Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

高血压和白质高信号作为血管性痴呆或阿尔茨海默病合并症的多组学研究

卷 18, 期 2, 2021

发表于: 22 April, 2021

页: [171 - 177] 页: 7

弟呕挨: 10.2174/1567205018666210422133547

价格: $65

摘要

背景:年龄相关的合并症很常见,显着增加了老年人的医疗负担。阿尔茨海默病 (AD) 和高血压是两种最普遍的与年龄相关的疾病,并且高度合并症。虽然高血压是血管性痴呆 (VD) 的危险因素,但伴有 AD 的高血压 (ADHyp+) 通常被定性为可能的血管性痴呆。在没有影像学和其他诊断测试的情况下,很难区分两种病理状态。 目标:我们的目标是 (1) 使用 CSF 中淀粉样蛋白 β、tau 和 p-tau 的水平,确定仅患有 AD (ADHyp-) 的个体和患有 ADHyp+ 的个体之间基于 CSF 的血管性痴呆特征的差异(如果有), (2) 将 ADHyp- 和 ADHyp+ 的全基因组 DNA 谱与未受影响的对照人群进行比较。 方法:使用基因型和临床数据将健康对照与 AD Hyp- 与 AD Hyp+ 进行比较。我们比较了 CSF 生物标志物,然后评估了三组的全基因组概况,并根据位置和最低 p 值将 SNP 映射到基因。检查重要基因的共表达和已知疾病网络。 结果:我们发现 ADHyp- 和 ADHyp+ 之间的 Aβ、tau 和 p-tau 水平没有差异。我们发现 TOMM40 与预期的 ADHyp- 相关,但与 ADHyp+ 无关。有趣的是,SLC9A3R2 多态性与 ADHyp+ 相关,并且观察到邻近基因的显着基因表达变化。 结论:通过这项使用新型队列分层设计的探索性研究,我们强调了临床相似表型的遗传差异,表明遗传图谱在辅助 ADHyp+ 和 VD 的鉴别诊断中的效用。

关键词: 阿尔茨海默病、高血压、白质高信号、合并症、血管性痴呆、脑脊液生物标志物。

[1]
Mark Mather LAJ, Kelvin M. Pollard. Aging in the United States. In: Population Bulletin Population Reference Bureau. 2015.
[2]
Alzheimer's A. 2011 Alzheimer’s disease facts and figures. Alzheimers Dement 2011; 7(2): 208-44.
[http://dx.doi.org/10.1016/j.jalz.2011.02.004] [PMID: 21414557]
[3]
Emdin CA, Rothwell PM, Salimi-Khorshidi G, et al. Blood pressure and risk of vascular dementia: Evidence from a primary care registry and a cohort study of transient ischemic attack and stroke. Stroke 2016; 47(6): 1429-35.
[http://dx.doi.org/10.1161/STROKEAHA.116.012658] [PMID: 27165956]
[4]
Kalaria RN. Neuropathological diagnosis of vascular cognitive impairment and vascular dementia with implications for Alzheimer’s disease. Acta Neuropathol 2016; 131(5): 659-85.
[http://dx.doi.org/10.1007/s00401-016-1571-z] [PMID: 27062261]
[5]
Smith Eric E. Clinical presentations and epidemiology of vascular dementia. Clin Sci (Lond) 2017; 131(11): 1059-68.
[http://dx.doi.org/10.1042/CS20160607] [PMID: 28515342]
[6]
Modir R, Gardener H, Wright C. Blood pressure and white matter hyperintensity volume - a review of the relationship and implications for stroke prediction and prevention. Eur Neurol Rev 2012; 7(3): 174-7.
[7]
Gregson J, Qizilbash N, Iwagami M, et al. Blood pressure and risk of dementia and its subtypes: A historical cohort study with long-term follow-up in 2.6 million people. Eur J Neurol 2019; 26(12): 1479-86.
[http://dx.doi.org/10.1111/ene.14030] [PMID: 31233665]
[8]
Bergantin LB. Hypertension, diabetes and neurodegenerative diseases: Is there a clinical link through the Ca2+/cAMP signalling interaction? Curr Hypertens Rev 2019; 15(1): 32-9.
[http://dx.doi.org/10.2174/1573402114666180817113242] [PMID: 30117399]
[9]
Dugger BN, Malek-Ahmadi M, Monsell SE, et al. A cross-sectional analysis of late-life cardiovascular factors and their relation to clinically defined neurodegenerative diseases. Alzheimer Dis Assoc Disord 2016; 30(3): 223-9.
[http://dx.doi.org/10.1097/WAD.0000000000000138] [PMID: 26756386]
[10]
Paraskevas GP, Kapaki E, Papageorgiou SG, et al. CSF biomarker profile and diagnostic value in vascular dementia. Eur J Neurol 2009; 16(2): 205-11.
[http://dx.doi.org/10.1111/j.1468-1331.2008.02387.x] [PMID: 19146641]
[11]
Saykin AJ, Shen L, Yao X, et al. Genetic studies of quantitative MCI and AD phenotypes in ADNI: Progress, opportunities, and plans. Alzheimers Dement 2015; 11(7): 792-814.
[http://dx.doi.org/10.1016/j.jalz.2015.05.009] [PMID: 26194313]
[12]
Jostins L, McVean G. Trinculo: Bayesian and frequentist multinomial logistic regression for genome-wide association studies of multi-category phenotypes. Bioinformatics 2016; 32(12): 1898-900.
[http://dx.doi.org/10.1093/bioinformatics/btw075] [PMID: 26873930]
[13]
Liu JZ, McRae AF, Nyholt DR, et al. A versatile gene-based test for genome-wide association studies. Am J Hum Genet 2010; 87(1): 139-45.
[http://dx.doi.org/10.1016/j.ajhg.2010.06.009] [PMID: 20598278]
[14]
Piñero J, Bravo À, Queralt-Rosinach N, et al. DisGeNET: A comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res 2017; 45(D1): D833-9.
[http://dx.doi.org/10.1093/nar/gkw943] [PMID: 27924018]
[15]
Warde-Farley D, Donaldson SL, Comes O, et al. The GeneMANIA prediction server: Biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res 2010; 38: W214-20.
[http://dx.doi.org/10.1093/nar/gkq537] [PMID: 20576703]
[16]
de Leeuw CA, Mooij JM, Heskes T, Posthuma D. MAGMA: Generalized gene-set analysis of GWAS data. PLOS Comput Biol 2015; 11(4): e1004219.
[http://dx.doi.org/10.1371/journal.pcbi.1004219] [PMID: 25885710]
[17]
Korb E, Finkbeiner S. PML in the brain: From development to degeneration. Front Oncol 2013; 3: 242-2.
[http://dx.doi.org/10.3389/fonc.2013.00242] [PMID: 24062991]
[18]
Moon SW, Dinov ID, Kim J, et al. Structural neuroimaging genetics interactions in Alzheimer’s disease. J Alzheimers Dis 2015; 48(4): 1051-63.
[http://dx.doi.org/10.3233/JAD-150335] [PMID: 26444770]
[19]
Campesan S, Green EW, Breda C, et al. The kynurenine pathway modulates neurodegeneration in a Drosophila model of Huntington’s disease. Curr Biol 2011; 21(11): 961-6.
[http://dx.doi.org/10.1016/j.cub.2011.04.028] [PMID: 21636279]
[20]
Bartosiewicz J, Kaminski T, Pawlak K, Karbowska M, Tankiewicz-Kwedlo A, Pawlak D. The activation of the kynurenine pathway in a rat model with renovascular hypertension. Exp Biol Med (Maywood) 2017; 242(7): 750-61.
[http://dx.doi.org/10.1177/1535370217693114] [PMID: 28165296]
[21]
Giil LM, Midttun Ø, Refsum H, et al. Kynurenine pathway metabolites in Alzheimer’s disease. J Alzheimers Dis 2017; 60(2): 495-504.
[http://dx.doi.org/10.3233/JAD-170485] [PMID: 28869479]
[22]
Marzi SJ, Leung SK, Ribarska T, et al. A histone acetylome-wide association study of Alzheimer’s disease identifies disease-associated H3K27ac differences in the entorhinal cortex. Nat Neurosci 2018; 21(11): 1618-27.
[http://dx.doi.org/10.1038/s41593-018-0253-7] [PMID: 30349106]
[23]
Zhang S, Sakuma M, Deora GS, et al. A brain-permeable inhibitor of the neurodegenerative disease target kynurenine 3-monooxygenase prevents accumulation of neurotoxic metabolites. Commun Biol 2019; 2(1): 271.
[http://dx.doi.org/10.1038/s42003-019-0520-5] [PMID: 31372510]
[24]
Warre-Cornish K, Perfect L, Nagy R, et al. Interferon-γ signaling in human iPSC-derived neurons recapitulates neurodevelopmental disorder phenotypes. Sci Adv 2020; 6(34): eaay9506.
[http://dx.doi.org/10.1126/sciadv.aay9506] [PMID: 32875100]
[25]
Huang G, Osorio D, Guan J, Ji G, Cai JJ. Overdispersed gene expression in schizophrenia. NPJ Schizophr 2020; 6(1): 9-9.
[http://dx.doi.org/10.1038/s41537-020-0097-5] [PMID: 32245959]
[26]
Abbasi A, de Paula Vieira R, Bischof F, et al. Sex-specific variation in signaling pathways and gene expression patterns in human leukocytes in response to endotoxin and exercise. J Neuroinflammation 2016; 13(1): 289.
[http://dx.doi.org/10.1186/s12974-016-0758-5] [PMID: 27832807]
[27]
Gireud-Goss M, Reyes S, Tewari R, et al. The ubiquitin ligase UBE4B regulates amyloid precursor protein ubiquitination, endosomal trafficking, and amyloid β42 generation and secretion. Mol Cell Neurosci 2020; 108: 103542.
[http://dx.doi.org/10.1016/j.mcn.2020.103542] [PMID: 32841720]
[28]
Ibrahim S, Weiss TS. Augmenter of liver regeneration: Essential for growth and beyond. Cytokine Growth Factor Rev 2019; 45: 65-80.
[http://dx.doi.org/10.1016/j.cytogfr.2018.12.003] [PMID: 30579845]
[29]
Ma MW, Wang J, Zhang Q, et al. NADPH oxidase in brain injury and neurodegenerative disorders. Mol Neurodegener 2017; 12(1): 7.
[http://dx.doi.org/10.1186/s13024-017-0150-7] [PMID: 28095923]
[30]
Kobayashi K, Monkawa T, Hayashi M, Saruta T. Expression of the Na+/H+ exchanger regulatory protein family in genetically hypertensive rats. J Hypertens 2004; 22(9): 1723-30.
[http://dx.doi.org/10.1097/00004872-200409000-00016] [PMID: 15311100]
[31]
Giri A, Hellwege JN, Keaton JM, et al. Trans-ethnic association study of blood pressure determinants in over 750,000 individuals. Nat Genet 2019; 51(1): 51-62.
[http://dx.doi.org/10.1038/s41588-018-0303-9] [PMID: 30578418]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy