acoustic focusing of micro and nanoparticles by thinning a microfluidic device. R Soc Open Sci 2019; 6(2): 181776.
[http://dx.doi.org/10.1098/rsos.181776] [PMID: 30891287]
[79]
Guldiken R, Jo MC, Gallant ND, Demirci U, Zhe J. Sheathless size-based acoustic particle separation. Sensors (Basel) 2012; 12(1): 905-22.
[http://dx.doi.org/10.3390/s120100905] [PMID: 22368502]
[80]
CHEN S-W, Vom E, Lanyon S, Elliott S, Allman R. Acoustically driven nanoparticle concentrator. U.S. Patent, 9,079,127, 2015.
[81]
Olofsson K, Hammarström B, Wiklund M. Acoustic separation of living and dead cells using high density medium. Lab Chip 2020; 20(11): 1981-90.
[http://dx.doi.org/10.1039/D0LC00175A] [PMID: 32356853]
[82]
Wu M, Mao Z, Chen K, et al. Acoustic separation of nanoparticles in continuous flow. Adv Funct Mater 2017; 27(14): 1606039.
[http://dx.doi.org/10.1002/adfm.201606039] [PMID: 29104525]
[83]
Ohiri KA, Kelly ST, Motschman JD, Lin KH, Wood KC, Yellen BB. An acoustofluidic trap and transfer approach for organizing a high density single cell array. Lab Chip 2018; 18(14): 2124-33.
[http://dx.doi.org/10.1039/C8LC00196K] [PMID: 29931016]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy